Plánování

Plánování času a zdrojů

- JAK, ne CO
- definuje v jakých termínech a časových sledech budou práce na projektu probíhat
- aktivity založené na WBS nebo logickém rámci

Plánování času a zdrojů

Hlavní nástroje:

- Ganttův diagram
 - + přehlednost
 - + jednoduchost konstrukce
 - neukazují přehledně závislosti mezi úkoly (činnostmi)
 - změna v délce jedné činnosti se většinou (automaticky) nepromítne do zbývající části
- CPM critical path method kritická cesta
 - + souhrnně prezentuje souvislosti
 - + umožňuje hledat alternativy
 - + definuje kritickou cestu
 - složitost
 - nepřehlednost

Odhadování

- Window method ©
- Top-down, Bottom-up
- Groupe estimation technique (Delphi, Crawford's slip etc.)
- Expert guess (SME)
- Comparative or analogous estimation
- PERT uses Three-point estimating
- Planning poker

Odhadování - Three-point estimating

 dobu trvání stanovují na základě optimistických, realistických a pesimistických variant odhadů trvání činností

$$T = \frac{t_O + 4t_M + t_P}{6}$$

Critical Path Method

- An algorithm for scheduling a set of project activities
- Why we need it? It provides us with:
 - Project finish date
 - Activities that can float in the schedule
 - Activities that cannot float RISK

Critical Path Method - Inputs

What do we need to use CPM?

- Network diagram including relations among activities
- Activities duration estimates
- Demands for resources for each activity
- Key dates

CPM – how to describe a nod (an activity)

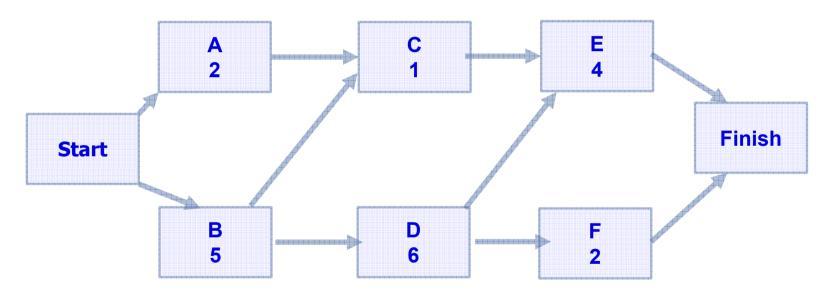
ES - early start - the earliest date a task can start

EF - early finish - the earliest date a task can be completed

ES	Total float	EF
Duration (days)	Activity	
LS	Free float	LF

LS – late start - the latest date a task can start without delaying the project finish date

LF – **late finish** - the latest date a task can finish without delaying the project finish date

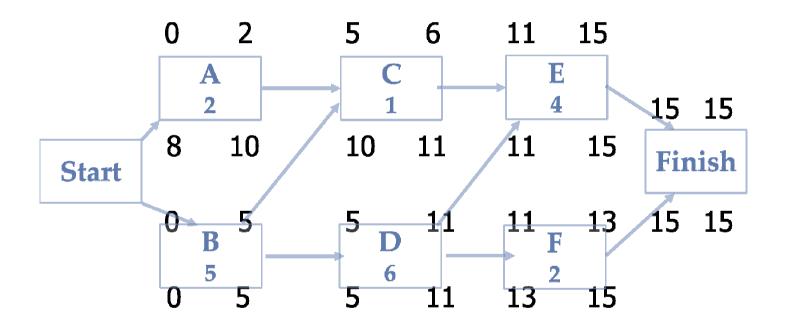


Critical Path Method

How to calculte the project's finish date?

- Forward pass calculation (Early Start and Early Finish) –
 searching for a maximum of early finish of immediate
 predessesors = early start of an activity
- Backward pass calculation (Late Start and Late finish) –
 searching for a minimum of early start of immediate successors =
 MUNI
 Late finish of an activity

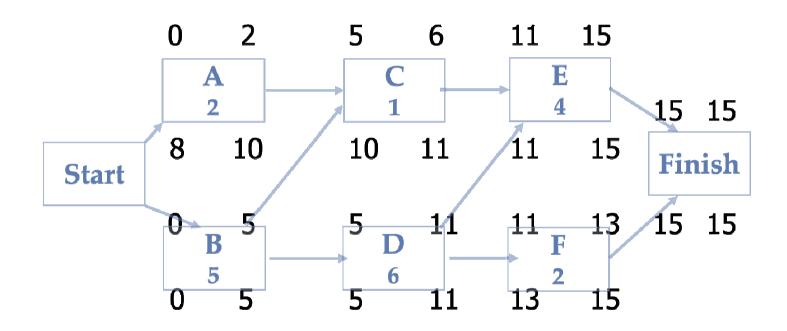
CPM example


<u>Forward pass</u> (early start+duration= early finish) – searching for a maximum of early finish of immediate predessesors = early start of an activity

<u>Backward pass</u> – searching for a minimun of early start of immediate successors = late finish of an activity

CPM example

Check www.lucidchart.com



Why are we doing this? ©

- The purpose of backward pass is to find a float
 - Float (slack) the amount of time an activity can be delayed or lenghtened
 - ➤ **Total float** the amount of time an activity can be delayed without extending the overal project's completion time
 - Free float the amount of time an activity can be delayed without delaying the early start date of its subsequent tasks

Total Float: CPM example

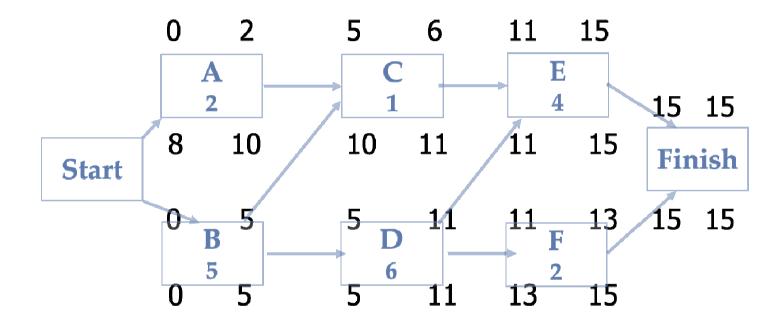
What is the total float for activity A in our example?

Total float – the amount of time an activity can be delayed without extending the overal project 's completion time

Total Float

Total float – the amount of time an activity can be delayed without extending the overal project's completion time

TF=LF-EF


TF=LF-ES-D

TF=LS-ES

ES	Total EF float	
Duration (days)	Activity	
LS	Free float LF	

Free Float: CPM example

What is the free float for activity A in our example? What about activity C and D?

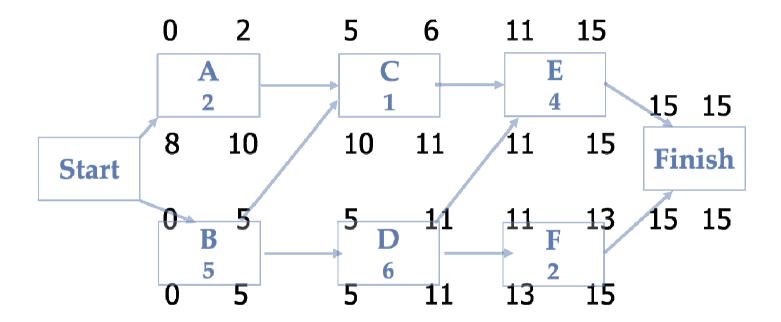
Free float - the amount of time an activity can be delayed without delaying the early start date of its subsequent tasks

Critical Path Method

– Why floats are important in CPM?

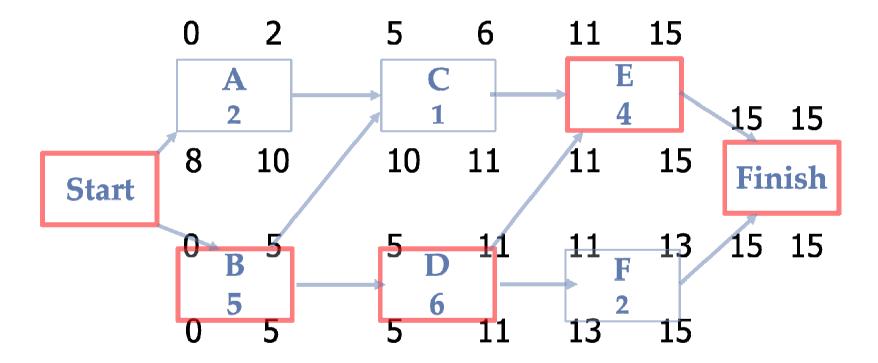
- Critical activities have the least amount of flow
- Floats determine the critical path

If an activity has a TF=0, what does it mean?



Critical Path

- Is made of activities that cannot be deayed without delaying the whole project
- Items on critical path have zero float
- Path with longest duration
- Can be more than one



Can you find the critical path?

Yes, you can@

Plánování času a zdrojů

Optimalizace plánu

Fast-tracking

Crashing

Konflikty zdrojů

Resource Leveling

Resource Smoothing

PROJECT MANAGEMENT 101

WANNA MEET YOUR PLAN? FOLLOW THIS ONE AND ONLY RULE!

Děkujeme! Máte otázky?

Sylva Žáková Talpová talpova@econ.muni.cz

Jan Žák erwin@email.cz