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From OLS to IV EstimationFrom OLS to IV Estimation

Linear model yi = xi‘β + εi with K-vector of regressors

� OLS estimator: solution of the K normal equations � OLS estimator: solution of the K normal equations 

1/N Σi(yi – xi‘b) xi = 0 

� Corresponding moment conditions � Corresponding moment conditions 

E{εi xi} = E{(yi – xi‘β) xi} = 0

� IV estimator given R instrumental variables zi which may overlap � IV estimator given R instrumental variables zi which may overlap 
with xi: based on the R moment conditions 

E{εi zi} = E{(yi – xi‘β) zi} = 0i i i i i

� IV estimator: solution of corresponding sample moment 

conditions

0)ˆ(1 =′−∑ zxy β 0)ˆ(1 =′−∑ ii IViiN
zxy β
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Number of InstrumentsNumber of Instruments

Moment conditions 

E{εi zi} = E{(yi – xi‘β) zi} = 0 E{εi zi} = E{(yi – xi‘β) zi} = 0 

one equation for each component of zi
� zi possibly overlapping with xizi possibly overlapping with xi
General case: R moment conditions

Substitution of expectations by sample averages gives R equations

1. R = K: one unique solution, the IV estimator; identified model

0)ˆ(1 =′−∑ ii IViiN
zxy β

1. R = K: one unique solution, the IV estimator; identified model

2. R < K: infinite number of solutions, not enough instruments for a 

( ) 1
1ˆ ( ' ) 'IV i i i ii t

z x z y Z X Z yβ
− −′= =∑ ∑

2. R < K: infinite number of solutions, not enough instruments for a 
unique solution; under-identified or not identified model
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The GIV EstimatorThe GIV Estimator

3. R > K: more instruments than necessary for identification; over-
identified model

For R > K, in general, no unique solution of all R sample moment 

conditions can be obtained; instead:

the weighted quadratic form in the sample moments � the weighted quadratic form in the sample moments 
'

1 1( ) ( ) ( )N i i i N i i iN Ni i
Q y x z W y x zβ β β   ′ ′= − −   ∑ ∑

with a RxR positive definite weighting matrix WN is minimized

� gives the generalized instrumental variable (GIV) estimator

N i i i N i i iN Ni i   ∑ ∑

ˆ 1ˆ ( )IV N NX ZW Z X X ZW Z yβ −′ ′ ′ ′=
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The weighting matrix WNThe weighting matrix WN

WN: positive definite, order RxR

� Different weighting matrices result in different consistent GIV � Different weighting matrices result in different consistent GIV 

estimators with different covariance matrices

� Optimal choice for WN?N

� For R = K, the matrix Z’X is square and invertible; the IV 

estimator is (Z’X)-1Z’y for any WN
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GIV and TSLS Estimator GIV and TSLS Estimator 

Optimal weighting matrix: WN
opt = [1/N(Z’Z)]-1; corresponds to the 

most efficient IV estimator
1 1 1β̂ − − −′ ′ ′ ′ ′ ′=

� If the error terms are heteroskedastic or autocorrelated, the 

optimal weighting matrix has to be adapted

1 1 1ˆ ( ( ) ) ( )IV X Z Z Z Z X X Z Z Z Z yβ − − −′ ′ ′ ′ ′ ′=

optimal weighting matrix has to be adapted

� Regression of each regressor, i.e., each column of X, on Z, i.e., 
on the R column of Z, results in                                 and 1ˆ ( ' ) 'X Z Z Z Z X−=on the R column of Z, results in                                 and 

This is why the GIV estimator is also called “two stage least 

1ˆ ( ' ) 'X Z Z Z Z X−=
1ˆ ˆ ˆ ˆ( )IV X X X yβ −′ ′=

� This is why the GIV estimator is also called “two stage least 

squares” (TSLS) estimator:

1. First step: regress each column of X on Z1. First step: regress each column of X on Z

2. Second step: regress y on predictions of X
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GIV Estimator and PropertiesGIV Estimator and Properties

� GIV estimator is consistent

� The asymptotic distribution of the GIV estimator, given IID(0, σε²) � The asymptotic distribution of the GIV estimator, given IID(0, σε²) 

error terms, leads to

( )ˆˆ, { }IVN Vβ β
which is used as approximate distribution in case of finite N

� The (asymptotic) covariance matrix of the GIV estimator is given 

( ), { }IVN Vβ β

� The (asymptotic) covariance matrix of the GIV estimator is given 

by 

{ } ( )( ) ( )
1

1
2ˆ

IV i i i i i ii i i
V x z z z z xβ σ

−− ′ ′ ′=
  ∑ ∑ ∑

� In the estimated covariance matrix, σ² is substituted by 

{ } ( )( ) ( )IV i i i i i ii i i  ∑ ∑ ∑

( )22 1 ˆˆ y xσ β′= −∑
the estimate based on the IV residuals 

( )2 1 ˆˆ
i i IVN i
y xσ β′= −∑

IV
ˆ'βii xy −
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Moment Conditions of OLS and Moment Conditions of OLS and 
IV EstimationIV Estimation
Linear model yi = xi‘β + εi
� OLS estimator: solution of the K normal equations � OLS estimator: solution of the K normal equations 

1/N Σi(yi – xi‘b) xi = 0 

� Corresponding moment conditions � Corresponding moment conditions 

E{εi xi} = E{(yi – xi‘β) xi} = 0

� IV estimator given R instrumental variables zi (which may overlap � IV estimator given R instrumental variables zi (which may overlap 
with xi) is based on the R moment conditions 

E{εi zi} = E{(yi – xi‘β) zi} = 0i i i i i

� IV estimator: solution of corresponding sample moment 

conditions

0)ˆ(1 =′−∑ zxy β 0)ˆ(1 =′−∑ ii IViiN
zxy β
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Generalized Method of Generalized Method of 
Moments (GMM) Estimation
The model is characterized by R moment conditions and the 

corresponding equations

E{f(wi, zi, θ)} = 0 

[cf. E{(yi – xi‘β) zi} = 0]

� f(.): R-vector function

� wi: vector of observable variables, exogenous or endogenous

z : vector of instrumental variables� zi: vector of instrumental variables

� θ: K-vector of unknown parameters

Sample equivalents g (θ) of moment conditions should fulfilSample equivalents gN(θ) of moment conditions should fulfil
1(θ) ( , ,θ) 0N i iN i

g f w z= =∑
θ̂Estimates are chosen such that the sample moment conditions 

are fulfilled 

θ̂
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GMM EstimationGMM Estimation

R ≥ K is a necessary condition for GMM estimation

� R = K: unique solution, the K-vector    , ofθ̂

gN(θ) = 0

if f(.) is nonlinear in θ, numerical solution might be derived

θ

ˆ ˆ
� R > K: in general, no choice for the K-vector θ will result in gN( ) 

= 0 for all R equations; for a good choice , gN( ) ~ 0, i.e., all 

components of g ( ) are close to zero

θ̂ θ̂
θ̂ θ̂

θ̂components of gN( ) are close to zero

estimate    is obtained through minimization with respect to θ of the 

quadratic form

θ̂

θ̂

quadratic form

QN(θ) = gN(θ)‘ WN gN(θ)
WN: symmetric, positive definite weighting matrixWN: symmetric, positive definite weighting matrix
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The GMM EstimatorThe GMM Estimator

Weighting matrix WN

� Different weighting matrices result in different consistent � Different weighting matrices result in different consistent 

estimators with different covariance matrices

� Optimal weighting matrix

WN
opt = [E{f(wi, zi, θ) f(wi, zi, θ)’}]-1

i.e., the inverse of the covariance matrix of the sample moments

� For R = K : WN = IN with unit matrix IN
Minimization of QN(θ) = gN(θ)‘ WN gN(θ): For nonlinear f(.)

Numerical optimization algorithms � Numerical optimization algorithms 

� WN depends on θ; iterative optimization
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Example: The Linear ModelExample: The Linear Model

Model: yi = xi‘β + εi with E{εi xi} = 0 and V{εi} = σε²

� Moment or orthogonality conditions:� Moment or orthogonality conditions:

E{εt xt} = E{(yt - xt‘β)xt} = 0

f(.) = (yi - xi‘β)xi, θ = β, instrumental variables: xi; moment f(.) = (yi - xi‘β)xi, θ = β, instrumental variables: xi; moment 
conditions are exogeneity conditions for xi

� Sample moment conditions:

1/N Σi (yi - xi ‘b) xi = 1/N Σi ei xi = gN(b) = 0

� With WN = IN, QN(β) = [1/N]2 (Σi εi xi)’(Σi εi xi) = [1/N]2 X’εε’XN N N i i i i i i

� OLS and GMM estimators coincide, give the estimator b, but

� OLS: residual sum of squares SN(b) = 1/N Σi ei2 has its minimum 

� GMM: QN(b) = [1/N]2 (Σi ei xi)’(Σi ei xi) = 0
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Linear Model, E{εt xt}  ≠ 0 Linear Model, E{εt xt}  ≠ 0 

Model yi = xi‘β + εi with V{εi} = σε², E{εi xi}  ≠ 0 and R instrumental 

variables zii
� Moment conditions:

E{εi zi} = E{(yi - xi‘β)zi} = 0i i i i i

� Sample moment conditions:

1/N Σi (yi - xi‘b) zi = gN(b) = 0i i i i N

� Identified case (R = K): the single solution is the IV estimator

bIV = (Z’X)-1 Z’yIV

� Over-identified case (R > K): GMM estimator from

minβ QN(β)= minβ gN(β)’WN gN(β)
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Linear Model: GMM Estimator Linear Model: GMM Estimator 

Minimization of QN(β)= minβ gN(β)’WN gN(β) wrt β:

� For WN = I, the first order conditions are� For WN = I, the first order conditions are

( )( )
'

1 1 1
( ) ( )

2 ( ) 2 ' ' ' 0N N
N N N N

Q g
g X Z Z y Z X

β β β β
β β

 ∂ ∂= = − = ∂ ∂ 

resulting in the estimator

b = [(X’Z)(Z’X)]-1 (X’Z)Z’y

 

b = [(X’Z)(Z’X)] (X’Z)Z’y

b coincides with the IV estimator if R = K

� The optimal weighting matrix WN
opt = (E{εi2zizi‘}) -1 is estimated by� The optimal weighting matrix WN = (E{εi zizi‘}) is estimated by

generalizes the covariance matrix of the GIV estimator to White‘s 

( ) 1
21 'opt

N i i iN i
W e z z

−
= ∑

generalizes the covariance matrix of the GIV estimator to White‘s 

heteroskedasticity-consistent covariance matrix estimator (HCCME)
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Example: Labour DemandExample: Labour Demand

Verbeek’s data set “labour2”: Sample of 569 Belgian companies 

(data from 1996)

� Variables

� labour: total employment (number of employees)

� capital: total fixed assets

� wage: total wage costs per employee (in 1000 EUR)

output: value added (in million EUR)� output: value added (in million EUR)

� Labour demand function

labour = β + β *output + β *capitallabour = β1 + β2*output + β3*capital
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Labour Demand Function: OLS Labour Demand Function: OLS 
EstimationEstimation
In logarithmic transforms: Output from GRETL

Dependent variable : l_LABOUR

Heteroskedastic-robust standard errors, variant HC0, 

coefficient   std. error   t-ratio    p-valuecoefficient   std. error   t-ratio    p-value

-------------------------------------------------------------

const            3,01483 0,0566474 53,22     1,81e-222 ***

l_ OUTPUT  0,878061 0,0512008 17,15     2,12e-053 *** l_ OUTPUT  0,878061 0,0512008 17,15     2,12e-053 *** 

l_CAPITAL 0,003699 0,0429567        0,08610      0,9314

Mean dependent var 4,488665   S.D. dependent var 1,171166

Sum squared resid 158,8931   S.E. of regression   0,529839Sum squared resid 158,8931   S.E. of regression   0,529839

R- squared               0,796052   Adjusted R-squared 0,795331

F(2, 129)               768,7963  P-value (F)               4,5e-162

Log-likelihood          -444,4539 Akaike criterion       894,9078

Schwarz criterion      907,9395   Hannan-Quinn 899,9928
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GMM Estimation in GRETLGMM Estimation in GRETL

Specification of function and orthogonality conditions for labour demand 

model

# initializations go here

matrix X = {const , l_OUTPUT, l_CAPITAL}matrix X = {const , l_OUTPUT, l_CAPITAL}

series e = 0

scalar b1 = 0

scalar b2 = 0

scalar b3 = 0 scalar b3 = 0 

matrix V = I(3)

gmm e = l_LABOuR – b1*const – b2*l_OUTPUT – b3*l_CAPITAL

orthog e; X

weights V

params b1 b2 b3 

end gmmend gmm
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Labour Demand Function: Labour Demand Function: 
GMM EstimationGMM Estimation
In logarithmic transforms: Output from GRETL

Using numerical derivatives

Tolerance = 1,81899e-012

Function evaluations: 44

Evaluations of gradient: 8Evaluations of gradient: 8

Model 8: 1-step GMM, using observations 1-569

e = l_LABOUR – b1*const – b2*l_OUTPUT – b3*l_CAPITALe = l_LABOUR – b1*const – b2*l_OUTPUT – b3*l_CAPITAL

estimate    std. error   t-ratio     p-value 

--------------------------------------------------------------------------

b1         3,01483      0,0566474    53,22      0,0000    ***b1         3,01483      0,0566474    53,22      0,0000    ***

b2         0,878061     0,0512008    17,15      6,36e-066 ***

b3         0,00369851   0,0429567     0,08610   0,9314

GMM criterion: Q = 1,1394e-031 (TQ = 6,48321e-029)
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Labour Demand Functions: Labour Demand Functions: 
Comparison of EstimatesComparison of Estimates
OLS and GMM estimates coincide

OLS GMM

const 3,015 3,015

0,057 0,057

L_OUTPUT 0,878 0,878

0,051 0,051

l_CAPITAL 0,0037 0,0037

0,0430 0,04300,0430 0,0430

Nov 22, 2019 Hackl,  Econometrics, Lecture 6 21



GMM Estimator: PropertiesGMM Estimator: Properties

Under weak regularity conditions, the GMM estimator is

� consistent (for any WN)� consistent (for any WN)

� most efficient if WN = WN
opt = [E{f(wi, zi, θ) f(wi, zi, θ)’}]-1

� asymptotically normal: ( )1ˆ(θ θ) 0,N N V −− →� asymptotically normal:

where V = D WN
opt D’ with the KxR matrix of derivatives

( )(θ θ) 0,N N V− →

( , ,θ)i if w z
D E

∂ =  

The covariance matrix V-1 can be estimated by substituting the 

( , ,θ)

θ '

i if w z
D E

∂ =  ∂ 

ˆpopulation parameters θ by sample equivalents    evaluated at 

the GMM estimates in D and WN
opt

θ̂
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GMM Estimator: CalculationGMM Estimator: Calculation

1. One-step GMM estimator: Choose a positive definite WN, e.g., 
WN = IN, optimization gives     (consistent, but not efficient)1θ̂

ˆ
N N

2. Two-step GMM estimator: use the one-step estimator      to 

estimate V = D WN
opt D‘, repeat optimization with WN = V-1; this 

gives 

1

θ̂

1θ̂

gives 

3. Iterated GMM estimator: Repeat step 2 until convergence 

If R = K, the GMM estimator is the same for any W , only step 1 is 

2θ̂

If R = K, the GMM estimator is the same for any WN, only step 1 is 

needed; the objective function QN(θ) is zero at the minimum

If R > K, step 2 is needed to achieve efficiencyIf R > K, step 2 is needed to achieve efficiency
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GMM and Other Estimation GMM and Other Estimation 
MethodsMethods
� GMM estimation generalizes the method of moments estimation

� Allows for a general concept of moment conditions� Allows for a general concept of moment conditions

� Moment conditions are not necessarily linear in the parameters 

to be estimated

� Encompasses various estimation concepts such as OLS, GLS, 

IV, GIV, ML 

moment conditionsmoment conditions

OLS E{(yi – xi’β) xi} = 0

GLS E{(yi – xi’β) xi /σ2 (xi)} = 0

IV E{(y – x ’β) z } = 0IV E{(yi – xi’β) zi} = 0

ML E{∂/∂β f[εi(β)]} = 0
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Klein‘s Model 1Klein‘s Model 1

Ct = α1 + α2Pt + α3Pt-1 + a4(Wt
p+ Wt

g) + εt1 (consumption)

It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)

Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (private wages and salaries)

Xt = Ct + It + Gtt t t t

Kt = It + Kt-1

Pt = Xt – Wt
p – Ttt t t t

C (consumption), P (profits), Wp (private wages and salaries), Wg (public 

wages and salaries), I (investments), K (capital stock), X
(production), G (governmental expenditures without wages and  (production), G (governmental expenditures without wages and  

salaries), T (taxes) and t [time (trend)]

Endogenous: C, I, Wp, X, P, K; exogeneous: Wg, G, T, t, P-1, K-1, X-1Endogenous: C, I, W , X, P, K; exogeneous: W , G, T, t, P-1, K-1, X-1
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Early Econometric ModelsEarly Econometric Models

Klein‘s Model

� Aims: � Aims: 

� to forecast the development of 

business fluctuations and 

to study the effects of � to study the effects of 

government economic-political 

policy
Model year eq‘s

policy

� Successful forecasts of

� economic upturn rather than 

a depression after World War II

Model year eq‘s

Tinbergen 1936 24

Klein 1950 6a depression after World War II

� mild recession at the end of 

the Korean War

Klein 1950 6

Klein & Goldberger 1955 20

Brookings 1965 160the Korean War Brookings 1965 160

Brookings Mark II 1972 ~200
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Econometric ModelsEconometric Models

Basis: the multiple linear regression model

� Adaptations of the model

� Dynamic models

� Systems of regression models

Time series models� Time series models

� Further  developments

� Models for panel data� Models for panel data

� Models for spatial data

� Models for limited dependent variables� Models for limited dependent variables
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Dynamic Models: ExamplesDynamic Models: Examples

Demand model: describes the quantity Q demanded of a product as 

a function of its price P and consumers’ income Y

(a) Current price and current income determine the demand (static 

model):

Q = β + β P + β Y + εQt = β1 + β2Pt + β3Yt + εt
(b) Current price and income of the previous period determine the 

demand (dynamic model):demand (dynamic model):

Qt = β1 + β2Pt + β3Yt-1 + εt
(c) Current price and demand of the previous period determine the (c) Current price and demand of the previous period determine the 

demand (autoregressive model):

Qt = β1 + β2Pt + β3Qt-1 + εtQt = β1 + β2Pt + β3Qt-1 + εt
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Dynamic of ProcessesDynamic of Processes

Static processes: independent variables have a direct effect, the 

adjustment of the dependent variable on the realized values of 

the independent variables is completed within the current period, 

the process is assumed to be always in equilibrium

Static models may be unsuitable: Static models may be unsuitable: 

(a) Some activities are determined by the past, such as: energy 

consumption depends on past investments into energy-consumption depends on past investments into energy-

consuming systems and equipment

(b) Actors of the economic processes often respond with delay, e.g.,  (b) Actors of the economic processes often respond with delay, e.g.,  

due to the duration of decision-making and procurement 

processes

(c) Expectations: e.g., consumption depends not only on current (c) Expectations: e.g., consumption depends not only on current 

income but also on income expectations in future; modelling of 

income expectation based on past income development

Hackl,  Econometrics, Lecture 6 31

income expectation based on past income development

Nov 22, 2019



Elements of Dynamic ModelsElements of Dynamic Models

1. Lag-structures, distributed lags: describe the delayed effects of 
one or more regressors on the dependent variable; e.g., the lag-
structure of order s or DL(s) model (DL: distributed lag)structure of order s or DL(s) model (DL: distributed lag)

Yt = α + Σs
i=0βiXt-i + εt

2. Geometric lag-structure, Koyck’s model: infinite lag-structure 2. Geometric lag-structure, Koyck’s model: infinite lag-structure 
with βi = λ0λi (0 < λ< 1)

3. ADL-model: autoregressive model with lag-structure, e.g., the 
ADL(1,1)-modelADL(1,1)-model

Yt = α + ϕYt-1 + β0Xt + β1Xt-1 + εt
4. Error-correction model 4. Error-correction model 

∆Yt = - (1-ϕ)(Yt-1 – µ0 – µ1Xt-1) + β0∆ Xt + εt
obtained from the ADL(1,1)-model with µ0 = α/(1-ϕ) und µ1 = obtained from the ADL(1,1)-model with µ0 = α/(1-ϕ) und µ1 = 
(β0+β1)/(1-ϕ)
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The Koyck TransformationThe Koyck Transformation

Transforms the model 

Yt = λ0ΣiλiXt-i + εt
into an autoregressive model (v = ε - λε ):into an autoregressive model (vt = εt - λεt-1):

Yt = λYt-1 + λ0Xt + vt
� The model with infinite lag-structure in X becomes a model� The model with infinite lag-structure in X becomes a model

� with an autoregressive component  λYt-1

� with a single regressor Xt and 

� with autocorrelated error terms � with autocorrelated error terms 

� Econometric applications  
� The adaptive expectations model

Example: Investments determined by expected profit Xe: Example: Investments determined by expected profit Xe: 

Xe
t+1 = λ Xe

t + (1 - λ) Xt (with 0 < λ< 1)
� The partial adjustment model � The partial adjustment model 

Example: Kp
t: planned stock for t; strategy for adapting Kt on Kp

t

Kt – Kt-1 = δ(Kp
t – Kt-1)
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Example: Income and Example: Income and 
ConsumptionConsumption
Consumption Ct and disposable income Yt are simultaneously 

determined by

C = β + β Y + ε (A)Ct = β1 + β2Yt + εt (A)

Yt = Ct + It (B)

� The disposable income Y is determined by the consumption C� The disposable income Yt is determined by the consumption Ct

� Equations (A) and (B) are the structural equations or the structural 
form of the simultaneous equation model that describes both Ct

and Y
t

and Yt

� The coefficients β1 and β2 are behavioural parameters

� In equation (A), Y is endogenous: The OLS estimates b and b� In equation (A), Yt is endogenous: The OLS estimates b1 and b2
are biased and not consistent

Hackl,  Econometrics, Lecture 6 35Nov 22, 2019



Multi-equation ModelsMulti-equation Models

Economic phenomena are usually characterized by the 
behaviour of more than one dependent variable

Multi-equation model: the number of equations determines the Multi-equation model: the number of equations determines the 
number of dependent variables which are described by the 
model model 

Characteristics of multi-equation models: 

� Types of equations� Types of equations

� Types of variables

� Identifiability� Identifiability
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Klein‘s Model 1Klein‘s Model 1

Ct = α1 + α2Pt + α3Pt-1 + a4(Wt
p+ Wt

g) + εt1 (consumption)

It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)

Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (private wages and salaries)

Xt = Ct + It + Gtt t t t

Kt = It + Kt-1

Pt = Xt – Wt
p – Ttt t t t

C (consumption), P (profits), Wp (private wages and salaries), Wg (public 

wages and salaries), I (investments), K (capital stock), X
(production), G (governmental expenditures without wages and  (production), G (governmental expenditures without wages and  

salaries), T (taxes) and t [time (trend)]

Endogenous: C, I, Wp, X, K, P; exogeneous: Wg, G, T, t, P-1, K-1, X-1Endogenous: C, I, W , X, K, P; exogeneous: W , G, T, t, P-1, K-1, X-1
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Types of EquationsTypes of Equations

� Behavioural or structural equations: describe the behaviour 
of a dependent variable as a function of explanatory variables 

Definitional identities: define how a variable is defined as the sum of � Definitional identities: define how a variable is defined as the sum of 
other variables, e.g., decomposition of gross domestic product as 
the sum of its consumption componentsthe sum of its consumption components

Example: Klein’s model 1: Xt = Ct + It + Gt

� Equilibrium conditions: assume a certain relationship, which can be 
interpreted as an equilibriuminterpreted as an equilibrium

Example: equality of demand (Qd) and supply (Qs) in a market 
model: Qt

d = Qt
smodel: Qt = Qt

Definitional identities and equilibrium conditions have no error terms
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Types of VariablesTypes of Variables

Specification of a multi-equation model: definition of
� variables which are explained by the model (endogenous variables)
� other variables which are used in the model� other variables which are used in the model

Number of equations needed in the model: same number as that of the 
endogenous variables in the modelendogenous variables in the model

Explanatory or exogenous variables: uncorrelated with error terms
� strictly exogenous variables: uncorrelated with error terms εt+i (for 

any i ≠ 0)
t+i

any i ≠ 0)
� predetermined variables: uncorrelated with current and future error 

terms (εt+i, i ≥ 0); lagged explanatory variables t+i

Error terms: 
� Uncorrelated over time
� Error terms from different equations and same observation period � Error terms from different equations and same observation period 

typically correlated, contemporaneous correlation
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Systems of Regression Systems of Regression 
EquationsEquations
Economic processes encompass the simultaneous developments as 

well as interrelations of a set of dependent variables

For modelling economic processes: system of relations, typically in � For modelling economic processes: system of relations, typically in 
the form of regression equations: multi-equation model

Example: Two dependent variables yt1 and yt2 are modelled asExample: Two dependent variables yt1 and yt2 are modelled as
yt1 = x‘t1β1 + εt1
yt2 = x‘t2β2 + εt2yt2 = x‘t2β2 + εt2

with V{εti} = σi
2 for i = 1, 2, Cov{εt1, εt2} = σ12 ≠ 0

Typical situations:

1. The set of regressors x and x coincide1. The set of regressors xt1 and xt2 coincide
2. The set of regressors xt1 and xt2 differ, may overlap 
3. Regressors contain one or both dependent variables3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables
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Capital Asset Pricing ModelCapital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return Ri of asset i

Ri - Rf = βi(E{Rm} – Rf) + εiRi - Rf = βi(E{Rm} – Rf) + εi
with 

� Rf: return of a risk-free assetf

� Rm: return of the market’s optimal portfolio

� βi: indicates how strong fluctuations of the returns of asset i are 
determined by fluctuations of the market as a wholedetermined by fluctuations of the market as a whole

� Knowledge of the return difference Ri - Rf will give information on 

the return difference Rj - Rf of asset j, at least for some assetsthe return difference Rj - Rf of asset j, at least for some assets

� Analysis of a set of assets i = 1, …, s

� The error terms εi, i = 1, …, s, represent common factors, e.g., � The error terms εi, i = 1, …, s, represent common factors, e.g., 
inflation rate, have a common dependence structure 

� Efficient use of information: simultaneous analysis
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A Model for InvestmentA Model for Investment

Grunfeld investment data (Grunfeld & Griliches, 1960): Panel data set 

on gross investments Iit of firms i = 1, ..., 6 over 20 years and related 
data 

it

data 

� Investment decisions are assumed to be determined by

I = β + β F + β C + εIit = βi1 + βi2Fit + βi3Cit + εit

with 

F : market value of firm i at the end of year t-1� Fit: market value of firm i at the end of year t-1

� Cit: value of stock of plant and equipment at the end of year t-1

� Simultaneous analysis of equations for the various firms i: efficient � Simultaneous analysis of equations for the various firms i: efficient 
use of information 

� Error terms for the firms include common factors such as economic Error terms for the firms include common factors such as economic 

climate 

� Coefficients may be the same for the firms

Nov 22, 2019 Hackl,  Econometrics, Lecture 6 42



The Hog MarketThe Hog Market

Model equations:

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β + β P + β Z + ε (supply equation)
1 2 3 1

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 
income, and Z: costs of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes quantity and price of the equilibrium transactions 

� Model determines simultaneously Q and P, given Y and Z

� Error terms 

� May be correlated: Cov{ε1, ε2} ≠ 0 

� Simultaneous analysis necessary for efficient use of information
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Types of Multi-equation ModelsTypes of Multi-equation Models

Multivariate regression or multivariate multi-equation model

� A set of regression equations, each explaining one of the 
dependent variablesdependent variables

� Possibly common explanatory variables 

� Seemingly unrelated regression (SUR) model: each equation � Seemingly unrelated regression (SUR) model: each equation 
is a valid specification of a linear regression, related to other 
equations only by the error terms

See cases 1 and 2 of “typical situations” on slide 40� See cases 1 and 2 of “typical situations” on slide 40

Simultaneous equations models

� Describe the relations within the system of economic variables � Describe the relations within the system of economic variables 

� in form of model equations

� See cases 3 and 4 of “typical situations” on slide 40� See cases 3 and 4 of “typical situations” on slide 40

Error terms: dependence structure is specified by means of second 
moments or as joint probability distribution
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Examples of Multi-equation Examples of Multi-equation 
ModelsModels
Multivariate regression models

� Capital asset pricing (CAP) model: for all assets, return Ri (or risk 
premium R – R ) is a function of E{R } – R ; dependence structure 

i

premium Ri – Rf) is a function of E{Rm} – Rf; dependence structure 
of the error terms caused by common variables 

� Model for investment: firm-specific regressors, dependence � Model for investment: firm-specific regressors, dependence 
structure of the error terms like in CAP model 

� Seemingly unrelated regression (SUR) models

Simultaneous equations modelsSimultaneous equations models

� Hog market model: endogenous regressors, dependence structure 
of error termsof error terms

� Klein’s model I: endogenous regressors, dynamic model, 
dependence of error terms from different equations and possibly 
over timeover time

Nov 22, 2019 Hackl,  Econometrics, Lecture 6 45



Single- vs. Multi-equation Single- vs. Multi-equation 
ModelsModels
Complications for estimation of parameters of multi-equation models: 

� Dependence structure of error terms

� Violation of exogeneity of regressors

Example: Hog market model, demand equation 

Q = α + α P + α Y + εQ = α1 + α2P + α3Y + ε1
� Covariance matrix of ε = (ε1, ε2)’

{ }
2σ σ 

� P is not exogenous: Cov{P,ε1} = (σ12 - σ12)/(β2 - α2) ≠ 0

{ }
2

1 12

2

12 2

Cov ε
σ σ
σ σ
 

=  
 

� P is not exogenous: Cov{P,ε1} = (σ12 - σ12)/(β2 - α2) ≠ 0
Statistical analysis of multi-equation models requires methods 

adapted to these features
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Multi-equation Models: Multi-equation Models: 
Estimation of ParametersEstimation of Parameters
Estimation procedures 

� Multivariate regression models 

� FGLS , GLS, ML

� Simultaneous equations models 

Single equation methods: indirect least squares (ILS), two � Single equation methods: indirect least squares (ILS), two 
stage least squares (TSLS), limited information ML (LIML)

� System methods of estimation: three stage least squares � System methods of estimation: three stage least squares 
(3SLS), full information ML (FIML)

� Dynamic models: estimation methods for vector 
autoregressive (VAR) and vector error correction (VEC) autoregressive (VAR) and vector error correction (VEC) 
models
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ContentsContents

� The GIV Estimator 

� GMM Estimation� GMM Estimation

� Econometric Models

� Dynamic ModelsDynamic Models
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� Time Series Models
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� Econometrics II
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Types of TrendTypes of Trend

Trend: The expected value of a process {Yt, t = 1, 2, ... } increases or 
decreases with time

Deterministic trend: a function f(t) of the time t, describing the � Deterministic trend: a function f(t) of the time t, describing the 
evolution of E{Yt} over time

Yt = f(t) + εt, εt: white noise Yt = f(t) + εt, εt: white noise 

Example: Yt = α + βt + εt describes a linear trend of Y; an increasing 
trend corresponds to β > 0trend corresponds to β > 0

� Stochastic trend: Yt = δ + Yt-1 + εt or 

∆Yt = Yt – Yt-1 = δ + εt, εt: white noise∆Yt = Yt – Yt-1 = δ + εt, εt: white noise

� describes an irregular or random fluctuation of the differences ∆Yt

around the expected value δ

AR(1) – or AR(p) – process with unit root� AR(1) – or AR(p) – process with unit root

� “random walk with trend”
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Trends: Random Walk and AR Trends: Random Walk and AR 
ProcessProcess
Random walk: Yt = Yt-1 + εt; random walk with trend: Yt = 0.1 +Yt-1 + εt; 

AR(1) process: Yt = 0.2 + 0.7Yt-1 + εt; εt simulated from N(0,1) 

12

16

20

4

8

12

-4

0
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random walk
random walk with trend
AR(1) process, δ=0.2, θ=0.7
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Example: Private ConsumptionExample: Private Consumption

Private consumption, AWM database; level values (PCR) and first 

differences (PCR_D); random walk?
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How to Model Trends? How to Model Trends? 

Specification of a

� deterministic trend, e.g., Yt = α + βt + εt: risk of spurious regression, 
wrong decisionswrong decisions

� stochastic trend: analysis of differences ∆Yt if a random walk, i.e., a 
unit root, is suspectedunit root, is suspected
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Spurious Regression: An Spurious Regression: An 
IllustrationIllustration
Independent random walks: Yt = Yt-1 + εyt, Xt = Xt-1 + εxt

εyt, εxt: independent white noises with variances σy² = 2, σx² = 1

Fitting the model
 35

Fitting the model

Yt = α + βXt + εt

gives 
 25

 30

 35
yy

xx

gives 

Ŷt = - 8.18 + 0.68Xt

t-statistic for X: t = 17.1
 15

 20

 25

t-statistic for X: t = 17.1

p-value = 1.2 E-40

R2 = 0.50,  DW = 0.11
 5

 10

R2 = 0.50,  DW = 0.11
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Models in Non-stationary Time Models in Non-stationary Time 
Series Series 
Let Xt ~ I(1), Yt ~ I(1) be integrated of order 1 and the model be

Yt = α + βXt + εtYt = α + βXt + εt

it follows in general that εt ~ I(1), i.e., the error terms are non-
stationary

Consequences for OLS estimation of α and β 

� (Asymptotic) distributions of t- and F-statistics are not the t- and F-
distributiondistribution

� t-statistic, R2 indicate explanatory potential 

� Highly autocorrelated residuals, DW statistic converges for growing � Highly autocorrelated residuals, DW statistic converges for growing 

length of time series to zero

Nonsense or spurious regression (Granger & Newbold, 1974)Nonsense or spurious regression (Granger & Newbold, 1974)

� Non-stationary time series are trended; non-stationarity causes an 
apparent relationship
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Avoiding Spurious RegressionAvoiding Spurious Regression

� Identification of non-stationarity: unit-root tests

� Models for non-stationary variables� Models for non-stationary variables

� Elimination of stochastic trends: specifying the model for differences

� Inclusion of lagged variables may result in stationary error terms

� Explained and explanatory variables may have a common stochastic 

trend, are cointegrated: equilibrium relation, error-correction models
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Unit Root TestsUnit Root Tests

AR(1) process Yt = δ + θYt-1 + εt with white noise εt

� Dickey-Fuller or DF test (Dickey & Fuller, 1979)

Test of H : θ = 1 against H : θ < 1Test of H0: θ = 1 against H1: θ < 1

� KPSS test (Kwiatkowski, Phillips, Schmidt & Shin, 1992) 

Test of H : θ < 1 against H : θ = 1Test of H0: θ < 1 against H1: θ = 1

� Augmented Dickey-Fuller or ADF test

extension of DF testextension of DF test

� Various modifications like Phillips-Perron test, Dickey-Fuller GLS test, 

etc.etc.
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The Error-correction ModelThe Error-correction Model

ADL(1,1) model with Yt ~ I(1), Xt ~ I(1) 

Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εtYt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt
� Common trend implies an equilibrium relation, i.e.,

Yt-1 – βXt-1 ~ I(0) 
error-correction form of the ADL(1,1) modelerror-correction form of the ADL(1,1) model

∆Yt = φ0∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt

Error-correction model describesError-correction model describes

� the short-run behaviour 

� consistently with the long-run equilibrium Y = α + βX� consistently with the long-run equilibrium Yt = α + βXt
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Cointegration Cointegration 

Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt

� Xt and Yt are cointegrated: εt ~ I(0)

� Xt and Yt are not cointegrated: εt ~ I(1)t t t

Tests for cointegration: 

� If β is known, unit root test based on differences Yt - βXtt t

� Test procedures

� Unit root test (DF or ADF) based on residuals et

Cointegrating regression Durbin-Watson (CRDW) test: DW statistic� Cointegrating regression Durbin-Watson (CRDW) test: DW statistic

� Johansen technique: extends the cointegration technique to the 

multivariate casemultivariate case
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Vector Error-Correction ModelVector Error-Correction Model

Yt: k-vector, each component I(1)

VAR(p) model for the k-vector YtVAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

with r{Π} = r and Π = γβ' gives with r{Π} = r and Π = γβ' gives 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� r cointegrating relations β'Yt-1� r cointegrating relations β'Yt-1

� Adaptation parameters γ measure the portion or speed of adaptation 

of Yt in compensation of the equilibrium error Zt-1 = β'Yt-1t t-1 t-1

� Equation (B) is called the vector error-correction (VEC) form of the 

VAR(p) model
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ContentsContents

� The GIV Estimator 

� GMM Estimation� GMM Estimation
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ExampleExample

To be explained whether a household owns a car: explanatory power 

have have 

� income 

� household size � household size 

� etc. 

Regression for describing car-ownership is not suitable!Regression for describing car-ownership is not suitable!

� Owning a car has two manifestations: yes/no

� Indicator for owning a car is a binary variable � Indicator for owning a car is a binary variable 

Models are needed that allow describing a binary dependent variable 

or a, more generally, limited dependent variable or a, more generally, limited dependent variable 
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Cases of Limited Dependent Cases of Limited Dependent 
VariableVariable
Typical situations: functions of explanatory variables are used to 

describe or explain 

� Dichotomous dependent variable, e.g., ownership of a car 

(yes/no), employment status (employed/unemployed), etc.

Ordered response, e.g., qualitative assessment � Ordered response, e.g., qualitative assessment 

(good/average/bad), working status (full-time/part-time/not 

working), etc. xworking), etc.

� Multinomial response, e.g., trading destinations 

(Europe/Asia/Africa), transportation means (train/bus/car), etc.

x

(Europe/Asia/Africa), transportation means (train/bus/car), etc.

� Count data, e.g., number of orders a company receives in a 

week, number of patents granted to a company in a year

� Censored data, e.g., expenditures for durable goods, duration of 

study with drop outs
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Panel DataPanel Data

Population of interest: individuals, households, companies, 

countries

Types of observations

� Cross-sectional data: Observations of all units of a population, or of a 

(representative) subset, at one specific point in time; e.g., wages in 2015(representative) subset, at one specific point in time; e.g., wages in 2015

� Time series data: Series of observations on units of the population over 

a period of time; e.g., wages of a worker in 2009 through 2015a period of time; e.g., wages of a worker in 2009 through 2015

� Panel data: Repeated observations of (the same) population units 

collected over a number of periods; data set with both a cross-sectional 

and a time series aspect; multi-dimensional dataand a time series aspect; multi-dimensional data

Cross-sectional and time series data are one-dimensional, special 

cases of panel datacases of panel data

Pooling independent cross-sections: (only) similar to panel data
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Panel Data: Three Types Panel Data: Three Types 

Typically data at micro-economic level (individuals, households, 

firms), but also at macro-economic level (e.g., countries)

Notation:

� N: Number of cross-sectional units 

� T: Number of time periods

Types of panel data:

� Large T, small N: “long and narrow” 

� Small T, large N: “short and wide”

Large T, large N: “long and wide” � Large T, large N: “long and wide” 
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Some ExamplesSome Examples

Verbeek’s data set “males”: Wages  and related variables

� short and wide panel (N = 545, T = 8) short and wide panel (N = 545, T = 8) 

� rich in information (~40 variables)

Grunfeld investment data: Investments in plant and equipment by

� N = 10 firms 

� for each of T = 20 yearly observations for 1935-1954

Penn World Table: Purchasing power parity and national income 

accounts for

N = 189 countries/territories� N = 189 countries/territories

� for some or all of the years 1950-2009 (T ≤ 60)
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Example: Individual WagesExample: Individual Wages

Verbeek’s data set “males” 

� Sample of � Sample of 

� 545 full-time working males, end of schooling in 1980

� from each person: yearly data collection from 1980 till 1987

� Variables

� wage: log of hourly wage (in USD)

� school: years of schooling

� exper: age – 6 – school

dummies for union membership, married,  black, Hispanic, public � dummies for union membership, married,  black, Hispanic, public 

sector

� others� others
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Use of Panel DataUse of Panel Data

Econometric models for describing the behaviour of cross-sectional 

units over time 

Panel data models 

� Allow controlling individual differences, comparing behaviour, analysing 

dynamic adjustment, measuring effects of policy changes dynamic adjustment, measuring effects of policy changes 

� More realistic models than cross-sectional and time-series models

� Allow more detailed or sophisticated research questions   � Allow more detailed or sophisticated research questions   

Methodological implications

� Dependence of sample units in time-dimension � Dependence of sample units in time-dimension 

� Some variables might be time-constant (e.g., variable school in “males”, 
population size in the Penn World Table dataset)

� Missing values
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Examples for Fixed- and Examples for Fixed- and 
Random-effectsRandom-effects
Grunfeld investment data: Investment model

Iit = αi + βi1Fit + βi2Cit + uitIit = αi + βi1Fit + βi2Cit + uit
with Fit: market value, Cit: value of stock of plant and equipment, both of 

firm i at the end of year t-1

N = 10 firms, T = 20 yearly observations � N = 10 firms, T = 20 yearly observations 

� Fixed effects αi allow for firm-specific, time-constant factors

Wage equationWage equation

wageit = β1 + β2 experit + β3 exper2it + β4 schoolit + β5 unionit
+ β6 marit + β7 blackit + β8 ruralit + αi + uit+ β6 marit + β7 blackit + β8 ruralit + αi + uit

with composite error εit = αi + uit
� αi: unit-specific parameter for each of 545 unitsαi: unit-specific parameter for each of 545 units
� Time-constant factors αi: stochastic variables with identical distribution
� Regressors are uncorrelated with uit
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Models for Panel DataModels for Panel Data

Model for y, based on panel data from N cross-sectional units and T
periods

yit = β0 + xit’β1 + εit
i = 1, ..., N: sample unit 
t = 1, ..., T: time period of samplet = 1, ..., T: time period of sample
xit and β1: K-vectors

� β and β : represent intercept and K regression coefficients; are � β0 and β1: represent intercept and K regression coefficients; are 

assumed to be identical for all units and all time periods

� εit: represents unobserved factors that may affect yit� εit: represents unobserved factors that may affect yit
� Assumption that εit are uncorrelated over time not realistic; refer to 

the same unit or individual

Standard errors of OLS estimates misleading, OLS estimation not � Standard errors of OLS estimates misleading, OLS estimation not 

efficient (does not exploit dependence structure over time)
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Fixed Effects ModelFixed Effects Model

The general model

yit = β0 + xit’β1 + εityit = β0 + xit’β1 + εit
� Specification for the error terms: two components

εit = αi + uit
α fixed, unit-specific, time-constant factors, also called unobserved � αi fixed, unit-specific, time-constant factors, also called unobserved 
(individual) heterogeneity; may be correlated with xit

� uit ~ IID(0, σu2); homoskedastic, uncorrelated over time; represents � uit ~ IID(0, σu ); homoskedastic, uncorrelated over time; represents 
unobserved factors that change over time, also called idiosyncratic or 

time-varying error

� ε : also called composite error� εit : also called composite error

� Fixed effects (FE) model

yit = Σj αi dij + xit’β1 + uityit = Σj αi dij + xit’β1 + uit
dij: dummy variable for unit i: dij = 1 if i = j, otherwise dij = 0 

� Overall intercept β0 omitted; unit-specific intercepts αiOverall intercept β0 omitted; unit-specific intercepts αi

Nov 22, 2019 Hackl,  Econometrics, Lecture 6 71



Fixed Effects EstimatorFixed Effects Estimator

“Within transformation”: transforms yit into time-demeaned ÿit by 
subtracting the average ӯi = (Σt yit )/T: ÿit = yit - ӯi; analogously ẍit and 
ü , for all i and t

ẍ ẍ ẍ

ӯi t it it it ӯi ẍit
üit, for all i and t

bFE = (ΣiΣt ẍit ẍit’)-1 ΣiΣt ẍit ÿit
� Unbiased if all x are independent of all u

ẍ ẍ ẍ

� Unbiased if all xit are independent of all uit
� Consistent (for N→ ∞) if xit are strictly exogenous, i.e., E{xit uis} = 0 

for all s, tfor all s, t
� Asymptotically normally distributed 

� Covariance matrix  

V{b } = σ 2(ΣΣ ẍ ẍ ’)-1V{bFE} = σu2(ΣiΣt ẍit ẍit’)-1
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Random Effects ModelRandom Effects Model

Starting point is again the model

yit = β0 + xit’β1 + εityit = β0 + xit’β1 + εit
with composite error εit = αi + uit

� Specification for the error terms:

u ~ IID(0, σ 2); homoskedastic, uncorrelated over time� uit ~ IID(0, σu2); homoskedastic, uncorrelated over time
� αi ~ IID(0, σa2); represents all unit-specific, time-constant factors; 

correlation of error terms over time only via the αicorrelation of error terms over time only via the αi
� αi and uit are assumed to be mutually independent and independent 

of xjs for all j and s

Random effects (RE) model� Random effects (RE) model

yit = β0 + xit’β1 + αi + uit
� Unbiased and consistent (N → ∞) estimation of β and β� Unbiased and consistent (N → ∞) estimation of β0 and β1
� Efficient estimation of β0 and β1: takes error covariance structure 

into account; GLS estimationinto account; GLS estimation
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ContentsContents

� The GIV Estimator 

� GMM Estimation� GMM Estimation

� Econometric Models

� Dynamic ModelsDynamic Models

� Multi-equation Models

� Time Series Models
x

� Models for Limited Dependent Variables

� Panel Data Models

x

� Econometrics II
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Econometrics IIEconometrics II

1. ML Estimation and Specification Tests (MV, Ch.6)

2. Models with Limited Dependent Variables (MV, Ch.7)

3. Univariate time series models (MV, Ch.8)

4. Multivariate time series models, part 1 (MV, Ch.9)

5. Multivariate time series models, part 2 (MV, Ch.9)

6. Models Based on Panel Data (MV, Ch.10)

Nov 22, 2019 Hackl,  Econometrics, Lecture 6 75



Univariate Time Series ModelsUnivariate Time Series Models

� Time Series

� Stochastic Processes � Stochastic Processes 

� Stationary Processes 

� The ARMA Process� The ARMA Process

� Deterministic and Stochastic Trends

� Models with Trend� Models with Trend

� Unit Root Tests
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Multivariate Time Series Multivariate Time Series 
ModelsModels
� Dynamic Models

� Lag Structures, ADL Models� Lag Structures, ADL Models

� Models with Non-stationary Variables

� Cointegration, Tests for CointegrationCointegration, Tests for Cointegration

� Error-correction Model

� Systems of Equations

� VAR Models

� Simultaneous Equations and VAR Models

� VAR Models and Cointegration

� VEC Models 
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