
Exercise 9 

Use the data in RENTAL.dta for this exercise. The data on rental prices and other variables for 
college towns are for the years 1980 and 1990. The idea is to see whether a stronger presence 
of students affects rental rates. The unobserved effects model is 

log(𝑟𝑒𝑛𝑡𝑖𝑡) = 𝛽0 + 𝛿0𝑦90𝑡 + 𝛽1 log(𝑝𝑜𝑝𝑖𝑡) + 𝛽2 log(𝑎𝑣𝑔𝑖𝑛𝑐𝑖𝑡) + 𝛽3𝑝𝑐𝑡𝑠𝑡𝑢𝑖𝑡 + 𝑎𝑖 + 𝑢𝑖𝑡 
where pop is city population, avginc is average income, and pctstu is student population as a 
percentage of city population (during the school year). 
(i) Estimate the equation by pooled OLS and report the results in standard form. What do you 

make of the estimate on the 1990 dummy variable? What do you get for 𝛽3  ̂pctstu? 
ols lrent const y90 lpop lavginc pctstu 

 
(ii) Are the standard errors you report in part (i) valid? Explain. 

The standard errors from part (i) are not valid, unless we think ai does not really 

appear in 

the equation. If ai is in the error term, the errors across the two time periods for 

each city are positively correlated, and this invalidates the usual OLS standard 

errors and t statistics. 

(iii) Now, difference the equation and estimate by OLS. Compare your estimate of 𝛽𝑝𝑐𝑡𝑠𝑢 with 

that from part (i). Does the relative size of the student population appear to affect rental 
prices? 
diff lrent 
diff lpop 
diff lavginc 
diff pctstu 
ols d_lrent const d_lpop d_lavginc d_pctstu 



 
 
(iv) Estimate the model by fixed effects to verify that you get identical estimates and 
standard errors to those in part (iii). 

panel lrent const y90 lpop lavginc pctstu  --fixed-effects 

 

The coefficient on y90t is identical to the intercept from the first difference 

estimation, and the slope coefficients and standard errors are identical to first 

differencing. We do not report an R-squared because none is comparable to the 

R-squared obtained from first differencing. The constant term can be ignored 

because some packages display it. it is usually the average of the estimated 

intercepts for the cross-sectional units, and it is not especially informative. 



 

 

(2) Suppose that, for one semester, you can collect the following data on a random sample 
of college juniors and seniors for each class taken: a standardized final exam score, percentage 

of lectures attended, a dummy variable indicating whether the class is within the student’s 

major, cumulative grade point average prior to the start of the semester, and SAT score 
(i) Why would you classify this data set as a cluster sample? Roughly, how many 

observations would you expect for the typical student? 

For each student we have several measures of performance, typically three 

or four, the number of classes taken by a student that have final exams. 

When we specify an equation for each standardized final exam score, the 

errors in the different equations for the same student are certain to be 

correlated: students who have more (unobserved) ability tend to do better 

on all tests. 

 
(ii) Write a model that explains final exam performance in terms of attendance and the 

other characteristics. Use s to subscript student and c to subscript class. Which 
variables do not change within a student? 

An unobserved effects model is 

 
where as is the unobserved student effect. Because SAT score and cumulative 

GPA depend only on the student, and not on the particular class he/she is 

taking, these do not have a c subscript. The attendance rates do generally vary 

across class, as does the indicator for whether a class is in the student’s major. 

The term 𝜽𝒄 denotes different intercepts for different classes. Unlike with a 

panel data set, where time is the natural ordering of the data within each cross-

sectional unit, and the aggregate time effects apply to all units, intercepts for 

the different classes may not be needed. If all students took the same set of 

classes then this is similar to a panel data set, and we would want to put in 

different class intercepts. But with students taking different courses, the class 

we label as “1” for student A need have nothing to do with class “1” for student 

B. Thus, the different class intercepts based on arbitrarily ordering the classes 

for each student probably are not needed. We can replace 𝜽𝒄 with 𝜷𝟎, an 

intercept constant across classes. 



(iii) If you pool all of the data and use OLS, what are you assuming about unobserved 
student characteristics that affect performance and attendance rate? What roles do 
SAT score and prior GPA play in this regard? 

Maintaining the assumption that the idiosyncratic error, usc, is uncorrelated with 

all 

explanatory variables, we need the unobserved student heterogeneity, as, to be 

uncorrelated with atndrtesc. The inclusion of SAT score and cumulative GPA 

should help in this regard, as as, is the part of ability that is not captured by SATs 

and cumGPAs. In other words, controlling for SATs and cumGPAs could be enough 

to obtain the ceteris paribus effect of class attendance. 

(iv) If you think SAT score and prior GPA do not adequately capture student ability, how 
would you estimate the effect of attendance on final exam performance? 

If SATs and cumGPAs are not sufficient controls for student ability and motivation, 

as is 

correlated with atndrtesc, and this would cause pooled OLS to be biased and 

inconsistent. We could use fixed effects instead. Within each student we 

compute the demeaned data, where, for each student, the means are computed 

across classes. The variables SATs and cumGPAs drop out of the analysis. 


