### **Econometrics - Lecture 5**

# Autocorrelation, IV Estimator

### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

## Example: Demand for Ice Cream

Verbeek's time series dataset "icecream"

- 30 four weekly observations (1951-1953)
- Variables
  - cons: consumption of ice cream per head (in pints)
  - income: average family income per week (in USD, red line)
  - price: price of ice cream (in USD per pint, blue line)
  - temp: average temperature (in Fahrenheit); tempc: (green, in °C)



Time series plot of consumption of ice cream per head (in pints), *cons*, over observation periods





### Autocorrelation

- Typical for time series data such as consumption, production, investments, etc.
- Autocorrelation of error terms is typically observed if
  - a relevant regressor with trend or seasonal pattern is not included in the model: miss-specified model
  - the functional form of a regressor is incorrectly specified
  - the dependent variable is correlated in a way that is not appropriately represented in the systematic part of the model
- Autocorrelation of the error terms indicates deficiencies of the model specification such as omitted regressors, incorrect functional form, incorrect dynamic
- Tests for autocorrelation are the most frequently used tool for diagnostic checking the model specification

Time series plot of

*Cons*: consumption of ice cream per head (in pints); mean: 0.36 *Temp/100*: average temperature (in Fahrenheit) *Price* (in USD per pint); mean: 0.275 USD



Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp* 

|                                            | Table 4.9                                                            | OLS results                          |                                     |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------|--|--|--|
| Dependent v                                | Dependent variable: cons                                             |                                      |                                     |  |  |  |
| Variable                                   | Estimate                                                             | Standard error                       | <i>t</i> -ratio                     |  |  |  |
| constant<br><i>price</i><br>income<br>temp | $\begin{array}{c} 0.197 \\ -1.044 \\ 0.00331 \\ 0.00345 \end{array}$ | 0.270<br>0.834<br>0.00117<br>0.00045 | $0.730 \\ -1.252 \\ 2.824 \\ 7.762$ |  |  |  |
| s = 0.0368<br>dw = 1.0212                  |                                                                      | $\bar{R}^2 = 0.6866$                 | F = 22.175                          |  |  |  |





Nov 3, 2017

## A Model with AR(1) Errors

Linear regression

$$y_t = x_t^{\beta} + \varepsilon_t^{(1)}$$

with

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$
 with  $-1 < \rho < 1$  or  $|\rho| < 1$ 

where  $v_{t}$  are uncorrelated random variables with mean zero and constant variance  $\sigma_{\!v}^{\ 2}$ 

- For  $\rho \neq 0$ , the error terms  $\varepsilon_t$  are correlated; the Gauss-Markov assumption V{ $\varepsilon$ } =  $\sigma_{\varepsilon}^2 I_N$  is violated
- The other Gauss-Markov assumptions are assumed to be fulfilled

The sequence  $\varepsilon_t$ , t = 0, 1, 2, ... which follows  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$  is called an autoregressive process of order 1 or AR(1) process

<sup>&</sup>lt;sup>1)</sup> In the context of time series models, variables are indexed by "t"

### Properties of AR(1) Processes

Repeated substitution of  $\varepsilon_{t-1}$ ,  $\varepsilon_{t-2}$ , etc. results in

 $\varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t} = v_{t} + \rho v_{t-1} + \rho^{2} v_{t-2} + \dots$ 

with  $v_t$  being uncorrelated and having mean zero and variance  $\sigma_v^2$ :

• 
$$E{\epsilon_t} = 0$$

• 
$$V{\epsilon_t} = \sigma_{\epsilon}^2 = \sigma_v^2 (1 - \rho^2)^{-1}$$

This results from V{ $\epsilon_t$ } =  $\sigma_v^2 + \rho^2 \sigma_v^2 + \rho^4 \sigma_v^2 + ... = \sigma_v^2 (1-\rho^2)^{-1}$  for  $|\rho| < 1$ ; the geometric series 1 +  $\rho^2 + \rho^4 + ...$  has the sum (1-  $\rho^2$ )<sup>-1</sup> given that  $|\rho| < 1$ 

• for  $|\rho| > 1$ ,  $V{\epsilon_t}$  is undefined

• Cov{ $\epsilon_t$ ,  $\epsilon_{t-s}$ } =  $\rho^s \sigma_v^2 (1-\rho^2)^{-1}$  for s > 0

all error terms are correlated; covariances – and correlations Corr{ $\epsilon_t, \epsilon_{t-s}$ } =  $\rho^s (1-\rho^2)^{-1}$  – decrease with growing distance *s* in time

### AR(1) Process, cont'd

The covariance matrix  $V{\epsilon}$ :

$$V\{\varepsilon\} = \sigma_{v}^{2}\Psi = \frac{\sigma_{v}^{2}}{1-\rho^{2}} \begin{pmatrix} 1 & \rho & \cdots & \rho^{N-1} \\ \rho & 1 & \cdots & \rho^{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho^{N-1} & \rho^{N-2} & \cdots & 1 \end{pmatrix}$$

- V{ε} has a band structure
- Depends only of two parameters:  $\rho$  and  $\sigma_v^2$

## Consequences of V{ $\epsilon$ } $\neq \sigma^2 I_T$

OLS estimators b for  $\beta$ 

- are unbiased
- are consistent
- have the covariance-matrix

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$ 

- are not efficient estimators, not BLUE
- follow under general conditions asymptotically the normal distribution

The estimator  $s^2 = e'e/(T-K)$  for  $\sigma^2$  is biased

For an AR(1)-process  $\varepsilon_t$  with  $\rho > 0$ , s.e. from  $\sigma^2 (X'X)^{-1}$ underestimates the true s.e.

## Inference in Case of Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$ 

Use of  $\sigma^2$  (X'X)<sup>-1</sup> (the standard output of econometric software) instead of V{*b*} for inference on  $\beta$  may be misleading

Identification of autocorrelation:

Statistical tests, e.g., Durbin-Watson test

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

### Estimation of p

Autocorrelation coefficient  $\rho$ : parameter of the AR(1) process

$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$

Estimation of p

by regressing the OLS residual e<sub>t</sub> on the lagged residual e<sub>t-1</sub>

$$r = \frac{\sum_{t=2}^{T} e_t e_{t-1}}{(T-K)s^2}$$

- estimator is
  - biased
  - but consistent under weak conditions

### **Autocorrelation Function**

Autocorrelation of order s:

$$r_s = \frac{\sum_{t=s+1}^{T} e_t e_{t-s}}{(T-k)s^2}$$

- Autocorrelation function (ACF) assigns r<sub>s</sub> to s
- Correlogram: graphical representation of the autocorrelation function

**GRETL**: <u>V</u>ariable => <u>C</u>orrelogram

Produces (a) the autocorrelation function (ACF) and (b) the graphical representation of the ACF (and the partial autocorrelation function)

### Example: Ice Cream Demand

| Autocorrelation function | (ACF) | ) of cons |
|--------------------------|-------|-----------|
|--------------------------|-------|-----------|

| LAG                        | ACF                                                          | PACF                                                            | Q-stat. [p-value]                                                                                                                               |
|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7 | 0,4283<br>0,0982<br>-0,1470<br>-0,3968<br>-0,4623<br>-0,5145 | -0,3179 *<br>-0,1701<br>** -0,2630<br>** -0,0398<br>*** -0,1735 | 14,5389 $[0,000]$<br>20,8275 $[0,000]$<br>21,1706 $[0,000]$<br>21,9685 $[0,000]$<br>28,0152 $[0,000]$<br>36,5628 $[0,000]$<br>47,6132 $[0,000]$ |
| 9<br>10<br>11              | -0,4068<br>-0,2271<br>-0,0156<br>0,2237<br>0,3912            | 0,0711<br>0,0117<br>0,1666                                      | 54,8362 [0,000]<br>57,1929 [0,000]<br>57,2047 [0,000]<br>59,7335 [0,000]<br>67,8959 [0,000]                                                     |

### Example: Ice Cream Demand



### Contents

### Autocorrelation

### Tests against Autocorrelation

- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

## Tests for Autocorrelation of Error Terms

Due to unbiasedness of *b*, residuals are expected to indicate autocorrelation

Graphical displays, e.g., the correlogram of residuals may give useful hints

Residual-based tests:

- Durbin-Watson test
- Box-Pierce test
- Breusch-Godfrey test

### **Durbin-Watson Test**

Test of  $H_0$ :  $\rho = 0$  against  $H_1$ :  $\rho \neq 0$ 

Test statistic

$$dw = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1 - r)$$

- For  $\rho > 0$ , *dw* is expected to have a value in (0,2)
- For  $\rho < 0$ , *dw* is expected to have a value in (2,4)
- *dw* close to the value 2 indicates no autocorrelation of error terms
- Critical limits of dw
  - depend upon  $x_t$ 's
  - exact critical value is unknown, but upper and lower bounds can be derived, which depend upon  $x_t$ 's only via the number of regression coefficients
- Test can be inconclusive
- $H_1: \rho > 0$  may be more appropriate than  $H_1: \rho \neq 0$

## Durbin-Watson Test: Bounds for Critical Limits

Derived by Durbin and Watson

Upper ( $d_{\rm U}$ ) and lower ( $d_{\rm L}$ ) bounds for the critical limits and  $\alpha = 0.05$ 

| -   | K=2     |            | <b>K</b> =3 |            | <i>K</i> =10 |            |
|-----|---------|------------|-------------|------------|--------------|------------|
|     | $d_{L}$ | $d_{\cup}$ | $d_{ m L}$  | $d_{\cup}$ | $d_{L}$      | $d_{\cup}$ |
| 15  | 1.08    | 1.36       | 0.95        | 1.54       | 0.17         | 3.22       |
| 20  | 1.20    | 1.41       | 1.10        | 1.54       | 0.42         | 2.70       |
| 100 | 1.65    | 1.69       | 1.63        | 1.71       | 1.48         | 1.87       |

- $dw < d_L$ : reject H<sub>0</sub>
- $dw > d_{\cup}$ : do not reject H<sub>0</sub>
- $d_{\rm L} < dw < d_{\rm U}$ : no decision (inconclusive region)

### Durbin-Watson Test: Remarks

- Durbin-Watson test gives no indication of causes for the rejection of the null hypothesis and how the model to modify
- Various types of misspecification may cause the rejection of the null hypothesis
- Durbin-Watson test is a test against first-order autocorrelation; a test against autocorrelation of other orders may be more suitable, e.g., order four if the model is for quarterly data
- Use of tables unwieldy
  - □ Limited number of critical bounds (*K*, *T*,  $\alpha$ ) in tables
  - Inconclusive region
- GRETL: Standard output of the OLS estimation reports the Durbin-Watson statistic; to see the *p*-value:
  - OLS output => Tests => Durbin-Watson *p*-value

### Asymptotic Tests

AR(1) process for error terms

 $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ 

Auxiliary regression of  $e_t$  on (an intercept,)  $x_t$  and  $e_{t-1}$ : produces

 $\bullet R_e^2$ 

Test of  $H_0$ :  $\rho = 0$  against  $H_1$ :  $\rho > 0$  or  $H_1$ :  $\rho \neq 0$ 

- 1. Breusch-Godfrey test (**GRETL**: OLS output => Tests => Autocorr.)
  - $\square$  R<sub>e</sub><sup>2</sup> of the auxiliary regression: close to zero if  $\rho = 0$
  - Under  $H_0$ :  $\rho = 0$ , (*T*-1)  $R_e^2$  follows approximately the Chi-squared distribution with 1 d.f.
  - Lagrange multiplier *F* (LMF) statistic: *F*-test for explanatory power of  $e_{t-1}$ ; follows approximately the *F*(1, *T*-*K*-1) distribution if  $\rho = 0$
  - General case of the Breusch-Godfrey test: Auxiliary regression based on higher order autoregressive process

### Asymptotic Tests, cont'd

2. Similar the Ljung-Box test, based on

 $Q^{\text{LB}} = T (T+2) \Sigma_{\text{s}}^{\text{m}} r_{\text{s}}^{2} / (T-s)$ 

with correlations  $r_s$  between  $e_t$  and  $e_{t-s}$ ;  $Q^{LB}$  follows the Chisquared distribution with *m* d.f. if  $\rho = 0$ 

- 3. Box-Pierce test
  - The *t*-statistic based on the OLS estimate *r* of  $\rho$  from  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ ,  $t = \sqrt{T} r$

follows approximately the *t*-distribution,  $t^2 = T r^2$  the Chi-squared distribution with 1 d.f. if  $\rho = 0$ 

□ Test based on  $\sqrt{(T)}r$  is a special case of the Box-Pierce test which uses the test statistic  $Q_m = T \Sigma_s^m r_s^2$ 

### Asymptotic Tests, cont'd

### **GRETL**:

- OLS output => Tests => Autocorrelation (shows the Breusch-Godfrey LMF statistic, the Box-Pierce statistic, and the Ljung-Box statistic as well as *p*-values)
- OLS output => Graphs => Residual correlogram (shows besides the correlogram of the residuals Ljung-Box statistic and *p*-value)

### Remarks

- If the model of interest contains lagged values of y the auxiliary regression should also include all explanatory variables (just to make sure the distribution of the test is correct)
- If heteroskedasticity is suspected, White standard errors may be used in the auxiliary regression

### OLS estimated demand function: Output from **GRETL**

#### Dependent variable : CONS

|                                                                                        | coefficient                                      | std. error                                                                        | t-ratio                                                                                                                            | p-value                                                                            |
|----------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| const<br>INCOME<br>PRICE<br>TEMP                                                       | 0.197315<br>0.00330776<br>-1.04441<br>0.00345843 | 0.270216<br>0.00117142<br>0.834357<br>0.000445547                                 | 0.7302<br>2.824<br>-1.252<br>7.762                                                                                                 | 0.4718<br>0.0090 ***<br>0.2218<br>3.10e-08 ***                                     |
| Mean depe<br>Sum squar<br>R- squarec<br>F(2, 129)<br>Log-likeliho<br>Schwarz ci<br>rho | endent var<br>red resid<br>d                     | 0.359433<br>0,035273<br>0,718994<br>22,17489<br>58,61944<br>-103,6341<br>0,400633 | S.D. dependent var<br>S.E. of regression<br>Adjusted R-squared<br>P-value (F)<br>Akaike criterion<br>Hannan-Quinn<br>Durbin-Watson | 0,065791<br>0,036833<br>0,686570<br>2,45e-07<br>-109,2389<br>-107,4459<br>1,021170 |

Test for autocorrelation of error terms

- $H_0: \rho = 0, H_1: \rho \neq 0$
- dw = 1.02 < 1.21 = d<sub>L</sub> for T = 30, K = 4; p = 0.0003 (in GRETL: 0.0003025); reject H<sub>0</sub>
- GRETL also shows the autocorrelation coefficient: r = 0.401
   Plot of actual (o) and fitted (polygon) values



Auxiliary regression  $\varepsilon_t = x_t^{\beta} + \rho \varepsilon_{t-1} + v_t^{\beta}$ : OLS estimation gives

 $r = 0.401, R^2 = 0.141$ 

Test of  $H_0$ :  $\rho = 0$  against  $H_1$ :  $\rho > 0$ 

- 1. Breusch-Godfrey test: LMF = 4.11, *p*-value: 0.053
- 2. Box-Pierce test: *t*<sup>2</sup> = 4.237, *p*-value: 0.040
- 3. Ljung-Box test:  $Q^{LB} = 3.6$ , *p*-value: 0.058

All three tests reject the null hypothesis

### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

## Inference under Autocorrelation

Covariance matrix of *b*:

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$ 

Use of  $\sigma^2$  (X'X)<sup>-1</sup> (the standard output of econometric software) instead of V{*b*} for inference on  $\beta$  may be misleading

Remedies

- Use of correct variances and standard errors
- Transformation of the model so that the error terms are uncorrelated

### HAC-estimator for $V\{b\}$

Substitution of  $\boldsymbol{\Psi}$  in

 $V{b} = \sigma^2 (X'X)^{-1} X'\Psi X (X'X)^{-1}$ 

by a suitable estimator

Newey-West: substitution of  $S_x = \sigma^2(X'\Psi X)/T = (\Sigma_t \Sigma_s \sigma_{ts} x_t x_s')/T$  by

$$\hat{S}_{x} = \frac{1}{T} \sum_{t} e_{t}^{2} x_{t} x_{t}' + \frac{1}{T} \sum_{j=1}^{p} \sum_{t} (1 - w_{j}) e_{t} e_{t-j} (x_{t} x_{t-j}' + x_{t-j} x_{t}')$$

with  $w_j = j/(p+1)$ ; *p*, the *truncation lag*, is to be chosen suitably The estimator

 $T(XX)^{-1} \hat{S}_{X}(XX)^{-1}$ 

for V{*b*} is called *heteroskedasticity and autocorrelation consistent* (HAC) estimator, the corresponding standard errors are the HAC s.e.

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors

|                         | coeff  | s.e.  |       |
|-------------------------|--------|-------|-------|
|                         |        | OLS   | HAC   |
| constant                | 0.197  | 0.270 | 0.288 |
| price                   | -1.044 | 0.834 | 0.876 |
| income*10 <sup>-3</sup> | 3.308  | 1.171 | 1.184 |
| temp*10 <sup>-3</sup>   | 3.458  | 0.446 | 0.411 |

### **Cochrane-Orcutt Estimator**

### **GLS** estimator

• With transformed variables  $y_t^* = y_t - \rho y_{t-1}$  and  $x_t^* = x_t - \rho x_{t-1}$ , also called "quasi-differences", the model  $y_t = x_t^{\cdot}\beta + \varepsilon_t$  with  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$  can be written as

 $y_t - \rho y_{t-1} = y_t^* = (x_t - \rho x_{t-1})^{\prime}\beta + v_t = x_t^{*\prime}\beta + v_t$  (A)

- The model in quasi-differences has error terms which fulfill the Gauss-Markov assumptions
- Given observations for t = 1, ..., T, model (A) is defined for t = 2, ..., T
- Estimation of  $\rho$  using, e.g., the auxiliary regression  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ gives the estimate *r*; substitution of *r* in (A) for  $\rho$  results in FGLS estimators for  $\beta$
- The FGLS estimator is called Cochrane-Orcutt estimator

### **Cochrane-Orcutt Estimation**

In following steps

- 1. OLS estimation of *b* for  $\beta$  from  $y_t = x_t^{\dagger}\beta + \varepsilon_t$ , t = 1, ..., T
- 2. Estimation of *r* for  $\rho$  from the auxiliary regression  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$
- 3. Calculation of quasi-differences  $y_t^* = y_t ry_{t-1}$  and  $x_t^* = x_t rx_{t-1}$
- 4. OLS estimation of  $\beta$  from

 $y_t^* = x_t^{*'}\beta + v_t, t = 2, ..., T$ 

resulting in the Cochrane-Orcutt estimators

Steps 2. to 4. can be repeated in order to improve the estimate *r* : iterated Cochrane-Orcutt estimator

**GRETL** provides the iterated Cochrane-Orcutt estimator:

Model => Time series => Autoregressive estimation
#### **Iterated Cochrane-Orcutt estimator**

| <b>Table 4.10</b> | EGLS | (iterative Cochrane–Orcutt) results |
|-------------------|------|-------------------------------------|
|-------------------|------|-------------------------------------|

Dependent variable: cons

| Variable        | Estimate            | Standard error      | <i>t</i> -ratio |  |
|-----------------|---------------------|---------------------|-----------------|--|
| constant        | 0.157               | 0.300               | 0.524           |  |
| price<br>income | $-0.892 \\ 0.00320$ | 0.830<br>0.00159    | -1.076<br>2.005 |  |
| temp<br>ρ       | $0.00356 \\ 0.401$  | $0.00061 \\ 0.2079$ | 5.800<br>1.927  |  |
|                 | $R^2 = 0.7961^*$    |                     |                 |  |
| dw = 1.548      | 36*                 |                     |                 |  |

Durbin-Watson test: dw = 1.55;  $d_{L}=1.21 < dw < 1.65 = d_{U}$ 

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors (se), and Cochrane-Orcutt estimates

|          | OLS-estimation |       |       | Cochrane-<br>Orcutt |       |  |
|----------|----------------|-------|-------|---------------------|-------|--|
|          | coeff          | se    | HAC   | coeff               | se    |  |
| constant | 0.197          | 0.270 | 0.288 | 0.157               | 0.300 |  |
| price    | -1.044         | 0.834 | 0.881 | -0.892              | 0.830 |  |
| income   | 3.308          | 1.171 | 1.151 | 3.203               | 1.546 |  |
| temp     | 3.458          | 0.446 | 0.449 | 3.558               | 0.555 |  |

#### Model extended by temp\_1

| Table 4.11         OLS results extended specification |                |                        |                 |  |  |  |
|-------------------------------------------------------|----------------|------------------------|-----------------|--|--|--|
| Dependent variable: cons                              |                |                        |                 |  |  |  |
| Variable                                              | Estimate       | Standard error         | <i>t</i> -ratio |  |  |  |
| constant                                              | 0.189          | 0.232                  | 0.816           |  |  |  |
| price                                                 | -0.838         | 0.688                  | -1.218          |  |  |  |
| income                                                | 0.00287        | 0.00105                | 2.722           |  |  |  |
| temp                                                  | 0.00533        | 0.00067                | 7.953           |  |  |  |
| $temp_{t-1}$                                          | -0.00220       | 0.00073                | -3.016          |  |  |  |
| s = 0.0299                                            | $R^2 = 0.8285$ | $\bar{R}^2 = 0.7999$ F | F = 28.979      |  |  |  |
| dw = 1.5822                                           |                |                        |                 |  |  |  |

Durbin-Watson test: dw = 1.58;  $d_{L}=1.21 < dw < 1.65 = d_{U}$ 

Demand for ice cream, measured by *cons*, explained by *price*, *income*, and *temp*, OLS and HAC standard errors, Cochrane-Orcutt estimates, and OLS estimates for the extended model

|                                                                    |          | OLS    |       | Cochrane-<br>Orcutt |       | OLS    |       |
|--------------------------------------------------------------------|----------|--------|-------|---------------------|-------|--------|-------|
|                                                                    |          | coeff  | HAC   | coeff               | se    | coeff  | se    |
|                                                                    | constant | 0.197  | 0.288 | 0.157               | 0.300 | 0.189  | 0.232 |
|                                                                    | price    | -1.044 | 0.881 | -0.892              | 0.830 | -0.838 | 0.688 |
|                                                                    | income   | 3.308  | 1.151 | 3.203               | 1.546 | 2.867  | 1.053 |
|                                                                    | temp     | 3.458  | 0.449 | 3.558               | 0.555 | 5.332  | 0.670 |
|                                                                    | temp_1   |        |       |                     |       | -2.204 | 0.731 |
| ng $temp_{-1}$ improves the adj R <sup>2</sup> from 0.687 to 0.800 |          |        |       |                     |       |        |       |

Addi

# General Autocorrelation Structures

Generalization of model

$$y_t = x_t \beta + \varepsilon_t$$

with  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ 

Alternative dependence structures of error terms

- Autocorrelation of higher order than 1
- Moving average pattern

#### Higher Order Autocorrelation

For quarterly data, error terms may develop according to

$$\varepsilon_t = \gamma \varepsilon_{t-4} + V_t$$

or - more generally - to

 $\varepsilon_{t} = \gamma_{1}\varepsilon_{t-1} + \ldots + \gamma_{4}\varepsilon_{t-4} + V_{t}$ 

- $\epsilon_t$  follows an AR(4) process, an autoregressive process of order 4
- More complex structures of correlations between variables with autocorrelation of order 4 are possible than with that of order 1

# Moving Average Processes

Moving average process of order 1, MA(1) process

 $\varepsilon_t = v_t + \alpha v_{t-1}$ 

- **ε**<sub>t</sub> is correlated with  $ε_{t-1}$ , but not with  $ε_{t-2}$ ,  $ε_{t-3}$ , ...
- Generalizations to higher orders

# Remedies against Autocorrelation

- Change functional form, e.g., use log(y) instead of y
- Extend the model by including additional explanatory variables, e.g., seasonal dummies, or additional lags
- Use HAC standard errors for the OLS estimators
- Reformulate the model in quasi-differences (FGLS) or in differences

#### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

#### **OLS** Estimator

Linear model for  $y_t$ 

 $y_i = x_i'\beta + \varepsilon_i, i = 1, ..., N$  (or  $y = X\beta + \varepsilon$ )

given observations  $x_{ik}$ , k = 1, ..., K, of the regressor variables, error term  $\varepsilon_i$ 

**OLS** estimator

$$b = (\sum_{i} x_{i} x_{i}')^{-1} \sum_{i} x_{i} y_{i} = (X'X)^{-1} X' y$$

From

$$b = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i y_i = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i x_i' \beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i$$
  
=  $\beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i = \beta + (X'X)^{-1} X'\varepsilon$ 

follows

$$E\{b\} = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i y_i = (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i x_i' \beta + (\Sigma_i x_i x_i')^{-1} \Sigma_i x_i \varepsilon_i$$
  
=  $\beta + (\Sigma_i x_i x_i')^{-1} E\{\Sigma_i x_i \varepsilon_i\} = \beta + (X'X)^{-1} E\{X'\varepsilon\}$ 

#### **OLS Estimator: Properties**

- 1. OLS estimator *b* is unbiased if
  - (A1)  $E\{\epsilon\} = 0$
  - $E{\Sigma_i x_i \epsilon_i} = E{X \epsilon} = 0$ ; is fulfilled if (A7) or a stronger assumption is true
    - (A2) { $x_i$ , i = 1, ..., N} and { $\varepsilon_i$ , i = 1, ..., N} are independent; is the strongest assumption
    - (A10)  $E{\epsilon|X} = 0$ , i.e., X uninformative about  $E{\epsilon_i}$  for all *i* ( $\epsilon$  is conditional mean independent of X); is implied by (A2)
    - (A8)  $x_i$  and  $\varepsilon_i$  are independent for all *i* (no contemporaneous dependence); is less strong than (A2) and (A10)
    - (A7)  $E\{x_i \varepsilon_i\} = 0$  for all *i* (no contemporaneous correlation); is even less strong than (A8)

## OLS Estimator: Properties, cont'd

- 2. OLS estimator *b* is consistent for  $\beta$  if
  - (A8)  $x_i$  and  $\varepsilon_i$  are independent for all *i*
  - (A6) (1/N)Σ<sub>i</sub> x<sub>i</sub> x<sub>i</sub>' has as limit (N→∞) a non-singular matrix Σ<sub>xx</sub>
     (A8) can be substituted by (A7) [E{x<sub>i</sub> ε<sub>i</sub>} = 0 for all *i*, no contemporaneous correlation]
- 3. OLS estimator *b* is asymptotically normally distributed if (A6), (A8) and
  - (A11) ε<sub>i</sub> ~ IID(0,σ<sup>2</sup>) are true;
  - for large N, b follows approximately the normal distribution b ~<sub>a</sub> N{β, σ<sup>2</sup>(Σ<sub>i</sub> x<sub>i</sub> x<sub>i</sub>')<sup>-1</sup>}
  - Use White and Newey-West estimators for V{b} in case of heteroskedasticity and autocorrelation of error terms, respectively

# Assumption (A7): $E\{x_i \varepsilon_i\} = 0$ for all *i*

- Implication of (A7): for all *i*, each of the regressors is uncorrelated with the current error term, no contemporaneous correlation
- (A7) guaranties unbiasedness and consistency of the OLS estimator
- Stronger assumptions (A2), (A10), (A8) have same consequences
- In reality, (A7) is not always true: alternative estimation procedures are required for ascertaining consistency and unbiasedness

Examples of situations with  $E\{x_i \ \varepsilon_i\} \neq 0$  (see the following slides):

- Regressors with measurement errors
- Regression on the lagged dependent variable with autocorrelated error terms (dynamic regression)
- Unobserved heterogeneity
- Endogeneity of regressors, simultaneity

#### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

# Regressor with Measurement Error

 $y_i = \beta_1 + \beta_2 w_i + v_i$ 

with white noise  $v_i$ ,  $V\{v_i\} = \sigma_v^2$ , and  $E\{v_i|w_i\} = 0$ ; conditional expectation of  $y_i$  given  $w_i : E\{y_i|w_i\} = \beta_1 + \beta_2 w_i$ 

Example:  $y_i$ : household savings ,  $w_i$ : household income Measurement process: reported household income  $x_i$  may deviate from household income  $w_i$ 

 $x_i = w_i + u_i$ 

where  $u_i$  is (i) white noise with V{ $u_i$ } =  $\sigma_u^2$ , (ii) independent of  $v_i$ , and (iii) independent of  $w_i$ 

The model to be analyzed is

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$  with  $\varepsilon_i = v_i - \beta_2 u_i$ 

- $E\{x_i \epsilon_i\} = -\beta_2 \sigma_u^2 \neq 0$ : requirement for consistency and unbiasedness of OLS estimates is violated
- $x_i$  and  $\varepsilon_i$  are negatively (positively) correlated if  $\beta_2 > 0$  ( $\beta_2 < 0$ )

# Consequences of Measurement Errors

Inconsistency of  $b_2 = s_{xy}/s_x^2$ plim  $b_2 = \beta_2 + (\text{plim } s_{x\epsilon})/(\text{plim } s_x^2) = \beta_2 + E\{x_i \epsilon_i\} / V\{x_i\}$  $= \beta_2 \left(1 - \frac{\sigma_u^2}{\sigma_w^2 + \sigma_u^2}\right)$ 

 $\beta_2$  is underestimated

• Inconsistency of 
$$b_1 = \overline{y} - b_2 \overline{x}$$

plim  $(b_1 - \beta_1) = -$  plim  $(b_2 - \beta_2) \in \{x_i\}$ 

given  $E{x_i} > 0$  for the reported income:  $\beta_1$  is overestimated; inconsistency of  $b_2$  "carries over"

The model does not correspond to the conditional expectation of y<sub>i</sub> given x<sub>i</sub>:

 $E\{y_i|x_i\} = \beta_1 + \beta_2 x_i - \beta_2 E\{u_i|x_i\} \neq \beta_1 + \beta_2 x_i$ as  $E\{u_i|x_i\} \neq 0$ 

#### **Dynamic Regression**

```
Allows modelling dynamic effects of changes of x on y:
              y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \varepsilon_t
     with \varepsilon_{t} following the AR(1) model
              \varepsilon_{t} = \rho \varepsilon_{t-1} + V_{t}
     v_{\rm t} white noise with \sigma_{\rm v}^2
From y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + \rho \varepsilon_{t-1} + v_t follows
              E\{y_{t-1}\varepsilon_t\} = \beta_3 E\{y_{t-2}\varepsilon_t\} + \rho^2 \sigma_v^2 (1 - \rho^2)^{-1}
     i.e., y_{t-1} is correlated with \varepsilon_t
     Remember: E{\epsilon_{t}, \epsilon_{t-s}} = \rho^{s} \sigma_{v}^{2} (1-\rho^{2})^{-1} for s > 0
OLS estimators not consistent if \rho \neq 0
The model does not correspond to the conditional expectation of y_{t}
     given the regressors x_t and y_{t-1}:
      E\{y_t|x_t, y_{t-1}\} = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + E\{\varepsilon_t | x_t, y_{t-1}\}
```

# Omission of Relevant Regressors

Two models:

$$y_{i} = x_{i}'\beta + z_{i}'\gamma + \varepsilon_{i}$$
(A)  
$$y_{i} = x_{i}'\beta + v_{i}$$
(B)

- True model (A), fitted model (B)
- OLS estimates b<sub>B</sub> of β from (B)

$$b_B = \beta + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i z_i' \gamma + \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i \varepsilon_i$$

- Omitted variable bias:  $E\{(\Sigma_i x_i x_i')^{-1} \Sigma_i x_i z_i'\}\gamma = E\{(X'X)^{-1} X'Z\}\gamma$
- No bias if (a) γ = 0, i.e., model (A) is correct, or if (b) variables in x<sub>i</sub> and z<sub>i</sub> are uncorrelated (orthogonal)
- OLS estimators are biased, if relevant regressors are omitted that are correlated with regressors in  $x_i$

# Unobserved Heterogeneity

Example: Wage equation with  $y_i$ : log wage,  $x_{1i}$ : personal characteristics,  $x_{2i}$ : years of schooling,  $u_i$ : abilities (unobservable)

$$y_i = x_{1i}'\beta_1 + x_{2i}\beta_2 + u_i\gamma + v_i$$

Model for analysis (unobserved u<sub>i</sub> covered in error term)

$$y_i = x_i^{\,i}\beta + \varepsilon_i$$

with 
$$x_i = (x_{1i}, x_{2i})$$
,  $\beta = (\beta_1, \beta_2)$ ,  $\varepsilon_i = u_i \gamma + v_i$ 

• Given  $E\{x_i | v_i\} = 0$ 

plim  $b = \beta + \Sigma_{xx}^{-1} E\{x_i u_i\} \gamma$ 

• OLS estimators *b* are not consistent if  $x_i$  and  $u_i$  are correlated ( $\gamma \neq 0$ ), e.g., if higher abilities induce more years at school: estimator for  $\beta_2$  might be overestimated, hence effects of years at school etc. are overestimated: "ability bias"

Unobserved heterogeneity: observational units differ in other aspects than ones that are observable

#### **Endogenous Regressors**

Regressors in X which are correlated with error term,  $E{X^{t}\varepsilon} \neq 0$ , are called endogenous

- OLS estimators  $b = \beta + (X^{L}X)^{-1}X^{L}\varepsilon$ 
  - □  $E{b} \neq \beta$ , *b* is biased; bias  $E{(X^{L}X)^{-1}X^{L}\varepsilon}$  difficult to assess
  - $\Box \quad \text{plim } b = \beta + \Sigma_{xx}^{-1}q \text{ with } q = \text{plim}(N^{-1}X^{\epsilon}\varepsilon)$ 
    - For q = 0 (regressors and error term asymptotically uncorrelated), OLS estimators b are consistent also in case of endogenous regressors
    - For  $q \neq 0$  (error term and at least one regressor asymptotically correlated): plim  $b \neq \beta$ , the OLS estimators b are not consistent
- Endogeneity bias
- Relevant for many economic applications

Exogenous regressors: with error term uncorrelated, all regressors that are not endogenous

#### **Consumption Function**

AWM data base, 1970:1-2003:4 C: private consumption (PCR), growth rate p.y. Y: disposable income of households (PYR), growth rate p.y.  $C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$ (A)  $\beta_2$ : marginal propensity to consume,  $0 < \beta_2 < 1$ OLS estimates:  $\hat{C}_{t} = 0.011 + 0.718 Y_{t}$ with t = 15.55,  $R^2 = 0.65$ , DW = 0.50 $I_t$ : per capita investment (exogenous, E{ $I_t \varepsilon_t$ } = 0)  $Y_{t} = C_{t} + I_{t}$ **(B)** Both  $Y_t$  and  $C_t$  are endogenous:  $E\{C_t \epsilon_i\} = E\{Y_t \epsilon_i\} = \sigma_{\epsilon}^2(1 - \beta_2)^{-1}$ The regressor  $Y_t$  has an impact on  $C_t$ ; at the same time  $C_t$  has an impact on  $Y_{t}$ 

# Simultaneous Equation Models

Illustrated by the preceding consumption function:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t} \qquad (A)$$
  

$$Y_{t} = C_{t} + I_{t} \qquad (B)$$

Variables  $Y_t$  and  $C_t$  are simultaneously determined by equations (A) and (B)

- Equations (A) and (B) are the structural equations or the structural form of the simultaneous equation model that describes both Y<sub>t</sub> and C<sub>t</sub>
- The coefficients  $\beta_1$  and  $\beta_2$  are behavioural parameters
- Reduced form of the model: one equation for each of the endogenous variables C<sub>t</sub> and Y<sub>t</sub>, with only the exogenous variable I<sub>t</sub> as regressor

The OLS estimators are biased and not consistent

## Consumption Function, cont'd

Reduced form of the model:

$$C_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{\beta_{2}}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$
$$Y_{t} = \frac{\beta_{1}}{1 - \beta_{2}} + \frac{1}{1 - \beta_{2}}I_{t} + \frac{1}{1 - \beta_{2}}\varepsilon_{t}$$

 OLS estimator b<sub>2</sub> from (A) is inconsistent; E{Y<sub>t</sub> ε<sub>t</sub>} ≠ 0 plim b<sub>2</sub> = β<sub>2</sub> + Cov{Y<sub>t</sub> ε<sub>t</sub>} / V{Y<sub>t</sub>} = β<sub>2</sub> + (1 − β<sub>2</sub>) σ<sub>ε</sub><sup>2</sup>(V{I<sub>t</sub>} + σ<sub>ε</sub><sup>2</sup>)<sup>-1</sup> for 0 < β<sub>2</sub> < 1, b<sub>2</sub> overestimates β<sub>2</sub>

The OLS estimator b<sub>1</sub> is also inconsistent

#### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

# An Alternative Estimator

Model

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ 

with E{  $\varepsilon_i x_i$  }  $\neq 0$ , i.e., endogenous regressor  $x_i$ : OLS estimators are biased and inconsistent

Instrumental variable  $z_i$  satisfying

- 1. Exogeneity:  $E\{\epsilon_i z_i\} = 0$ : is uncorrelated with error term
- 2. Relevance:  $Cov{x_i, z_i} \neq 0$ : is correlated with endogenous regressor

Transformation of model equation

$$\operatorname{Cov}\{y_{i}, z_{i}\} = \beta_{2} \operatorname{Cov}\{x_{i}, z_{i}\} + \operatorname{Cov}\{\varepsilon_{i}, z_{i}\}$$

gives

$$\beta_2 = \frac{Cov\{y_i, z_i\}}{Cov\{x_i, z_i\}}$$

# IV Estimator for $\beta_2$

Substitution of sample moments for covariances gives the instrumental variables (IV) estimator

$$\hat{\beta}_{2,IV} = \frac{\sum_{i} (z_i - \overline{z})(y_i - \overline{y})}{\sum_{i} (z_i - \overline{z})(x_i - \overline{x})}$$

- Consistent estimator for  $\beta_2$  given that the instrumental variable  $z_i$  is valid , i.e., it is
  - Exogenous, i.e.  $E{\epsilon_i z_i} = 0$
  - □ Relevant, i.e.  $Cov{x_i, z_i} \neq 0$
- Typically, nothing can be said about the bias of an IV estimator; small sample properties are unknown
- Coincides with OLS estimator for  $z_i = x_i$

# Consumption Function, cont'd

Alternative model:  $C_t = \beta_1 + \beta_2 Y_{t-1} + \varepsilon_t$ 

- $Y_{t-1}$  and  $\varepsilon_t$  are certainly uncorrelated; avoids risk of inconsistency due to correlated  $Y_t$  and  $\varepsilon_t$
- $Y_{t-1}$  is certainly highly correlated with  $Y_t$ , is almost as good as regressor as  $Y_t$

Fitted model:

```
\hat{C} = 0.012 + 0.660 Y_{-1}
with t = 12.86, R^2 = 0.56, DW = 0.79 (instead of
\hat{C} = 0.011 + 0.718 Y
with t = 15.55, R^2 = 0.65, DW = 0.50)
```

Deterioration of *t*-statistic and R<sup>2</sup> are price for improvement of the estimator

# IV Estimator: The Concept

Alternative to OLS estimator

Avoids inconsistency in case of endogenous regressors
 Idea of the IV estimator:

- Replace regressors which are correlated with error terms by regressors which are
  - uncorrelated with the error terms
  - (highly) correlated with the regressors that are to be replaced

and use OLS estimation

The hope is that the IV estimator is consistent (and less biased than the OLS estimator)

Price: IV estimator is less efficient; deteriorated model fit as measured by, e.g., *t*-statistic, R<sup>2</sup>

#### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

### IV Estimator: General Case

The model is

 $y_{i} = x_{i}^{\,i}\beta + \varepsilon_{i}$ with  $V\{\varepsilon_{i}\} = \sigma_{\varepsilon}^{2}$  and  $E\{\varepsilon_{i}, x_{i}\} \neq 0$ 

• at least one component of  $x_i$  is correlated with the error term The vector of instruments  $z_i$  (with the same dimension as  $x_i$ ) fulfils

$$E\{\varepsilon_i \ z_i\} = 0$$
$$Cov\{x_i, \ z_i\} \neq 0$$

IV estimator based on the instruments  $z_i$ 

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \left(\sum_{i} z_{i} y_{i}\right)$$

#### IV Estimator: Distribution

The (asymptotic) covariance matrix of the IV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[ \left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1} \left(\sum_{i} z_{i} z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i} z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_{i}' z_{i}' z_{i}' z_{i}'\right)^{-1} \left(\sum_{i} z_{i}' z_$$

In the estimated covariance matrix  $V\{\beta_{IV}\}$ ,  $\sigma^2$  is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left( y_i - x'_i \hat{\beta}_{IV} \right)^2$$

which is based on the IV residuals  $y_i - x_i' \hat{\beta}_{IV}$ 

The asymptotic distribution of IV estimators, given IID(0,  $\sigma_{\epsilon}^{2}$ ) error terms, leads to the approximate distribution

 $N(\hat{\beta}, \hat{V}\{\hat{\beta}_{IV}\})$  with the estimated covariance matrix  $\hat{V}\{\hat{\beta}_{IV}\}$ 

# Derivation of the IV Estimator

The model is

 $y_i = x_i \beta + \varepsilon_t = x_{0i} \beta_0 + \beta_K x_{Ki} + \varepsilon_i$ with  $x_{0i} = (x_{1i}, ..., x_{K-1,i})$  containing the first *K*-1 components of  $x_i$ , and  $E\{\varepsilon_i | x_{0i}\} = 0$ 

*K*-th component is endogenous:  $E\{\varepsilon_i | x_{Ki}\} \neq 0$ 

The instrumental variable  $z_{\kappa_i}$  fulfils

 $\mathsf{E}\{\varepsilon_{\mathsf{i}} | z_{\mathsf{K}\mathsf{i}}\} = 0$ 

Moment conditions: *K* conditions to be satisfied by the coefficients, the *K*-th condition with  $z_{\kappa_i}$  instead of  $x_{\kappa_i}$ :

$$E\{\varepsilon_{i} x_{0i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) x_{0i}\} = 0 \quad (K-1 \text{ conditions})$$
$$E\{\varepsilon_{i} z_{i}\} = E\{(y_{i} - x_{0i} \beta_{0} - \beta_{K} x_{Ki}) z_{Ki}\} = 0$$

Number of conditions – and of corresponding linear equations – equals the number of coefficients to be estimated

# Derivation of the IV Estimator,

The system of linear equations for the K coefficients  $\beta$  to be estimated can be uniquely solved for the coefficients  $\beta$ : the coefficients  $\beta$  are said "to be identified"

To derive the IV estimators from the moment conditions, the expectations are replaced by sample averages

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})x_{ki}=0, k=1,...,K-1$$

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}'\hat{\beta}_{IV})z_{Ki}=0$$

The solution of the linear equation system – with  $z_i' = (x_{0i}', z_{Ki}) - is$ 

$$\hat{\boldsymbol{\beta}}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i}$$

Identification requires that the *K*x*K* matrix  $\Sigma_i z_i x_i$ ' is finite and invertible; instrument  $z_{Ki}$  is relevant when this is fulfilled

#### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

# Calculation of IV Estimators

The model in matrix notation

$$y = X\beta + \varepsilon$$

The IV estimator

$$\hat{\beta}_{IV} = \left(\sum_{i} z_{i} x_{i}'\right)^{-1} \sum_{i} z_{i} y_{i} = (Z'X)^{-1} Z'y$$

with  $z_i$  obtained from  $x_i$  by substituting instrumental variable(s) for all endogenous regressors

Calculation in two steps:

- 1. Reduced form: Regression of the explanatory variables  $x_1, ..., x_K$  including the endogenous ones on the columns of *Z*: fitted values  $\hat{X} = Z(Z'Z)^{-1}Z'X$
- 2. Regression of *y* on the fitted explanatory variables:

 $\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$ 

# Calculation of IV Estimators: Remarks

- The *K*x*K* matrix  $Z'X = \Sigma_i z_i x_i'$  is required to be finite and invertible
  - From  $(\hat{X}'\hat{X})^{-1}\hat{X}'y = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$

 $= (Z'X)^{-1}Z'Z(X'Z)^{-1}X'Z(Z'Z)^{-1}Z'y = (Z'X)^{-1}Z'y = \hat{\beta}_{IV}$ 

it is obvious that the estimator obtained in the second step is the IV estimator

- However, the estimator obtained in the second step is more general; see below
- In GRETL: The sequence "Model > Instrumental variables > Two-Stage Least Squares…" leads to the specification window with boxes (i) for the regressors and (ii) for the instruments
# Choice of Instrumental Variables

Instrumental variable are required to be

- exogenous, i.e., uncorrelated with the error terms
- relevant, i.e., correlated with the endogenous regressors
   Instruments
- must be based on subject matter arguments, e.g., arguments from economic theory
- should be explained and motivated
- must show a significant effect in explaining an endogenous regressor
- Choice of instruments often not easy

Regression of endogenous variables on instruments

- Best linear approximation of endogenous variables
- Economic interpretation not of importance and interest

### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

# Returns to Schooling: Causality?

Human capital earnings function:

 $w_i = \beta_1 + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$ 

with  $w_i$ : log of individual earnings,  $S_i$ : years of schooling,  $E_i$ : years of experience ( $E_i = age_i - S_i - 6$ )

Empirically, more education implies higher income

Question: Is this effect causal?

- If yes, one year more at school increases wage by  $\beta_2$  (Theory A)
- Alternatively, personal abilities of an individual causes higher income and also more years at school; more years at school do not necessarily increase wage (Theory B)

Issue of substantial attention in literature

# Returns to Schooling: Endogenous Regressors

Wage equation: besides S<sub>i</sub> and E<sub>i</sub>, additional explanatory variables like gender, regional, racial dummies, family background
 Model for analysis:

 $w_i = \beta_1 + z_i'\gamma + \beta_2 S_i + \beta_3 E_i + \beta_4 E_i^2 + \varepsilon_i$ 

 $z_i$ : observable variables besides  $E_i$ ,  $S_i$ 

- $z_i$  is assumed to be exogenous, i.e., E{ $z_i ε_i$ } = 0
- $S_i$  may be endogenous, i.e.,  $E\{S_i \varepsilon_i\} \neq 0$ 
  - Ability bias: unobservable factors like intelligence, family background, etc. enable to more schooling and higher earnings
  - Measurement error in measuring schooling
  - Etc.
- With  $S_i$ , also  $E_i = age_i S_i 6$  and  $E_i^2$  are endogenous
- OLS estimators may be inconsistent

# Returns to Schooling: Data

- Verbeek's data set "schooling"
- National Longitudinal Survey of Young Men (Card, 1995)
- Data from 3010 males, survey 1976
- Individual characteristics, incl. experience, race, region, family background, etc.
- Human capital earnings or wage function

 $\log(wage_i) = \beta_1 + \beta_2 ed_i + \beta_3 exp_i + \beta_3 exp_i^2 + \varepsilon_i$ 

with  $ed_i$ : years of schooling  $(S_i)$ ,  $exp_i$ : years of experience  $(E_i)$ 

- Variables: wage76 (wage in 1976, raw, cents p.h.), ed76 (years at school in 1976), exp76 (experience in 1976), exp762 (exp76 squared)
- Further explanatory variables: *black*: dummy for afro-american, *smsa*: dummy for living in metropolitan area, *south*: dummy for living in the south

#### **OLS** Estimation

#### OLS estimated wage function

Model 2: OLS, using observations 1-3010 Dependent variable: I\_WAGE76

| с                  | oefficient  | std. error | <i>t</i> -ratio    | <i>p</i> -value |
|--------------------|-------------|------------|--------------------|-----------------|
| const              | 4.73366     | 0.0676026  | 70.02              | 0.0000 ***      |
| ED76               | 0.0740090   | 0.00350544 |                    | 2.28e-092 ***   |
| EXP76              | 0.0835958   | 0.00664779 |                    | 2.22e-035 ***   |
| EXP762             | -0.00224088 | 0.00031784 | 40 -7.050          | 2.21e-012 ***   |
| BLACK              | -0.189632   | 0.0176266  | -10.76             | 1.64e-026 ***   |
| SMSA76             | 0.161423    | 0.0155733  | 10.37              | 9.27e-025 ***   |
| SOUTH76            | -0.124862   | 0.0151182  | -8.259             | 2.18e-016 ***   |
| Mean dependent var |             | 6.261832   | S.D. dependent var | 0.443798        |
| Sum squared        | d resid     | 420.4760   | S.E. of regression | 0.374191        |
| R-squared          |             | 0.290505   | Adjusted R-squared | 0.289088        |
| F(6, 3003)         |             | 204.9318   | P-value(F)         | 1.5e-219        |
| Log-likelihoo      | d           | -1308.702  | Akaike criterion   | 2631.403        |
| Schwarz crite      | erion       | 2673.471   | Hannan-Quinn       | 2646.532        |

# Instruments for $S_i$ , $E_i$ , $E_i^2$

Potential instrumental variables

- Factors which affect schooling but are uncorrelated with error terms, in particular with unobserved abilities that are determining wage
- For years of schooling (S<sub>i</sub>)
  - Costs of schooling, e.g., distance to school (*lived near college*), number of siblings
  - Parents' education
- For years of experience  $(E_i, E_i^2)$ : age is natural candidate

# Step 1 of IV Estimation

Reduced form for *schooling* (*ed76*), gives predicted values *ed76\_h*,

Model 3: OLS, using observations 1-3010 Dependent variable: ED76

| coefficient         | std. error           | t-ratio   | p-value       |
|---------------------|----------------------|-----------|---------------|
| <br>const -1.81870  | 4.28974              | -0.4240   | 0.6716        |
| AGE76 1.05881       | 0.300843             | 3.519     | 0.0004 ***    |
| sq_AGE76 -0.0187266 | 0.00522162           | -3.586    | 0.0003 ***    |
| BLACK -1.46842      | 0.115245             | -12.74    | 2.96e-036 *** |
| SMSA76 0.841142     | 0.105841             | 7.947     | 2.67e-015 *** |
| SOUTH76 -0.429925   | 0.102575             | -4.191    | 2.85e-05 ***  |
| NEARC4A 0.441082    | 0.0966588            | 4.563     | 5.24e-06 ***  |
| Mean dependent var  | 13.26346 S.D. depe   | ndent var | 2.676913      |
| Sum squared resid   | 18941.85 S.E. of reg | gression  | 2.511502      |
| R-squared           | 0.121520 Adjusted F  | R-squared | 0.119765      |
| F(6, 3003)          | 69.23419 P-value(F   | )         | 5.49e-81      |
| Log-likelihood      | -7039.353 Akaike cri | terion    | 14092.71      |
| Schwarz criterion   | 14134.77 Hannan-G    | luinn     | 14107.83      |

# Step 2 of IV Estimation

Wage equation, estimated by IV with instruments age, age<sup>2</sup>, and nearc4a

Model 4: OLS, using observations 1-3010 Dependent variable: I\_WAGE76

| (             | coefficient | std. error | t-ratio            | p-value       |
|---------------|-------------|------------|--------------------|---------------|
| const         | 3.69771     | 0.435332   | 8.494              | 3.09e-017 *** |
| ED76_h        | 0.164248    | 0.036887   | 4.453              | 8.79e-06 ***  |
| EXP76_h       | 0.044588    | 0.022502   | 1.981              | 0.0476 **     |
| EXP762_h      | -0.000195   | 0.001152   | -0.169             | 0.8655        |
| BLACK         | -0.057333   | 0.056772   | -1.010             | 0.3126        |
| SMSA76        | 0.079372    | 0. 037116  | 2.138              | 0.0326 **     |
| SOUTH76       | -0.083698   | 0.022985   | -3.641             | 0.0003 ***    |
| Mean deper    | ndent var   | 6.261832   | S.D. dependent var | 0.443798      |
| Sum square    | d resid     | 446.8056   | S.E. of regression | 0.385728      |
| R-squared     |             | 0.246078   | Adjusted R-squared | 0.244572      |
| F(6, 3003)    |             | 163.3618   | P-value(F)         | 4.4e-180      |
| Log-likelihoo | bd          | -1516.471  | Akaike criterion   | 3046.943      |
| Schwarz crit  | erion       | 3089.011   | Hannan-Quinn       | 3062.072      |

# Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

|                                                           | OLS     | <b>IV</b> <sup>1)</sup> | TSLS <sup>1)</sup> | IV (M.V.) |
|-----------------------------------------------------------|---------|-------------------------|--------------------|-----------|
| ed76                                                      | 0.0740  | 0.1642                  | 0.1642             | 0.1329    |
|                                                           | 21.11   | 4.45                    | 3.92               | 2.59      |
| exp76                                                     | 0.0836  | 0.0445                  | 0.0446             | 0.0560    |
|                                                           | 12.75   | 1.98                    | 1.74               | 2.15      |
| exp762                                                    | -0.0022 | -0.0002                 | -0.0002            | -0.0008   |
|                                                           | -7.05   | -0.17                   | -0.15              | -0.59     |
| black                                                     | -0.1896 | -0. 0573                | -0.0573            | -0.1031   |
|                                                           | -10.76  | -1.01                   | -0.89              | -1.33     |
| R <sup>2</sup>                                            | 0.291   | 0.246                   |                    |           |
| <i>F</i> -test                                            | 204.9   | 163.4                   |                    |           |
| <sup>1)</sup> The model differs from that used by Verbeek |         |                         |                    |           |

#### Some Comments

Instrumental variables (*age*, *age*<sup>2</sup>, *nearc4a*)

- are relevant, i.e., have explanatory power for ed76, exp76, exp76<sup>2</sup>
- Whether they are exogenous, i.e., uncorrelated with the error terms, is not answered
- Test for exogeneity of regressors: Wu-Hausman test

Estimates of *ed76*-coefficient:

- IV estimate: 0.16 (0.13), i.e., 16% higher wage for one additional year of schooling; more than the double of the OLS estimate (0.07); not in line with "ability bias" argument!
- s.e. of IV estimate (0.04) much higher than s.e. of OLS estimate (0.004)
- Loss of efficiency especially in case of weak instruments: R<sup>2</sup> of model for ed76: 0.12; Corr{ed76, ed76\_h} = 0.35

# **GRETL's TSLS Estimation**

Wage equation, estimated by GRETL's TSLS

Model 8: TSLS, using observations 1-3010 Dependent variable: I\_WAGE76 Instrumented: ED76 EXP76 EXP762 Instruments: const AGE76 sq\_AGE76 BLACK SMSA76 SOUTH76 NEARC4A

| coefficient                            | std. error             | t-ratio                                  | p-value                  |
|----------------------------------------|------------------------|------------------------------------------|--------------------------|
| const 3.69771                          | 0.495136               | 7.468                                    | 8.14e-014 ***            |
| ED76 0.164248<br>EXP76 0.0445878       | 0.0419547<br>0.0255932 |                                          | 9.04e-05 ***<br>0.0815 * |
| EXP762 -0.00019526<br>BLACK -0.0573333 | 0.0013110 0.0645713    |                                          | 0.8816<br>0.3746         |
| SMSA76 0.0793715                       | 0.0045715              |                                          | 0.0601 *                 |
| SOUTH76 -0.0836975                     | 0.0261426              | -3.202                                   | 0.0014 ***               |
| Mean dependent var                     | 6.261832               | S.D. dependent var                       | 0.443798                 |
| Sum squared resid<br>R-squared         | 577.9991<br>0.195884   | S.E. of regression<br>Adjusted R-squared | 0.438718<br>0.194277     |
| F(6, 3003)                             | 126.2821               | P-value(F)                               | 8.9e-143                 |

# Returns to Schooling: Summary of Estimates

Estimated regression coefficients and *t*-statistics

|                                                           | OLS     | <b>IV</b> <sup>1)</sup> | TSLS <sup>1)</sup> | IV (M.V.) |
|-----------------------------------------------------------|---------|-------------------------|--------------------|-----------|
| ed76                                                      | 0.0740  | 0.1642                  | 0.1642             | 0.1329    |
|                                                           | 21.11   | 4.45                    | 3.92               | 2.59      |
| exp76                                                     | 0.0836  | 0.0445                  | 0.0446             | 0.0560    |
|                                                           | 12.75   | 1.98                    | 1.74               | 2.15      |
| exp762                                                    | -0.0022 | -0.0002                 | -0.0002            | -0.0008   |
|                                                           | -7.05   | -0.17                   | -0.15              | -0.59     |
| black                                                     | -0.1896 | -0. 0573                | -0.0573            | -0.1031   |
|                                                           | -10.76  | -1.01                   | -0.89              | -1.33     |
| R <sup>2</sup>                                            | 0.291   | 0.246                   | 0.196              |           |
| <i>F</i> -test                                            | 204.9   | 163.4                   | 126.3              |           |
| <sup>1)</sup> The model differs from that used by Verbeek |         |                         |                    |           |

#### Some Comments

Verbeek's IV estimates

- Deviate from GRETL results
- No report of R<sup>2</sup>; definition of R<sup>2</sup> does not apply to IV estimated models
- IV estimates of coefficients
- are smaller than the OLS estimates; exception is *ed76*
- have higher s.e. than OLS estimates, smaller *t*-statistics

Questions

- Robustness of IV estimates to changes in the specification
- Exogeneity of instruments
- Weak instruments

### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

#### Some Tests

Questions of interest

- Is it necessary to use IV estimation, must violation of exogeneity be expected? To be tested: the null hypothesis of exogeneity of suspected variables
- 2. If IV estimation is used: Are the chosen instruments valid (relevant)?

For testing

- exogeneity of regressors: Wu-Hausman test, also called Durbin-Wu-Hausman test, in GRETL: Hausman test
- relevance of potential instrumental variables: Sargan test or over-identifying restrictions test
- Weak instruments, i.e., only weak correlation between endogenous regressor and instrument: Cragg-Donald test

#### Wu-Hausman Test

For testing whether one or more regressors  $x_i$  are endogenous (correlated with the error term);  $H_0$ :  $E\{\varepsilon_i x_i\} = 0$ 

- If the null hypothesis
  - □ is true, OLS estimates are more efficient than IV estimates
  - is not true, OLS estimates are inefficient, the less efficient but consistent IV estimates to be used
- Based on the assumption that the instrumental variables are valid, i.e., given that  $E{\epsilon_i z_i} = 0$ , the null hypothesis  $E{\epsilon_i x_i} = 0$  can be tested against the alternative  $E{\epsilon_i x_i} \neq 0$

The idea of the test:

- Under the null hypothesis, both the OLS and IV estimator are consistent; they should differ by sampling errors only
- Rejection of the null hypothesis indicates inconsistency of the OLS estimator

#### Wu-Hausman Test, cont'd

Based on the differences between OLS- and IV-estimators; various versions of the Wu-Hausman test

Added variable interpretation of the Wu-Hausman test: checks whether the residuals  $v_i$  from the reduced form equation of potentially endogenous regressors contribute to explaining

 $y_{i} = x_{1i}'\beta_{1} + x_{2i}'\beta_{2} + v_{i}'\gamma + \varepsilon_{i}$ 

- $x_2$ : potentially endogenous regressors
- v<sub>i</sub>: residuals from reduced form equation for x<sub>2</sub> (predicted values for x<sub>2</sub>: x<sub>2</sub> + v)
- $H_0: \gamma = 0$ ; corresponds to:  $x_2$  is exogenous

For testing H<sub>0</sub>: use of

- *t*-test, if  $\gamma$  has one component,  $x_2$  is just one regressor
- *F*-test, if more than 1 regressors are tested for exogeneity

#### Hausman Test Statistic

Based on the quadratic form of differences between OLS- estimators  $b_{\rm LS}$  and IV-estimators  $b_{\rm IV}$ 

- $H_0$ : both  $b_{LS}$  and  $b_{IV}$  are consistent,  $b_{LS}$  is efficient relative to  $b_{IV}$
- $H_1: b_{IV}$  is consistent,  $b_{LS}$  is inconsistent

Hausman test statistic

 $H = (b_{IV} - b_{LS})' V (b_{IV} - b_{LS})$ 

with estimated covariance matrix V of  $b_{IV} - b_{LS}$  follows the approximate Chi-square distribution with J d.f.

### Wu-Hausman Test: Remarks

Remarks

- Test requires valid instruments
- Test has little power if instruments are weak or invalid
- Various versions of the test, all based on differences between OLSand IV-estimators
- In GRETL: Whenever the TSLS estimation is used, GRETL produces automatically the Hausman test statistic

# Sargan Test

For testing whether the instruments are valid

The validity of the instruments  $z_i$  requires that all moment conditions are fulfilled; for the *R*-vector  $z_i$ , the *R* sums

$$\frac{1}{N}\sum_{i}e_{i}z_{i}=0$$

must be close to zero

Test statistic

$$\boldsymbol{\xi} = NQ_N(\hat{\boldsymbol{\beta}}_{IV}) = \left(\sum_i e_i z_i\right)' \left(\hat{\boldsymbol{\sigma}}^2 \sum_i z_i z_i'\right)^{-1} \left(\sum_i e_i z_i\right)$$

has, under the null hypothesis, an asymptotic Chi-squared distribution with R-K df

Calculation of  $\xi$ :  $\xi = NR_e^2$  using  $R_e^2$  from the auxiliary regression of IV residuals  $e_i = y_i - x_i' \hat{\beta}_{IV}$  on the instruments  $z_i$ 

# Sargan Test: Remarks

Remarks

- In case of an identified model (R = K), all R moment conditions are fulfilled,  $\xi = 0$
- Over-identified model: R > K; the Sargan test is also called overidentifying restrictions test
- Rejection implies: the joint validity of all moment conditions and hence of all instruments is not acceptable
- The Sargan test gives no indication of invalid instruments
- In GRETL: Whenever the TSLS estimation is used and R > K, GRETL produces automatically the Sargan test statistic

# Cragg-Donald Test

Weak (only marginally valid) instruments, i.e., only weak correlation between endogenous regressor and instrument :

- Biased IV estimates
- Inconsistent IV estimates
- Inappropriate large-sample approximations to the finite-sample distributions even for large N
- Definition of weak instruments: estimates are biased to an extent that is unacceptably large
- Null hypothesis: instruments are weak, i.e., can lead to an asymptotic relative bias greater than some value *b*

# Cragg-Donald Test, cont'd

Test procedure

- Regression of the endogenous regressor on all instruments, both external, i.e., ones not included among the regressors, and internal
- F-test of the null hypothesis that the coefficients of all external instruments are zero
- If *F*-statistic is less a not too large value, e.g., 10: consider the instruments as weak

### Contents

- Autocorrelation
- Tests against Autocorrelation
- Inference under Autocorrelation
- OLS Estimator Revisited
- Cases of Endogenous Regressors
- Instrumental Variables (IV) Estimator: The Concept
- IV Estimator: The Method
- Calculation of the IV Estimator
- An Example
- Some Tests
- The GIV Estimator

### From OLS to IV Estimation

Linear model  $y_i = x_i^{\beta} + \varepsilon_i$ 

OLS estimator: solution of the K normal equations

 $1/N \Sigma_{i}(y_{i} - x_{i}^{*}b) x_{i} = 0$ 

Corresponding moment conditions

 $\mathsf{E}\{\varepsilon_i | x_i\} = \mathsf{E}\{(y_i - x_i;\beta) | x_i\} = 0$ 

 IV estimator given R instrumental variables z<sub>i</sub> which may overlap with x<sub>i</sub>: based on the R moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i`\beta) \ z_i\} = 0$ 

 IV estimator: solution of corresponding sample moment conditions

### Number of Instruments

Moment conditions

 $\mathsf{E}\{\varepsilon_i \ z_i\} = \mathsf{E}\{(y_i - x_i^{\,i}\beta) \ z_i\} = 0$ 

one equation for each component of  $z_i$ 

z<sub>i</sub> possibly overlapping with x<sub>i</sub>

General case: R moment conditions

Substitution of expectations by sample averages gives *R* equations

$$\frac{1}{N}\sum_{i}(y_{i}-x_{i}^{\prime}\hat{\beta}_{IV})z_{i}=0$$

- 1. R = K: one unique solution, the IV estimator; identified model  $\hat{\beta}_{IV} = \left(\sum_{i} z_i x'_i\right)^{-1} \sum_{i} z_i y_i = (Z'X)^{-1} Z' y$
- 2. R < K: infinite number of solutions, not enough instruments for a unique solution; under-identified or not identified model

#### The GIV Estimator

- 3. *R* > *K*: more instruments than necessary for identification; overidentified model
- For R > K, in general, no unique solution of all R sample moment conditions can be obtained; instead:
- the weighted quadratic form in the sample moments

$$Q_N(\boldsymbol{\beta}) = \left[\frac{1}{N}\sum_i (y_i - x'_i \boldsymbol{\beta}) z_i\right]' W_N\left[\frac{1}{N}\sum_i (y_i - x'_i \boldsymbol{\beta}) z_i\right]$$

with a *RxR* positive definite weighting matrix  $W_N$  is minimized gives the generalized instrumental variable (GIV) estimator  $\hat{\beta}_{IV} = (X'ZW_N Z'X)^{-1} X'ZW_N Z'y$ 

# The weighting matrix $W_N$

 $W_{\rm N}$ : positive definite, order RxR

- Different weighting matrices result in different consistent GIV estimators with different covariance matrices
- Optimal choice for  $W_N$ ?
- For R = K, the matrix Z'X is square and invertible; the IV estimator is (Z'X)<sup>-1</sup>Z'y for any W<sub>N</sub>

### GIV and TSLS Estimator

Optimal weighting matrix:  $W_N^{opt} = [1/N(Z'Z)]^{-1}$ ; corresponds to the most efficient IV estimator

 $\hat{\beta}_{IV} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y$ 

- If the error terms are heteroskedastic or autocorrelated, the optimal weighting matrix has to be adapted
- Regression of each regressor, i.e., each column of *X*, on *Z*, i.e., on the *R* column of *Z*, results in  $\hat{X} = Z(Z'Z)^{-1}Z'X$  and

$$\hat{\boldsymbol{\beta}}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$$

- This explains why the GIV estimator is also called "two stage least squares" (TSLS) estimator:
  - 1. First step: regress each column of *X* on *Z*
  - 2. Second step: regress *y* on predictions of *X*

# **GIV Estimator and Properties**

- GIV estimator is consistent
- The asymptotic distribution of the GIV estimator, given IID(0, σ<sub>ε</sub><sup>2</sup>) error terms, leads to

 $N\left(oldsymbol{eta}, \hat{V}\{\hat{oldsymbol{eta}}_{IV}\}
ight)$ 

which is used as approximate distribution in case of finite N

 The (asymptotic) covariance matrix of the GIV estimator is given by

$$V\left\{\hat{\boldsymbol{\beta}}_{IV}\right\} = \boldsymbol{\sigma}^{2} \left[ \left(\sum_{i} x_{i} z_{i}'\right) \left(\sum_{i} z_{i} z_{i}'\right)^{-1} \left(\sum_{i} z_{i} x_{i}'\right) \right]^{-1}$$

In the estimated covariance matrix, σ<sup>2</sup> is substituted by

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i} \left( y_i - x'_i \hat{\beta}_{IV} \right)^2$$

the estimate based on the IV residuals  $y_i - x_i' \hat{\beta}_{IV}$ 

#### Your Homework

1. Use the data set "icecream" of Verbeek for the following analyses:

- a) Estimate the model where *cons* is explained by *price* and *temp*; show a diagramme of the residuals which may indicate autocorrelation of the error terms.
- b) Use the Durbin-Watson and the Breusch-Godfrey test against autocorrelation; state suitably  $H_0$  and  $H_1$ .
- c) Compare (i) the OLS and (ii) the HAC standard errors of the estimated coefficients.
- Repeat a), using (i) the iterative Cochrane-Orcutt estimation and (ii) OLS estimation of the model in differences; compare and interpret the results.
- For the Durbin-Watson test: (a) show that *dw* ≈ 2 2*r*; (b) can you agree with the statement "The Durbin-Watson test is a misspecification test".

#### Your Homework, cont'd

3. Use the data set "schooling" of Verbeek for the following analyses based on the wage equation

 $\log(wage76) = \beta_1 + \beta_2 ed76 + \beta_3 exp76 + \beta_4 exp762$ 

+  $\beta_5$  black +  $\beta_6$  momed +  $\beta_7$  smsa76 +  $\epsilon$ 

- a) Assuming that *ed76* is endogenous, (i) estimate the reduced form for *ed76*, including external instruments *smsa66*, *sinmom14*, *south66*, and *mar76*; (ii) assess the validity of the potential instruments; what indicate the correlation coefficients?
- b) Estimate, by means of the GRETL Instrumental variables (Two-Stage Least Squares ...) procedure, the wage equation, using the external instruments *black*, *momed*, *sinmom14*, *smsa66*, *south76*, *mar76*, and *age76*. Interpret the results including the Hausman and the Sargan test.
- c) Compare the estimates for  $\beta_2$  (i) from the model in b), (ii) from the model with instruments *black*, *momed*, *smsa66*, *south76*, *mar76*, and *age76*, and (iii) with the OLS estimates.

### Your Homework, cont'd

4. The model for consumption and income consists of two equations:

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \varepsilon_{t}$$
$$Y_{t} = C_{t} + I_{t}$$

a. Show that both  $C_t$  and  $Y_t$  are endogenous:

$$\mathsf{E}\{C_{i} \varepsilon_{i}\} = \mathsf{E}\{Y_{i} \varepsilon_{i}\} = \sigma_{\varepsilon}^{2}(1-\beta_{2})^{-1}$$

b. Derive the reduced form of the model