

SUPTECH WORKSHOP III

Tomáš Výrost

Background Session I – Introduction to modern portfolio theory

Microeconomics

A primer on microeconomics

Utility and choice

Preference relation

$$a \succ b$$
 $a \sim b$ $a \prec b$

Rationality assumptions:

- Every investor possesses a **complete** preference relation.
- The preference relation satisfies the property of transitivity.
- The preference relation is **continuous**.

Utility

Previous are sufficient to guarantee the existence of a continuous function $u : \mathbb{R}^N \to \mathbb{R}$ such that, for any consumption bundles a and b,

$$a \succeq b \Leftrightarrow u(a) \ge u(b)$$

This real-valued function u is called a utility function.

Risk aversion

Consider an investor with wealth Y and a fair-game lottery L = (h, -h, 0.5) with h > 0.

We say an investor is risk averse iff

 $Y\succ Y+L$

This implies the utility function to be strictly concave:

$$E[U(Y)] > E[U(Y+L)]$$

 $U(Y) > \frac{1}{2}U(Y+h) + \frac{1}{2}U(Y-h)$

Thus, U''(Y) < 0 and we have decreasing marginal utility of wealth.

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory

5/46

Microeconomics

Figure 2 Utility functions

Linear algebra

Linear algebra basics

Linear algebra basics

A vector $\boldsymbol{x} \in \mathbb{R}^n$ and a matrix $\boldsymbol{A} \in \mathbb{R}^n \times \mathbb{R}^m$ for $n, m \in \mathbb{N}$.

$$\mathbf{1}_{n} = (1, 1, ..., 1) \qquad \mathbf{I}_{n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 4 & 5 & 6 \end{pmatrix}, \quad \mathbf{A}^{T} = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 5 \\ 3 & 0 & 6 \end{pmatrix}$$

Some examples

$$\begin{aligned} \mathbf{r} &= (r_1, r_2, ..., r_n) \\ E(\mathbf{r}) &= (E(r_1), E(r_2), ..., E(r_n)) \\ \mathbf{w}^T \mathbf{r} &= (w_1, w_2, ..., w_n) \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} = w_1 r_1 + w_2 r_2 + ... + w_n r_n = \sum_{i=1}^n w_i r_i \\ \mathbf{1}_n^T \mathbf{w} &= (1, 1, ..., 1) \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \sum_{i=1}^n w_i \end{aligned}$$

More examples

Let $\boldsymbol{w} \in \mathbb{R}^n$ and $\boldsymbol{\Sigma} \in \mathbb{R}^N imes \mathbb{R}^n$.

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = (w_1, w_2, ..., w_n) \begin{pmatrix} \stackrel{\operatorname{cov}(r_1, r_1)}{\operatorname{cov}(r_2, r_1)} & \stackrel{\operatorname{cov}(r_1, r_2)}{\operatorname{cov}(r_2, r_2)} & \cdots & \stackrel{\operatorname{cov}(r_1, r_n)}{\operatorname{cov}(r_2, r_n)} \\ \stackrel{\cdot}{\underset{\operatorname{cov}(r_n, r_1)}{\operatorname{cov}(r_n, r_2)}} & \stackrel{\cdot}{\underset{\operatorname{cov}(r_n, r_2)}{\operatorname{cov}(r_n, r_n)}} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ w_n \end{pmatrix}$$

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \operatorname{cov}(r_i, r_j)$$

Linear algebra

Expected value

$$E(X) = \sum p_i x_i$$

Properties:

Covariance

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Properties:

Variance

$$var(X) = E[(X - E(X))^2] = cov(X, X)$$

Properties:

D1
$$var(a) = 0$$
D2 $var(a + bX) = b^2 var(X)$
D3 $var(X + Y) = var(X) + var(Y) + 2cov(X, Y)$
Correlation
$$cov(X, Y)$$

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$$

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 14/46

Mean-variance portfolio theory

Mean-variance preferences

The general *n*-variate problem is difficult, often simplified to M-V. Taylor expansion of $U(\tilde{Y}_1)$ around $E(\tilde{Y}_1)$:

Mean-variance preferences

The general *n*-variate problem is difficult, often simplified to M-V. Taylor expansion of $U(\tilde{Y}_1)$ around $E(\tilde{Y}_1)$:

Mean-variance preferences

The general *n*-variate problem is difficult, often simplified to M-V. Taylor expansion of $U(\tilde{Y}_1)$ around $E(\tilde{Y}_1)$:

$$U(\tilde{Y}_{1}) = U(E[\tilde{Y}_{1}]) + U'(E[\tilde{Y}_{1}]) \cdot (\tilde{Y}_{1} - E[\tilde{Y}_{1}]) + \frac{1}{2}U''(E[\tilde{Y}_{1}]) \cdot (\tilde{Y}_{1} - E[\tilde{Y}_{1}])^{2} + \varepsilon$$

thus for the expected utility

$$E[U(\tilde{Y}_1)] = U(E[\tilde{Y}_1]) + \frac{1}{2}U''(E[\tilde{Y}_1]) \cdot Var[\tilde{Y}_1] + E[\varepsilon]$$

The case with two assets

$$r_{1}, r_{2} \qquad \sigma_{1}^{2}, \sigma_{2}^{2} \qquad \rho_{1,2} = \operatorname{cov}(r_{1}, r_{2}) \quad w_{1}, w_{2}$$

$$r_{p} = w_{1}r_{1} + w_{2}r_{2}$$

$$E(r_{p}) = ??$$

$$\sigma_{p} = ??$$

The case with two assets

$$r_1, r_2 \qquad \sigma_1^2, \sigma_2^2 \qquad \rho_{1,2} = \operatorname{cov}(r_1, r_2) \quad w_1, w_2$$
$$r_p = w_1 r_1 + w_2 r_2$$
$$E(r_p) = w_1 E(r_1) + w_2 E(r_2)$$
$$\sigma_p^2 = \operatorname{var}(r_p) = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \operatorname{cov}(r_1, r_2)$$

Portfolio – initial setup, *n* assets

Let $\boldsymbol{w} \in \mathbb{R}^n$ and $\boldsymbol{\Sigma} \in \mathbb{R}^N imes \mathbb{R}^n$.

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = (w_1, w_2, ..., w_n) \begin{pmatrix} \operatorname{cov}(r_1, r_1) & \operatorname{cov}(r_1, r_2) & \cdots & \operatorname{cov}(r_1, r_n) \\ \operatorname{cov}(r_2, r_1) & \operatorname{cov}(r_2, r_2) & \cdots & \operatorname{cov}(r_2, r_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(r_n, r_1) & \operatorname{cov}(r_n, r_2) & \cdots & \operatorname{cov}(r_n, r_n) \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \operatorname{cov}(r_i, r_j)$$

The diversification/insurance principle

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \operatorname{cov}(r_i, r_j)$$
$$= \sum_{i=1}^n w_i^2 \operatorname{var}(r_i) + 2 \sum_{i=1}^n \sum_{j>i}^n w_i w_j \operatorname{cov}(r_i, r_j)$$

For mutually uncorrelated r_i with equal variance $\sigma_i = \sigma$, and an equal weights strategy $w_i = 1/n$ we have

$$\sigma_p^2 = \sum_{i=1}^n \frac{1}{n^2} \sigma^2 = \frac{n}{n^2} \sigma^2 = \frac{\sigma^2}{n}$$

And for the limiting case $\lim_{n \to \infty} \sigma_p^2 = \lim_{n \to \infty} \sigma^2/n = 0$

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 22 / 46

Figure 1 Random selection of stocks

Standard deviation

Figure 3 Efficient frontier and correlation

Figure 4 Efficient and inefficient portfolios

Risk-free asset: transformation line

Assume a risk-free asset with E(r) = r and $\sigma_r = 0$. Now we mix a risky asset $(r_m, E(r_m), \sigma_m)$ with the risk free asset. For the portfolio with w_1 invested into the risky asset, we get

$$E(r_p) = w_m E(r_m) + (1 - w_m)r$$

$$\sigma_p = w_m \sigma_m$$

$$E(r_p) = \frac{\sigma_p}{\sigma_m} E(r_m) + \left(1 - \frac{\sigma_p}{\sigma_m}\right)r$$

$$= r + \frac{E(r_m) - r}{\sigma_m}\sigma_p$$

$$= \delta_0 + \delta_m \sigma_p$$

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 26 / 46

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 29 / 46

Separation principle

The investor makes two separate decisions:

- without any recourse to the individual's preferences, the investor determines the point of tangency, the market portfolio.
- the investor then determines how he will combine the market portfolio of risky assets with the riskless asset

The slope of the CML is called market price of risk.

$$\frac{dE(r_p)}{d\sigma_p} = \frac{E(r_m) - r}{\sigma_m}$$

Capital Asset Pricing Model – CAPM

$$E(r_i) = r + \beta [E(r_m) - r]$$
$$\beta = \frac{\operatorname{cov}(r_i, r_m)}{\sigma_m^2}$$

CAPM assumptions

Assumption 1 :

- Investors agree in their forecasts of expected returns, standard deviation and correlations
- Therefore all investors optimally hold risky assets in the same relative proportions
- Assumption 2 :
 - Investors generally behave optimally. In equilibrium prices of securities adjust so that when investors are holding their optimal portfolio, aggregate demand equals its supply.

Required return = SML and actual return =

Securities that lie above (below) the SML have a positive (negative) 'alpha', indicating a positive (negative) 'abnormal return', after correcting for 'beta risk'.

Figure 8 Security market line, SML

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 33 / 46

Systematic risk

$$\sigma_p = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \operatorname{cov}(r_i, r_j)$$

=
$$\sum_{i=1}^n w_i^2 \operatorname{var}(r_i) + 2 \sum_{i=1}^n \sum_{j>i} w_i w_j \operatorname{cov}(r_i, r_j)$$

For constant covariance $cov(r_i, r_j) = cov, i \neq j$ with equal variance $\sigma_i^2 = \sigma^2$, and an equal weights strategy $w_i = 1/n$ we have

$$\sigma_{p}^{2} = \frac{n}{n^{2}}\sigma^{2} + \frac{n(n-1)}{n^{2}}cov = \frac{1}{n}\sigma^{2} + \left(1 - \frac{1}{n}\right)cov$$

And for the limiting case $\lim_{n \to \infty} \sigma_p^2 = cov$

Properties of Betas

Betas represent an asset's systematic (market or non-diversifiable) risk.

Beta of the market portfolio : $\beta_m = 1$

Beta of the risk-free asset: $\beta_r = 0$

Portfolio beta: $\beta_p = \sum w_i \beta_i$

Applications of betas: market timing (bull/bear markets), portfolio construction, performance measures, risk management.

The Efficient Frontier: Markowitz Model

$$\min \frac{1}{2}\sigma_p^2 = \frac{1}{2}\mathbf{w}^T \mathbf{\Omega} \mathbf{w}$$
$$\mathbf{w}^T E(\mathbf{r}) = E(r_p)$$
$$\mathbf{w}^T \mathbf{1} = 1$$

The Two-Fund Theorem: if w_1 and w_2 represent efficient portfolios, then $\alpha w_1 + (1 - \alpha)w_2$ is also an efficient portfolio for any $\alpha \in \mathbb{R}$.

Borrowing and Lending: Market Portfolio

$$\max \frac{E(r_p) - r}{\sigma_p}$$
$$\mathbf{w}^T E(\mathbf{r}) = E(r_p)$$
$$\mathbf{w}^T \mathbf{1} = 1$$
$$\sigma_p = \mathbf{w}^T \Omega \mathbf{w}$$

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 37 / 46

International Diversification

International investments:

- Can you enhance your risk return profile ?
 - US investors seem to overweight US stocks
 - Other investors prefer their home country (Home country bias)

International diversification is easy (and 'cheap')

- Improvements in technology (the internet)
- 'Customer friendly' products : Mutual funds, investment trusts, index funds

Number of Stocks

Benefits and Costs of Intl. Investments

Benefits:

- Interdependence of domestic and international stock markets
- Interdependence between the foreign stock returns and exchange rate

Costs:

- Equity risk: could be more (or less than domestic market)
- Exchange rate risk
- Political risk
- Information risk

Performance Measures / Risk Adjusted Rate of Return

Sharpe ratio:

$$SR_i = (E(r_i) - r)/\sigma_i$$

Risk is measured by the standard deviation (total risk of security). Aim: maximize. (CML)

Treynor ratio:

$$TR_i = (E(r_i) - r)/\beta_i$$

Risk is measured by beta (market risk only). Aim: maximize. (SML)

Estimating the Betas

Time series regression:

$$r_{i,t} - r_t = \alpha_i + \beta_i (r_{m,t} - r_t) + \varepsilon_{i,t}$$

Arbitrage pricing theory

$$R_{i,t} = a_i + \sum_{j=1}^k b_{i,j} F_{j,t} + \varepsilon_{i,t}$$

Note that the factors are common to all stocks, ie, they are *pervasive* risk factors. The parameters

 $\beta_{i,j}$, called *factor loadings*, measure the sensitivity of security *i* to factor *j*. The random variable $\varepsilon_{i,t}$ is the residual, the part of return not explained by the common factors ($var[\varepsilon_{i,j}]$ is idiosyncratic risk).

Exact factor pricing, single factor

Assume a single factor is responsible for return dynamics:

$$r_j = a_j + \beta_j F$$

Construct a portfolio consisting of a risk-free asset and the factor with weights $(w_f, w_F)^T = (1 - \beta_j, \beta_j)^T$. The portfolio return is then

$$r_p = w_f r_f + w_F F = (1 - \beta_j) r_f + \beta_j F$$

The slopes are the same, and by *no arbitrage condition*, so must be the intercepts, $a_j = (1 - \beta_j)r_f$. Thus, $r_j = r_f + \beta_j(F - r_f)$ and for the expectation

$$E(r_j) = r_f + \beta_j (E(F) - r_f)$$

When the risk factor is the market, we replace F with R_m and get CAPM.

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 44 / 46

Fama and French (1993) 3-factor model

 $E(r_j) - r_f = \beta_j [E(r_m) - r_f] + \beta_{js} E[SMB] + \beta_{jh} E[HML]$

Small Value	Big Value
Small Neutral	Big Neutral
Small Growth	Big Growth

Thresholds: size (median), book to market equity (30th & 70th percentile)

Size premium: SMB = (SmallValue + SmallNeutral +

SmallGrowth)/3 - (BigValue + BigNeutral + BigGrowth)/3, Value premium:

(SmallValue + BigValue)/2 - (SmallGrowth + BigGrowth)/2.

<Ken French data library>

• SUPTECH WORKSHOP III • Background Session I – Introduction to modern portfolio theory 45 / 46

Empirical testing of CAPM

Time-series tests:

$$E(R_{i,t}) - r_t = \alpha_i + \beta_i [E(R_{m,t}) - r_t]$$

Cross-section: **Fama-MacBeth** (1973) rolling regression For any single *t*, run

$$\mathbf{R}_t = \alpha_t^T \mathbf{e} + \gamma_t \boldsymbol{\beta} + \theta_t \mathbf{Z}_t + \boldsymbol{\varepsilon}$$

If CAPM holds, then for any t, $\alpha_t = \theta_t = 0$ and $\gamma_t > 0$. Thus, it is easy to test for $E(\alpha_t) = 0$, $E(\theta_t) = 0$ and $E(\gamma_t) > 0$ from a sample from t = 1, 2, ..., T.