Linear programming-introduction

Ing.J.Skorkovský,CSc.

USE

- Slitting and Levelling of material (coils, bars, sheets)-Cutting material, trimming,...
- Blending blending, diet, feeding rations for animals, ...
- Transport problems material flow from stock to the destination and route planning - shortest route
- Assignment of resources with limited capacities CCR
- **Sources**: Operation Management, Quality and Competitiveness in a global environment, Russel and Taylor (ESF library

Formulation of the model

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

Which combination of products will have the greatest return at the limits of maximum production capacity type = **40** hours and the amount of material that is limited to **120** kg of clay?

Note: A similar task in terms of flow was solved in the P&Q example (only valid for Czech student), where the limitation in resource B and with a maximum capacity of 2400 minutes)

Basic structures and used terminology

We minimize our target function in the form of:

Z = c1*x1+c2*x2+....+cn*xn with respect to the matrix of restrictive conditions: (in our case c1=40 and c2=50)

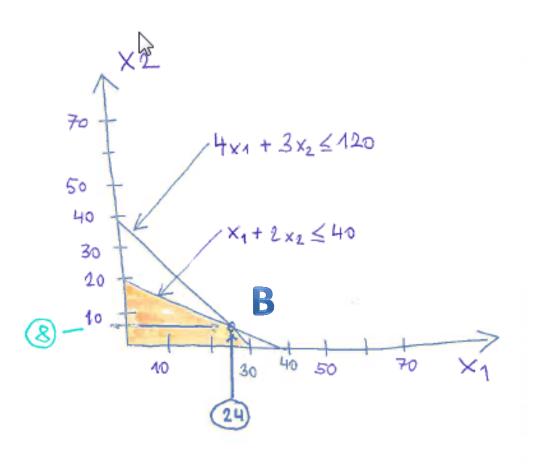
- A11*x1 + A12*x2+ ...+ A1n*xn (<>=) B1
- A22*x1 + A22*x2+ ...+ A2n*xn (<>=) B2
- Am1*x1 + Am2*x2+ ...+ Amn*xn (<>=) B2
- It is classical system of linear equations je Ax=B
- The solving of such a linear equation system, e.g. By use of GAUSS-JORDAN algorithm is not required with the help of Excel Solver.
- xij : decision variable= level of operation activity specified by this variable
- Bi : restrictive conditions , allowed deviations from the norm (in time and material)
- cj : coefficient of the target function (in our case returns, meaning 40 and 50)
- Aij : restrictive coefficients : work and material for one unit (pcs) of the product

Example I (introduction to the problem – practical demonstration)

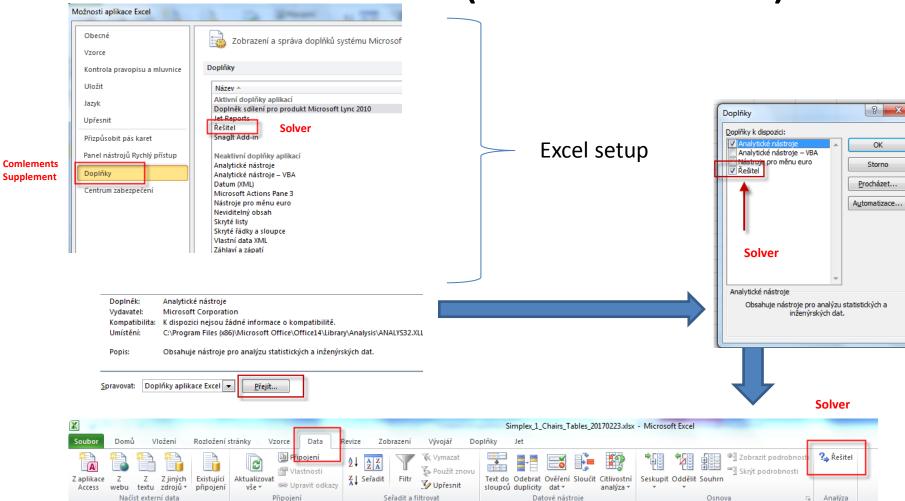
Product	Description	Work /hour	Material/pcs	Return/pcs	
Dish	x1	1	4	40	
Mug	x2	2	3	50	
	Z = c1 *x	1+c2*x2++	cn*xn (classica	al equation f	rom)

Target function: $Z = \frac{\sqrt{40}}{40} \times 1 + \frac{\sqrt{50}}{50} \times 2$, which we must maximize

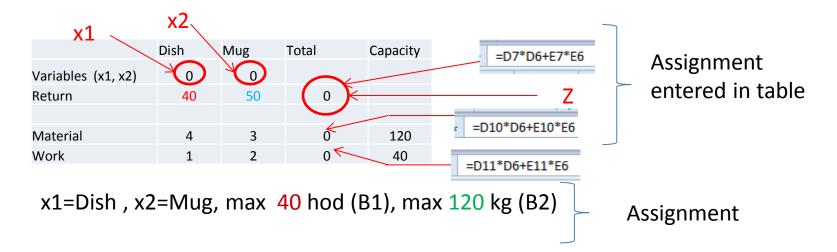
Maximal production capacity = 40 hours and Maximal quantity of material =120 kg


Specifications of task restrictions by use of 2x2 matrix:

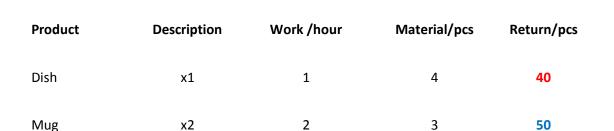
$$1*x1 + 2*x2 = 40$$
 (work- no more than 40 hours)
 $4*x1 + 3*x2 = 120$ (material=kg of clay in our case)->x1=(40-2x2)+3x2=120....


Manual solving : ->
$$x1=24$$
 a $x2=8$ and after substitution od variables in target function we will get
$$Z=40*24+50*8=1360$$

(optimal Return meets the point B – see next slide)

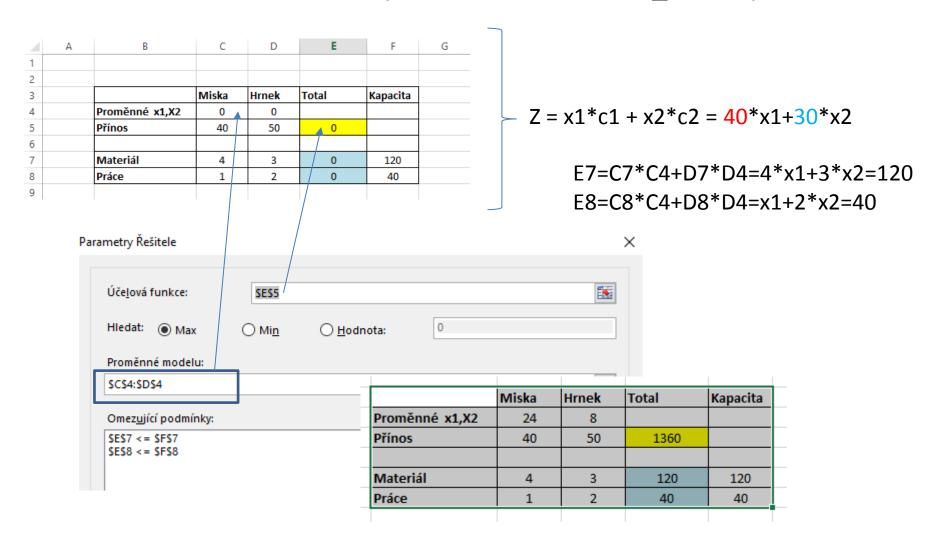

Graphical solution

Use of Solver (Czech EXCEL)



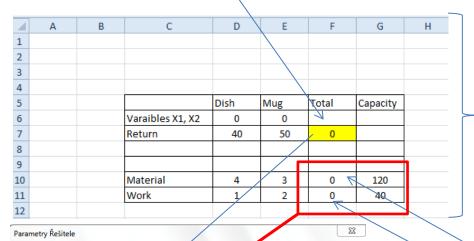
Use o solver (see actual Excel formulas on one of the the next slides)

Target function
$$Z = x1*c1 + x2*c2 = 40*x1+50*x2$$

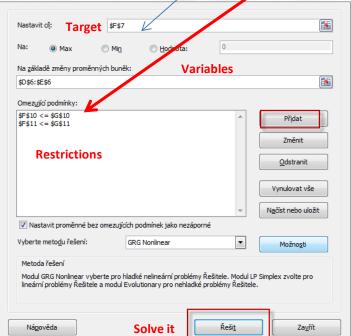

$$4 * x1 + 3 *x2 = 120$$
 - capacity restrictions= max quantity of material =B1 $1 * x1 + 2 *x2 = 40$ -capacity restrictions by max work capacity=B2

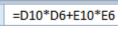


Solver start



Use of Solver (Czech- not for MOH_AOPR)




Use of solver (ENG)

Z = x1*c1 + x2*c2 = 40*x1+30*x2

F10=D10*D6+E10*E6=4*x1+3*x2=120 F11=D11*D6+F11*D6=x1+2*x2=40

=D11*D6+E11*E6

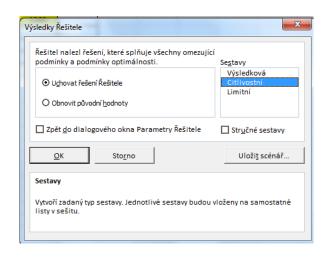
	Dish	Mug	Total	Capacity	
Varaibles X1, X2	24	8			
Return	40	50	1360		
Material	4	3	120	120	
Work	1	2	40	40	

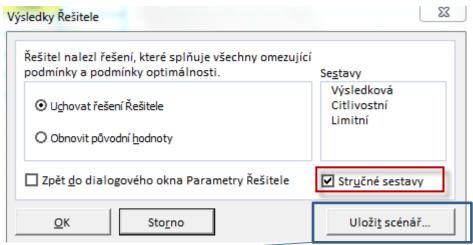
Využití Řešitele (use of Solver)

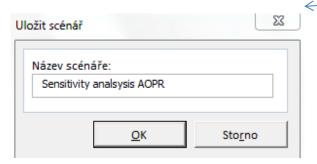
Microsoft Excel 15.0 Citlivostní sestava

List: [Simplex_1_Misky_Hrnky_Chairs_Tables_20170228.xlsx]List1

Sestava vytvořena: 9. 3. 2017 16:19:56


Proměnné


		Konečná	Redukovaná	Účelová funkce	Povolený	Povolený
Levá strana omezující podmínky	Název	Hodnota	náklady	koeficient	nárůst	pokles
\$C\$4	Proměnné x1,X2 Miska	24	0	40	26,66666667	15
\$D\$4	Proměnné x1,X2 Hrnek	8	0	50	30	20


Omezující podmínky

			Konečná	Stínová	Pravá	strana	Povolený	Povolený
Levá strana omezující pod	dmínky	Název	Hodnota	cena	omezujíc	í podmínky	nárůst	pokles
\$E\$7	Materiá	l Total	120		6	120	40	60
\$E\$8	Práce T	otal	40	1	.6	40	40	10

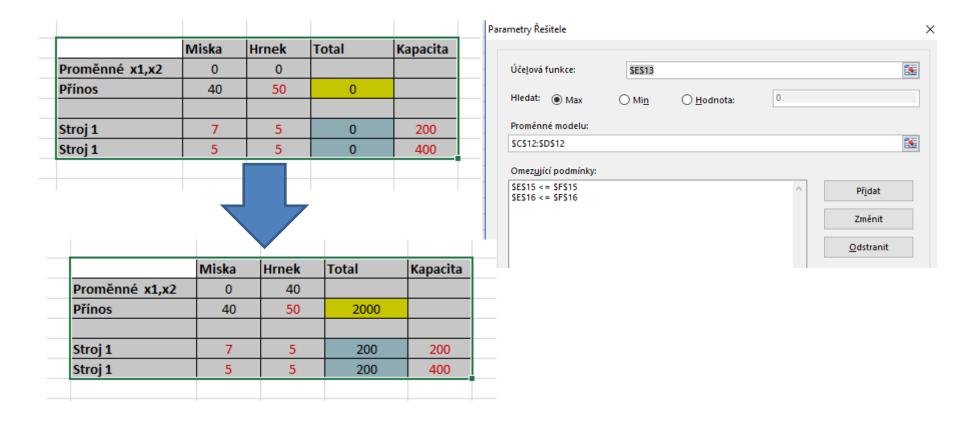
Use of Solver (English)

Microsoft Excel 14.0 Citlivostní sestava List: [LP_EXCEL_SOLVER USE_20171101.xlsx]List1 Sestava vytvořena: 2.11.2017 8:49:10

Proměnné buňky

		Konečná	Snížené
Buňka	Název	Hodnota	Gradient
\$D\$6	Varaibles X1, X2 Dish	24	0
\$E\$6	Varaibles X1, X2 Mug	8	0

Omezující podmínky


		Konečná	Lagrangeův
Buňka	Název	Hodnota	multiplikátor
\$F\$10	Material Total	120	6
\$F\$11	Work Total	40	16

New Excel List

Změna úlohy- jiné výnosy jiná omezení typu práce na dvou strojích a jejich kapacitní omezení

(Change of parameters- not necessary fro MPH_AOPR !!!!!)

OK?