Exercise 9

Use the data in RENTAL.dta for this exercise. The data on rental prices and other variables for
college towns are for the years 1980 and 1990. The idea is to see whether a stronger presence
of students affects rental rates. The unobserved effects model is

log(rent;;) = Bo + 60¥90; + By log(pop;r) + B2 log(avgine;,) + Bspctstuy, + a; + uy
where pop is city population, avginc is average income, and pctstu is student population as a
percentage of city population (during the school year).
(i) Estimate the equation by pooled OLS and report the results in standard form. What do you
make of the estimate on the 1990 dummy variable? What do you get for E;pctstu?
ols Irent const y90 Ipop lavginc pctstu

log(rent) = —.569 + 262d90 + .041 log(pop) + .571 log(avgine) + .0050 perstu
(.535) (.035) (.023) (.053) (.0010)

n = 128. R = 861.

The positive and very significant coefficient on d90 simply means that. other things in the
equation fixed. nominal rents grew by over 26% over the 10 year period. The coefficient on
petstu means that a one percentage point increase n pcistu increases rent by half a percent (.5%).
The 7 statistic of five shows that, at least based on the usual analysis, petstu 1s very statistically
significant.

(ii) Are the standard errors you report in part (i) valid? Explain.
The standard errors from part (i) are not valid, unless we think «idoes not really

appear in
the equation. If aiis in the error term, the errors across the two time periods for
each city are positively correlated, and this invalidates the usual OLS standard

errors and ¢ statistics.

(i) Now, difference the equation and estimate by OLS. Compare your estimate of S, with
that from part (i). Does the relative size of the student population appear to affect rental
prices?

diff Irent

diff Ipop

diff lavginc

diff pctstu

ols d_Irent const d_lpop d_lavginc d_pctstu



Model 8: Pooled OLS, using €64 observations
Included 64 cross-sectional units
Time-series length = 1

Dependent variable: d lrent

coefficient std. error t-ratio p-value
const 0.385521 0.0368245 10.47 3.66e-015 #**«
d lpop 0.0722458 0.0883435 0.8178 0.4167
d_lavginc 0.309%60 0.0664771 4,663 1.79%e-05 **=*
d_pctstu 0.0112033 0.00413194 2.711 0.0087 kk®
Mean dependent var 0.55%9€77 5.D. dependent var 0.106838
Sum squared resid 0.487362 S5.E. of regression 0.090126
R-squared 0.322262 Adjusted R-squared 0.288375
F(3, €0) §.509917 P-value (F) 0.000031
Log-likelihood €5.27210 Akaike criterion -122.5442
Schwarz criterion -113.9087 Hannan-Quinn -119,1422

Excluding the constant, p-value was highest for variable 25 (d_lpop)

(iv) Estimate the model by fixed effects to verify that you get identical estimates and
standard errors to those in part (iii).

panel Irent const y90 Ipop lavginc pctstu --fixed-effects

Model 9: Fixed-effects, using 128 observations
Included 64 cross-sectional units

Time-series length = 2

Dependent variabkle: lrent

coefficient std. error t-ratio p-value

const 1.40938 1.16725 1.207 0.2320

voo0 0.385521 0.0368245 10.47 3.66e-015 #*w*x

lpop 0.0722458 0.0883435 0.8178 0.4167

lavginc 0.309960 0.0664771 4,663 1.79%e-05 **=%

pctstu 0.0112033 0.00413194 2.711 0.0087 ke
Mean dependent wvar 5.746195 S5.D. dependent wvar 0.332707
Sum squared resid 0.243681 S.E. of regression 0.0863729
LSDV R-squared 0.982666 Within R-squared 0.976531
LSDV F (&7, &0) 50.76776 P-value (F) 5.2%e-36
Log-likelihood 219.2670 Akaike criterion -302.5341
Schwarz criterion -108.5960 Hannan-Quinn -223.7361
rho -1.000000 Durbin-Watson 1.976360

The coefficient on y90:is identical to the intercept from the first difference
estimation, and the slope coefficients and standard errors are identical to first
differencing. We do not report an R-squared because none is comparable to the
R-squared obtained from first differencing. The constant term can be ignored
because some packages display it. it is usually the average of the estimated
intercepts for the cross-sectional units, and it is not especially informative.



(2) Suppose that, for one semester, you can collect the following data on a random sample
of college juniors and seniors for each class taken: a standardized final exam score, percentage

of lectures attended, a dummy variable indicating whether the class is within the student’s

major, cumulative grade point average prior to the start of the semester, and SAT score
(i) Why would you classify this data set as a cluster sample? Roughly, how many
observations would you expect for the typical student?

For each student we have several measures of performance, typically three
or four, the number of classes taken by a student that have final exams.
When we specify an equation for each standardized final exam score, the
errors in the different equations for the same student are certain to be
correlated: students who have more (unobserved) ability tend to do better
on all tests.

(ii) Write a model that explains final exam performance in terms of attendance and the
other characteristics. Use s to subscript student and c to subscript class. Which
variables do not change within a student?

An unobserved effects model is

scores. = G.+ Patndrtes. + hmajors + [BSATs + facumGPA; + ag + .
where asis the unobserved student effect. Because SAT score and cumulative
GPA depend only on the student, and not on the particular class he/she is
taking, these do not have a ¢ subscript. The attendance rates do generally vary
across class, as does the indicator for whether a class is in the student’s major.
The term 6, denotes different intercepts for different classes. Unlike with a
panel data set, where time is the natural ordering of the data within each cross-
sectional unit, and the aggregate time effects apply to all units, intercepts for
the different classes may not be needed. If all students took the same set of
classes then this is similar to a panel data set, and we would want to put in
different class intercepts. But with students taking different courses, the class
we label as “1” for student A need have nothing to do with class “1” for student
B. Thus, the different class intercepts based on arbitrarily ordering the classes
for each student probably are not needed. We can replace 6. with B,, an
intercept constant across classes.



(iii) If you pool all of the data and use OLS, what are you assuming about unobserved
student characteristics that affect performance and attendance rate? What roles do
SAT score and prior GPA play in this regard?

Maintaining the assumption that the idiosyncratic error, us, is uncorrelated with
all

explanatory variables, we need the unobserved student heterogeneity, as, to be
uncorrelated with atndrtesc. The inclusion of SAT score and cumulative GPA
should help in this regard, as as, is the part of ability that is not captured by SA47;
and cumGPAs. In other words, controlling for S47sand cumGPAscould be enough

to obtain the ceteris paribus effect of class attendance.

(iv) If you think SAT score and prior GPA do not adequately capture student ability, how
would you estimate the effect of attendance on final exam performance?

If SATsand cumGPAsare not sufficient controls for student ability and motivation,
asis

correlated with atndrtesc, and this would cause pooled OLS to be biased and
inconsistent. We could use fixed effects instead. Within each student we
compute the demeaned data, where, for each student, the means are computed
across classes. The variables SATs;and cumGPAsdrop out of the analysis.



