Financial Mathematic

Seminar

Luděk Benada, Dagmar Linnertova

Department of Finance - 402, benada.esf@gmail.com

October 13, 2017
The Study materials prepared by

Mikhail Dmitrievich Balyka

Annuities

Exercise 1

You put 333\$ into a bank account 4 times per year (at the beginning of each quarter) for 25 years at 4,5\% p.a. Interest is calculated monthly.
!!BUT, to avoid inflation, every quarter you deposit
$0,5 \%$ more (i.e annuity $_{2} /$ annuity $_{1}=1,005$).
$\mathrm{S}_{25 \mathrm{yrs}}$ - ?

Annuities

Exercise 1 cont'd

Inputs:
$a=333 \quad$ ahead $\quad P P=4 t / y \quad \mid P=1 m$
$T=25 y r s \quad r=4,5 \%$ p.a. $\quad a_{2}=a_{1}{ }^{*} 1,005$
$\mathrm{S}_{25 \mathrm{yrs}}$ - ?
$\mathrm{PP}>\left\lvert\, \mathrm{P} \rightarrow S=a \times q \times \frac{q^{n}-1}{q-1}\right.$

Annuities

Exercise 1 cont'd

$$
S=a \times q \times \frac{q^{n}-1}{q-1}
$$

$\mathrm{PP}=3$ months

Annuities

Exercise 1 cont'd

$$
\begin{gathered}
S=a \times q \times \frac{q^{n}-1}{q-1} \\
q=\frac{333^{*}(1+0,045 / 12)^{12}}{333^{*} 1,005^{*}(1+0,045 / 12)^{123}}=\frac{\left(1+\frac{0,045}{12}\right)^{3}}{1,005} \\
S=333 \times \frac{\left(1+\frac{0,045}{12}\right)^{3}}{1,005} \times \frac{\left[\frac{\left(1+\frac{0,045}{12}\right)^{3}}{1,005}\right]^{4 \times 25}-1}{\frac{\left(1+\frac{0,045}{12}\right)^{3}}{1,005}-1}=46382,69
\end{gathered}
$$

Annuities

Exercise 2

You put 200 000\$ into a bank account at 2\% p.q. You pay $5 \mathbf{0 0 0}$ to open this account and also at the end of each month you pay a bank fee $\mathbf{2 0 0 \$}$. Interest is calculated quarterly.
Find the average annual return on this investment

Annuities

Exercise 2 cont'd

Inputs:

$\mathrm{PV}=\mathbf{2 0 0 0 0 0}$ Initial costs=5000 Monthly costs (i.e. annuities)=200
$\mathrm{PP}=1$ month $\quad \mathrm{P}=3$ months $\quad \mathrm{r}=2 \% \mathrm{p} . \mathrm{q}$. $\mathrm{T}=5 \mathrm{yrs} \quad$ After payment

Here we just need to respect time value of money and to calculate FV of all cash flows:
$F V=200000 \times(1+0,02)^{20}-5000 \times(1+0,02)^{20}-200 \times$
$3 \times\left(1+\frac{4}{6} \times 0,02\right) \times \frac{(1+0,02)^{20}-1}{0,02}=275084,1$

Annuities

Exercise 2 cont'd

$$
\begin{gathered}
F V=200000 \times(1+0,02)^{20}-5000 \times(1+0,02)^{20}-200 \times \\
3 \times\left(1+\frac{4}{6} \times 0,02\right) \times \frac{(1+0,02)^{20}-1}{0,02}=275084,1 \\
F V=\left(1+P V \times(1+r)^{n}\right. \\
r=\left(\frac{F V}{P V}\right)^{\frac{1}{n}-1} \\
r=\left(\frac{275084,1}{200000}\right)^{\frac{1}{5}}-1=6,58 \%
\end{gathered}
$$

Annuities

Exercise 3

You put 15000 \$ into a bank account at the end of each quarter at $\mathbf{3 , 7 \%}$ p.a. for 10 years. Interest is calculated 2 times per year. Tax rate is $\mathbf{1 5 \%}$ and it's calculated at the end of investment's period $S_{\text {tax }}$-?

Annuities

Exercise 3 cont'd

Inputs:
$a=15000 \quad P P=3 m(a f t e r) \quad \mid P=6 m \quad r=3,7 \%$ p.a.
T=10 yrs tax=15\% TP=10yrs
$S_{\text {tax }}$?

$$
S=a \times m \times\left(1+\frac{m-1}{2 m} \times r\right) \times \frac{(1+r)^{n}}{r}
$$

To calculate the after tax's amount of money we need to deduct from our FV a sum of annuities made in one TP

Annuities

Exercise $\mathbf{3}$ cont'd

$$
S=a \times m \times\left(1+\frac{m-1}{2 m} \times r\right) \times \frac{(1+r)^{n}-1}{r}
$$

To calculate the after tax's amount of money we need to deduct from our FV a sum of annuities made in one TP

$$
\left.s=15000 \times\left\{3 \times\left(1+\frac{3-1}{2 \times 3} \times \frac{0,037}{2}\right) \times \frac{\left(1+\frac{0,037}{2}\right)^{20}-1}{\frac{0.037}{2}}-40\right] \times 0,85+40\right\}
$$

Annuities

Exercise 4
$a=40000 \quad P P=3 \mathrm{~m}$ ahead $\quad \mid \mathrm{P}=1 \mathrm{~m} \quad \mathrm{TP}=1 \mathrm{~m}$
r=3,9\% p.a. tax=15\% T=10years
$S_{\text {tax }}-$?
$\mathrm{PP}>\left\lvert\, \mathrm{P} \rightarrow S=a \times q \times \frac{q^{n}-1}{q-1}\right.$
Now we just need to define q

Annuities

Exercise 4 cont'd

$$
S=a \times q \times \frac{q^{n}-1}{q-1}
$$

As we know tax is calculated from interest How we can find it:

$$
I=P V \times\left[(1+r)^{n}-1\right]
$$

But in our case $n=1$, so we can rearrange the formula and find our interest after tax:

$$
I=P V \times r \times(1-\operatorname{tax})
$$

Since, our $q=\left(1+\frac{0,039}{12} \times 0,85\right)^{3}$

Annuities

Exercise 5 cont'd

$$
S=a \times q \times \frac{q^{n}-1}{q-1}
$$

$S=40000 \times\left(1+\frac{0,039}{12} \times 0,85\right)^{3} \times \frac{\left[\left(1+\frac{0,039}{12} \times 0,85\right)^{3}\right]^{4 \times 10}-1}{\left(1+\frac{0,039}{12} \times 0,85\right)^{3}-1}$

Annuities

Exercise 5 r=3,9\% p.a.
 $S_{\text {tax }}-$?
 $\mathrm{PP}>\left\lvert\, \mathrm{P} \rightarrow S=a \times q \times \frac{q^{n}-1}{q-1}\right.$

$a=40000 \quad P P=3 m$ ahead $\quad \mid P=1 m \quad T P=1$ year tax=15\% $\quad T=10$ years

Annuities

Exercise 5 cont'd

$$
\begin{gathered}
S=a \times q \times \frac{q^{n}-1}{q-1} \\
S=40000 \times\left[\left(\left(1+\frac{0,039}{12}\right)^{3} \times \frac{\left(1+\frac{0,039}{12}\right)^{3 \times 4}-1}{\left(1+\frac{0,039}{12}\right)^{3}-1}-4\right) \times 0,85+4\right] \\
\times \frac{\left.\left(\left(1+\frac{0,039}{12}\right)^{12}-1\right) \times 0,85+1\right)^{10}-1}{\left.\left(1+\frac{0,039}{12}\right)^{12}-1\right) \times 0,85}
\end{gathered}
$$

Annuities

Exercise 6

$a=500$
$r=4,7 \%$
p.a.

$$
\begin{array}{cl}
\mathrm{PP}=4 \mathrm{~m} \text { ahead } & \mathrm{IP}=2 \mathrm{~m} \quad \mathrm{TP}=1 \text { year } \\
\text { tax }=10 \% & \mathrm{~T}=7 \text { years }
\end{array}
$$

$\mathrm{S}_{\text {tax }}$ for continuous interest -?

$$
q=e^{f t}
$$

$f=\ln \left(1+\frac{0,047}{6}\right)^{2}=0,0156-$ interest intensity for 4 months

Annuities

Exercise 6

$a=500$
r=4,7\% p.a.

$\mathrm{PP}=4 \mathrm{~m}$ ahead $\quad \mathrm{PP}=2 \mathrm{~m} \quad \mathrm{TP}=1$ year

tax=10\% $\quad T=7$ years

$$
q=e^{f t}
$$

$f=\ln \left(1+\frac{0,047}{6}\right)^{2}=0,0156-$ interest intensity for 4 months
$S=500 \times\left[\left(\frac{e^{0,0156 \times 3}-1}{e^{0,0156}-1}-3\right) \times 0,9+3\right] \times \frac{\left(\left(e^{0,0156 \times 3}-1\right) \times 0,9+1\right)^{7}}{\left(e^{0,0156 \times 3}-1\right) \times 0,9}$

