Drum -Buffer-Rope

Principy

Resource : http://www.allaboutlean.com/drum-buffer-rope/

Simplified Drum Buffer Rope (S-DBR)

Principy

Most importantly, it does try to constrain the work-in-progress and aims to prevent an overloading of the system. As such it can be considered sort of a pull system like Kanban or CONWIP, and hence Drum-BufferRope is superior to the traditional push systems.

No Consideration for Shifting Bottlenecks Nevýhoda DBR->nebere do úvahy posuny úzkého místa

System not controlled (Neregulovaný systém)

System not controlled and modification DBR

Rope opened raw material valve

We Measure Operational Efficiency

- Work flows from left to right through processes with capacity shown.

Market
Request
11

Capability (Throughput Rate)
Parts/Day
$\mathbf{R M}=$ raw material
FG $=$ finished goods
Excellent Efficiency--Near 100\%
Chronic Complainer

Reward Based on Efficiency

- Work flows from left to right.

Capability(Throughput Rate)

Parts/Day	7	9	5

Both (D and E) found ways to look busy and appear to have a capacity of 5 parts/day.
„horní tok"
„dolní tok"

In reality...

- Processes A and B won't produce more than Process C for long.

Potential P/D

7
9
5
8
6

Reality

5	5	5	5	5

P/D=parts/day

Then Variability Sets In

- Processing times are just AVERAGE Estimates

Process	A	B	C	D	E
RM					
Reality	52	52	52	52	52

What's an Average? 50\%

- Half the time there are 5 or more per day at each process--Half the time less

Over all: $0,5^{*} 0,5^{*} 0,5^{*} 0,5^{*} 0,5=0,03125=3 \%$ Chance of 5 per day !!!

Previous Solution (not good one !): Inventory

- Put a day of inventory (WIP) at each process!

Variable
Process $\quad 52 \quad 52 \quad 52 \quad 52$

WIP $=$ Work in Progress $=N V=$ Nedokončená výroba

System Variability Takes Over \rightarrow Chaos

Inventory (WIP) quickly shifts position. Inventory manager tries to smooth it out. Distribution problems result. Costs go up !!!

Variable
Process

System Variability Takes Over--Chaos

An Average of 5 means sometimes 3 and some times 7

Variable
52
52
52
52
52

Process

Shifting work-in-process creates large queues at some
locations. This makes work wait longer to be processed.
(based on Little s law ->WIP=TH x CT)
TH=průtok
$\mathbf{C T}=\mathbf{C y c l e}$ Time=CT=average time from when the job is released
into station (machine or line) to when it exits

System Variability Takes Over--Chaos

Process A B C D E

WIP

Variable 5252525052
Process
Shifting work-in-process creates large queues at some locations. This makes work wait longer to be processed.

Other workstations are starving for work (B) The work they could do is delayed because they have no input material. They can't take advantage of their extra capability. So....... ?

System Variability Takes Over--Chaos

| Variable | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Process
So... Management Helps! Management puts in more work

(Inventory) (rate of input RM) to give everyone something to do (Cost world)!
Result: It takes longer and longer from time of release
until final shipping. More and more delay!!!!!!!!!!!

TOC Steps to
 Continuous Improvement

Step 1. Identify the system's constraint.
Step 2. Exploit the system's constraint.
Step 3. Subordinate everything else to the above decision.

Step 4. Elevate the system's constraint.
Step 5. If a constraint is broken (that is, relieved or improved), go back to Step 1. But don't allow inertia to become a constraint.

Five Steps Applied to Flow Operations

Five Focusing Steps
Step 1. Identify the Constraint (The Drum) - CRT -strom současné reality
Step 2. Exploit the Constraint (Buffer the Drum) - časová rezerva
Step 3. Subordinate Everything Else (Rope) - zpětná vazba
Step 4. Elevate the Constraint (\$?->vícenáklady)
Step 5. If the Constraint Moves, Start Over

Understanding Buffers

- The "Buffer" is Time! Zásobnik reprezentuje čas
- In general, the buffer is the total time from work release until the work arrives at the constraint. Jde o čas mezi vstupem komponent do systému až po dobu příchodu k omezení
- Contents of the buffer alters (see below) - obsah zásobniku se v čase mění
- If different items spend different time at the constraint, then number of items in the buffer changes
- but Time in the buffer remains constant.

We need more than one Buffer

- There is variability in our suppliers.

We need to protect ourselves from unreliable delivery. Dodávky v čase kolísají, takže se musíme

- před tímto nežádoucím efektem chránit

Buffer Time is Constant-Predictable

Buffer Management

Time until Scheduled at Constraint

Problem Identification

Additional Buffers

- Constraint Buffer (as we discussed)
- Protects the Constraint from running out of work
- Finished Goods Buffer
- Protects customer delivery from Constraint variation
- Raw Material Buffer
- Protects the Release of material from suppliers
- Assembly Buffer
- Facilitates speedy flow of products See interesting video
https://www.youtube.com/watch?v=8yehd2ZsKH0

