Operation Management (OM) Introduction

Ing.J.Skorkovský, CSc,
Department of Corporate Economy
FACULTY OF ECONOMICS AND ADMINISTRATION
Masaryk University Brno
Czech Republic

Coordinates (it is a part of OM Intro presentation as well)

- Lecturer : Ing.Jaromír Skorkovský, CSc.
- Department of Corporate Economy (5th floor)
- miki@econ.muni.cz
- +420 731113517
- Study material : will be updated regularly after every lesson (is.muni.cz)
- So far there is lot of material there but mind you that nearly every part will be slightly or more heavily modified this year. So the correct material will have at the end of its name specification ...2018mmdd e.g. 20180917 if not specified otherwise in advance
- Attendance : seminar and lectures are obligatory - see subject specification (is.muni.cz) - first important condition to be admitted to exam)
- Excuses : if serious reason emerges- only written from is accepted
- Seminar work : will assigned after some theory will be presented. Accepted seminar work is the second condition to be admitted to exam. Assign time :1.11.2018
- Tuition plan : at the end of this slide show
- Name of the tuition plan file : Tuition plan for both groups AOMA and AOPR_20180808
- Locations : AOPR : P104 and VT206, AOMA :VT206 if not specified otherwise

Use of Uperations Management (OM) in external environment (main target)

$$
\begin{aligned}
& \sum \sum_{x_{1} \sum_{1} f_{1}\left(x_{1}\right) f_{2}\left(x_{1}\right.}^{\sum f_{1}\left(x_{1}\right) f_{2}} \\
& \sum_{x_{1}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}, x_{1}\right) \\
& \left(x_{1}\right) f_{2}\left(x_{2}, x_{1}\right)
\end{aligned}
$$

General knowledge of OM methods acquired at university and longstanding e

Synerey and put OM into prectice

OM all around us

OM is the management of all processes used to design, supply, produce, and deliver valuable goods and services to customers

Selected OM methods, which will be kicked around as time will move on

- Theory of Constraints -(AOMA-AOPR)
- Balanced Scorecard -(AOMA-AOPR)
- Project Management methods (Critical Chain) -(AOMA-AOPR)
- Material Requirement Planning (MRP) and Just-in-Time principles -(AOMA only basics-AOPR more in detail)
- Advanced Planning and Scheduling (APS) (AOPR only basics)
- Six Sigma - quality management -(AOMA-AOPR)
- Boston, SWOT and Magic Quadrant Matrices -(AOMA-AOPR)
- Little's Law (relations between WIP, Throughput and Cycle time) -(AOPR)
- Linear programming - optimisation -(AOPR)
- Yield Management -(AOPR)
- Kepner-Tregoe (support of decision making) -(AOMA-AOPR)
- Decision trees -(AOPR)

Some tools which have to be used

- ERP-Enterprise Resource Planning (MS Dynamics NAV)
- Basic installation, handling and setup
- Inventory - Items - Transports -Availability of components
- Purchase -dealing with Suppliers (SCM)
- Selling - dealing with Customers
- Payment - bank operations
- Accounting basics
- CRM- Customer Relationship Management
- Manufacturing - Planning and Shop Floor Control
- Cost management

Serves as the magnifying glass to processes...

Controlling processes in Supply Chain Management (SCM)

Used abbreviations: R\&D -Research and Development; TQM-Total Quality Management; JIT- Just -In-Time; MRP_II-Manufacturing and Resource Planning

Dening cycie (based on periodicity)

Plan: Define the problem to be addressed, collect relevant data, and ascertain the problem's root cause (e.g. by use of TOC=Theory of Constraint)

Do: Develop and implement a solution; decide upon a measurement to gauge (assess) its effectiveness.

Check: Confirm the results through before-and-after data comparison.
Act: Document the results, inform others about process changes, and make recommendations for the problem to be addressed in the next PDCA cycle.

Another angle of view

Another angle of view

Operations

See next slide

Microsoft Dynamics NAV 2009 R2

Version W1 6．0 R2（6．00．32012）
Copyright（C） 2010 Microsoft．All rights reserved．
This product is licensed to：
4805500
NAVERTICA a．s．
Sumavska 15

Brno 60200
Check your license information
Warning：This computer program is protected by copyright law and international treaties．
Unauthorized reproduction or distribution of this program，or any portion of it，may result in severe civil and criminal penalties，and will be prosecuted to the maximum extent possible under the law．

Purchase

Planning
国 Items
…2 Vendors
… Requisition Worksheets
Recurring Req．Worksheet
国 Order Planning
国 Production Forecasts
国 Purchase Orders
国 Sales Orders
Blanket Sales Orders
Planned Production Orders
… Firm Planned Prod．Orders
－Transfer Orders
© Reports
（－Documents
\pm Setup
†－Order Processing
© Inventory \＆Costing
\square Analysis \＆Reporting
\oplus History
\pm Setup

Function block Logistic-simplified

Procedures-simplified

Processing (not organised set of processes, will be presented also as a introduction to project management PWP presentation later)

Your m@aintask (to organize processes based on business logic)

Your nnaintask (possible problems, bottlenecks, undesirable effects..)

Application of TOC ->thinking tools->Current Reality Tree - first stage

Your main task

(Search - HOW ??? Measure impacts -HOW ??? and Destroy - HOW ???)

Basic problem I. (one of many)

Moore's law is the observation that the number of transistors in a dense integrated circuits doubles approximately every two years - so -> capacity of memory is going up

Big data and analysis problem

In test and measurement applications, engineers and scientists can collect vast amounts of data every second of every day.

- For every second that the Large Hadron Collider at CERN runs an experiment, the instrument can generate 40 terabytes of data.
- For every $\mathbf{3 0}$ minutes that a Boeing jet engine runs, the system creates 10 terabytes of operations information.
- For a single journey across the Atlantic Ocean, a four-engine jumbo jet can create 640 terabytes of data.
- Multiply that by the more than 25,000 flights flown each day, and you get an understanding of the enormous amount of data that exists (Rogers, 2011). That's "Big Data."

${ }^{*}$ Basic problem II. (we need relable dedat)

To solve it we should use finite capacity scheduling (APS)- will be presented later

$\mathrm{T} 1+\mathrm{T} 2=\mathrm{X}$
Opt $=\operatorname{Min}(\mathrm{X})$

Basic problem III.

Will be explained in Little's law presentation (AOPR) : WIP= Work In Progress

Basic problem IV.

(Black - $>$ Whitie Setup time=60 minut)
(Whßite \rightarrow Black, Setup time $=20$ minut)

Basic pronienn V-I. (availability of components)

For sake of simplicity we did not mentioned components A1 and A2 and possible delays having cause in delivery times of bad quality !!! Same with capacities of machines allocated to OP1-OP2-OP3 (sudden breakdowns)

Prod. Order Routing .
Type to filter (F3) | Prod. Order No. \rightarrow -

Operati... No.	\triangle Type	No.	Description			Setup Time	Filter: Firm Planned • $101005 \cdot 10000 \cdot 1($
				Starting Date-Time	Ending Date-Time		Run Time Material Fixed Date
10	Work Center	100	Wheel assembly	18. 8. 2014 14:41	22. 8. $20148: 31$	110	12 23. 8. $20140: 00$
20	Work Center	200	Packing department	27.8. 2014 8:31	1. 9. $201414: 46$	15	15 10.9.20140:00
30	Work Center	300	Painting department	1. 9. $201414: 46$	4. 9. $201410: 46$	10	20
40	Work Center	400	Machine department	4. 9. 2014 11:11	5. 9. $201412: 21$	10	8

APS result ->18.8.->23.8. a 27.8.->10.9

Basic pronienn (I-I. (over budget)

*Basic problem VI-II.

1015 London Postmaster - Purchase Invoice

*Basic problem VI-III.

