

Decision making

Lecture 3

Agenda

The decision making process

Define decision and decision-making process.

The manager as decision maker

- (full) rationality vs. bounded rationality
- decision making styles
- Structuring the decision making problem

F(2)

Methods of decision making

- One-time decisions
- Sequential decisions

Where are we?

muni Econ

Decisions in the management functions

Planning

- What are the organization's long-term objectives?
- What strategies will best achieve those objectives?
- What should the organization's short-term objectives be?
- How difficult should individual goals be?

Organizing

- How many employees should I have report directly to me?
- How much centralization should there be in the organization?
- How should jobs be designed?
- When should the organization implement a different structure?

Leading

- How do I handle employees who appear to be low in motivation?
- What is the most effective leadership style in a given situation?
- How will a specific change affect worker productivity?
- When is the right time to stimulate conflict?

Controlling

- What activities in the organization need to be controlled?
- How should those activities be controlled?
- When is a performance deviation significant?
- What type of management information system should the organization have?

Decision + decision making process

Decision defined

making a choice from two or more alternatives (= alternative solutions to a problem).
"problem" = discrepancy between an existing and desired state of affairs.

Decision making process

The rational decision making

(Full) Rationality

- Managers make consistent, valuemaximizing choices with specified constraints.
- □Assumptions are that decision makers:
 - > Are perfectly rational, fully objective, and logical.
 - Have carefully defined the problem and identified all viable alternatives.
 - Have a clear and specific goal
 - Will select the alternative that maximizes outcomes in the organization's interests rather than in their personal interests.

Bounded rationality

- Managers make decisions rationally, but are limited (bounded) by their ability to process information.
- □Assumptions are that decision makers:
 - Will not seek out or have knowledge of all alternatives
 - Will <u>satisfice</u> choose the first alternative encountered that satisfactorily solves the problem — rather than maximize the outcome of their decision by considering all alternatives and choosing the best.

□Influence on decision making

Escalation of commitment: an increased commitment to a previous decision despite evidence that it may have been wrong.

Intuitive decision making

making decisions based on experience, feelings, and accumulated judgment.

Decision making styles

Dimensions

receptive to suggestions.

□Ways of thinking High Rational, orderly, and consistent Intuitive, creative, and unique □ Tolerance for ambiguity Analytic Conceptual Low tolerance: require consistency and order for Ambiguity Tolerance High tolerance: multiple thoughts simultaneously □ Types of Decision Makers Directive Use minimal information and consider few alternatives. Directive **Behavioral** Analytic Make careful decisions in unique situations. Conceptual Low Maintain a broad outlook and consider many Way of alternatives in making decisions. Thinking Behavioral Avoid conflict by working well with others and being Rational Intuitive

MUNI Econ

Structured vs. unstructured problems

Structured

Structured Problems

Involve goals that clear.

□ Are familiar (have occurred before).

Are easily and completely defined information about the problem is available and complete.

Programmed Decision

□ A repetitive decision that can be handled by a routine approach.

□Policy

A general guideline for making a decision about a structured problem.

Procedure

A series of interrelated steps that a manager can use to respond (applying a policy) to a structured problem.

Rule

An explicit statement that limits what a manager or employee can or cannot do.

Unstructured

Unstructured Problems

- Problems that are new or unusual and for which information is ambiguous or incomplete.
- Problems that will require custom-made solutions.

Nonprogrammed Decisions

- Decisions that are unique and nonrecurring.
- Decisions that generate unique responses.

Structuring a problem

Characteristics of a DM problem

1. List of alternatives = possible decisions

- a. available
- b. mutually exclusive
- c. collectively exhaustive

2. States of nature = future conditions of events

- a. possible to happen
- b. mutually exclusive
- c. collectively exhaustive

3. Degree of certainty = the level of

knowledge of decision maker about the states of nature.

- **4. Decision criterion =** a factor relevant in a decision.
- **5. Payoffs =** the value of decision criterion associated with each decision and state of nature.

Decision making matrix

muni Econ

Decision making conditions

Certainty

□ A situation in which a manager can make an accurate decision because the outcome of every alternative choice is known.

□Risk

□ A situation in which the manager is able to estimate the likelihood (probability) of outcomes that result from the choice of particular alternatives.

Uncertainty

□ Limited information prevents estimation of outcome probabilities for alternatives associated with the problem and may force managers to rely on intuition, hunches, and "gut feelings".

Attitude towards risk

Methods of decision making

Uncertainty

- $\square \qquad \frac{Maximin}{Maximin} = \text{conservative strategy}$
- selecting the best alternative of the worst payoffs;
- pessimistic view because the decision maker must assume that the worst will occur;
- it may be viewed as the protection against the worst, even though you neither expect them nor want them to occur.
- □ **<u>Maximax</u>** = optimistic strategy
- selecting the best alternative of the highest payoffs;
- you choose the alternative with the best possible payoff.
- **Principle of Insufficient Reason**
- under uncertainty, there is now reason to treat the states of nature differently ⇒ no reason to focus on high or low payoffs;
- alternative states of nature are all equally likely;
- selecting the highest row average;

Payoffs	S ₁	S ₂	S ₂ S ₃		Maximin	Maximax	
Ц Ц					Ma	Ma	
A ₁	50	40	30	35	<mark>30</mark>	50	
A ₂	25	-30	65	40	-30	<mark>65</mark>	
A_3	45	15	-10	55	-10	55	
•							

Payoffs	S ₁	S ₂	S ₃	S ₄	nsufficient reason (row averages)	
	0,25	0,25	0,25	0,25	Insuf rea (
A ₁	50	40	30	35	38,75	
A_2	25	-30	65	40	25,00	
A_3	45	15	-10	55	26,25	

MUNI Econ

Methods of decision making

Risk

Expected (monetary) value

- takes into account the weighted average payoff for each alternative
 k EMV_i = □ P_j * V_{ij}
 i = 0
- selecting maximum average payoff;

Payoffs	S ₁	S ₂	S ₃	S ₄	Expected payoff	
	0,20	0,50	0,15	0,15	щ	
A_1	50	40	30	35	39,75	50 * 0,2 + 40 * 0,5 + 30 * 0,15 + 35 * 0,15
A_2	25	-30	65	40	5,75	25 * 0,2 -30 * 0,5 + 65 * 0,15 + 40 * 0,15
A ₃	45	15	-10	55	23,25	$45 * 0,\! 2 + 15 * 0,\! 5 - 10 * 0,\! 15 + 55 * 0,\! 15$

Expected value of perfect information

- represents an upper bound on the amount of money a decision maker would be justified in spending to obtain perfect information.

$\Box EPVI = EPC - EMV$

□ That leads to decision under certainty...

Payoffs	S ₁	S ₂	S ₃	S_4	Expected payoff under certainty (EPC)		EMV	EVPI
	0,20	0,50	0,15	0,15				
A ₁	50	40	30	35		50*0,2+40*0,5+		
A ₂	25	-30	65	40	48	65*0,15+55*0,1	39,75	8,25
A ₃	45	15	-10	55		5		

Sequential decisions

Oriented chart

 Decision trees can be used instead of decision matrix in order to structure the decision problems.
 Decision trees are used as a method of portraying these sequential decisions.

□ decision fork \rightarrow alternatives □ chance fork \rightarrow states of nature

FCON

Complex sequential decision (example)

Must know - keywords

decision
decision-making process
problem
decision criteria
state of nature
payoff
risk
uncertainty
decision style

(bounded) rationality
satisficing
attitude towards risk
mini-max
maxi-max
expected value
decision tree
decision matrix