Ishikawa fishbone diagram

Skorkovský ESF MU KPH

Introduction (FBD= fishbone diagram)

• FDB is a tool to find out relationships:

Cause Effect

- Use in QM especially in automotive industry
- On of the tool set used to create so called 8D report (8 disciplines=FBD+5WHYs+PA+QM)
- Another tool: 5 WHYs will be cleared later
 Another tool: PARETO=PA analysis will be shown later

Fishbone diagram

(Methods, Material, Manpower, Measurement, Machines, Mother Nature, Management)

Some chosen problems which could be find out during ERP support process I

- long response time to requirements
- requirement is directed to unsuitable consultant
- bad documentation about service action (poor log)
- people ask repeatedly same questions at different moments and different consultants are asked
- solution of disputes :complaint- standard service
 - payment asked for supplied services
 - 1. how much (to whom, type of task, type of the error-see diagram
 - 2. starting time for invoiced services, response time
 - 1. requirement is handed over till the problem is solved
 - 2. time of starting solving -solved
 - 3. start of implementaion of the bad object till end of testing
 - 4. training

Some chosen problems which could be find out during ERP support process II

- bad training methodology
- bad consultants
- bad communication protocol
 - 1. telephone
 - 2. e-mail
 - 3. SKYPE
- lack of interest of the management of both parties
 - right specification of reaction time
- specification to the error types and related response times
- response time of the distributor (ERP integrator ERP)

Diagram – response time

(Methods, Material, Manpower, Measurement, Machines)

Fishbone diagram-SA Project

(Methods, Material, Manpower, Measurement, Machines)

Another example of Ishikawa I.

Resource : Seminar work 2015- Ing. Martin Lofaj

Another example of Ishikawa II.

Resource : Seminar work 2015- Tugulea Lilia

Dissatisfied employee I

Dissatisfied employee II

5WHYs

- WHY 1 : Why my car had stopped ?
- No petrol in tank
- WHY 2 : Why i did not have a petrol in my tank ?
- I did not buy in the morning on my way to work WHY 3 :Why i did not buy a petrol ?
 - No money in my pockets
- WHY 4 : Why no money i my pockets?
- Evening poker
- WHY 5 : Why i did not win a poker game?
- I do not know how to bluff!

$5WHY_{s}$

Cause

TQM and Ishikawa FBD and Pareto 80|20

Every reject type ->one Ishikawa diagram (electronic version)

Pareto tool : What is it ?

- tool to specify priorities
- which job have to be done earlier than the others
- which rejects must be solved firstly

- which product gives us the biggest revenues
- 80|20 rule

Pareto chart : possibility to split up reject and setup priorities High priorities Lorenz curve 120,00% Accumulative% 100,00% See next slide 80,00% to understand the way how to construct Lorenz curve 60,00% 40,00% Type of rejects 20,00% 0,00% 2 3 1

How to construct Lorenz Curve and Pareto chart

- list of causes (type of rejects) in %
- table where the most frequent cause is always on the left side of the graph

Reject	Туре	Importance	Importance (%)	Accumulative (%)	
1	Bad size	10	71%	<mark>71</mark> %=71%	
2	Bad material	3	21 %	<mark>92%=</mark> 71%+21%	
3	Rust	1	8%	100 %=92%+8%	

Comment 1 : 10+3+1=14 Comment 2 : 71 % = 10/14; 21%=3/14

Pareto analysis per every type of reject – next

step ->practical example of Pareto use in ERP MS Dynamics NAV

Type of reject	Cause 1	Cause 2	Cause 3	Cause 4	Cause 5	Cause 6	Total							
L1	7	2	4	1	8	0	22							
L2	2	4	6	8	0	9	29		C5		8	36,36	=(8/22	
L3	4	0	0	5	6	7	22		04		-	04.00		
L4	5	7	2	0	1	3	18		C1		1	31,82	=(7/22)	
L5	0	2	7	3	0	1	13		02		4	10 10		
L6	9	7	5	2	3	6	32		05		4	10,10	=(4/22)	
L7	0	7	0	2	3	4	16		C.2		2	9 09		
1.0						•			02		2	0,00	=(2/22)	
L8	1	8	6	2	4	0	21		C4		2	4.55		
L9	2	0	5	7	1	4	19					-,	=(2/22)	
L10	7	2	8	9	7	5	38							
С	C5 %	C1 %	C3 %	C2 %	C4 %	C6%								
L1	36,36	31,82	18,18	9,09	4,55	0,00	100							
Lorenz curve	36,36	68,18	86,36	95,45	100,00									
							12	0.00	Higher	prioriti	es for reje	ct type L1		80 20
							10	0.00 —						-

Pareto analysis II - data

Frequency Freq (%) Freq accum(%)

- Difficulty
- Resignation
- Underestimation
- Low motivation

- **6** (35,29)- (35,29)
- **5** (29,41)- (64,71)
- **4** (**23,53**)- (88,24)
- **2** (11,76)- (100,00)

Pareto analysis II

Pareto analysis II

Evaluation of set of rejects

- Every reject is assigned to one Ishikawa tree
- Every tree with empty table is handed over to chosen company of responsible experts
- All tables are collected and evaluated
- See example with two rejects and two experts

	Domain	Machines	Input control	Setup	Routing	Method	Breakdowns	Workers	Measurment
	Reject code								
	L1	3,5	9	6,5	2	2,5	6	3	1,5
	L2	9,5	2,5	2	5,5	6	8	3,5	2,5
Expert	Reject								
John	L1	3	8	9	3	2	7	2	1
Linda	L1	4	10	4	1	3	5	4	2
Expert	Reject								
John	L2	9	3	3	5	7	8	4	3
Linda	L2	10	2	1	6	5	8	3	2

Current Reality Tree and Ishikava (Pareto)

Example 1

Conclusion

Туре	Problem Analysis					
Definition	A visualization of the causes of a problem.					
Also Known As	Ishikawa Diagram					
Invented By	Kaoru Ishikawa					
Related Concepts	Problem Analysis » Root Cause » Human Error » Internal Controls » Production Line » Root Cause Analysis »					

Vilfredo Pareto in person...

Akira Ishikawa in person...