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ON PREVIOUS LECTURES 
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► We discussed the specification of a regression equation 
 

► Specification consists of choosing: 
 

1. correct independent variables 

2. correct functional form 

3. correct form of the stochastic error term 



SHORT REVISION 
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► We talked about the choice of correct functional form: 

What are the most common function forms? 
 
► We studied what happens if we omit a relevant variable: 

Does omitting a relevant variable cause a bias in the other  
coefficients? 

 
► We studied what happens if we include an irrelevant  

variable: 

Does including an irrelevant variable cause a bias in the  
other coefficients? 

 
► We defined the four specification criteria that determine if  

a variable belongs to the equation: 

Can you list some of these specification criteria? 



ON TODAY’S LECTURE 
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► We will finish the discussion of the choice of independent  
variables by talking about multicollinearity 

 
► We will start the discussion of the correct form of the error  

term by talking about heteroskedasticity 
 

► For both of these issues, we will learn 

• what is the nature of the problem 

• what are its consequences 

• how it is diagnosed 

• what are the remedies available 



PERFECT MULTICOLLINEARITY 
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► Some explanatory variable is a perfect linear function of  
one or more other explanatory variables 

 
► Violation of one of the classical assumptions 
 
► OLS estimate cannot be found 
 

Intuitively: the estimator cannot distinguish which of the  
explanatory variables causes the change of the dependent  
variable if they move together 

 
Technically: the matrix X'X is singular (not invertible) 

 
► Rare and easy to detect 



EXAMPLES OF PERFECT MULTICOLLINEARITY 

Dummy variable trap 

► Inclusion of dummy variable for each category in the  
model with intercept 

 
► Example: wage equation for sample of individuals who  

have high-school education or higher: 

wagei = β1 + β2high schooli + β3universityi + β4phdi + ei 

 

► Automatically detected by most statistical softwares 
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IMPERFECT MULTICOLLINEARITY 

8 / 24 

► Two or more explanatory variables are highly correlated in  
the particular data set 

 
► OLS estimate can be found, but it may be very imprecise 

 
Intuitively: the estimator can hardly distinguish the effects  of 

the explanatory variables if they are highly correlated 

Technically: the matrix XjX is nearly singular and this 

causes the variance of the estimator   

to be very large 

 
► Usually referred to simply as “multicollinearity” 



CONSEQUENCES OF MULTICOLLINEARITY 
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1. Estimates remain unbiased and consistent (estimated  
coefficients are not affected) 

 

2. Standard errors of coefficients increase 
 

Confidence intervals are very large - estimates are less  
reliable 

 
t-statistics are smaller - variables may become insignificant 



DETECTION OF MULTICOLLINEARITY 
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► Some multicollinearity exists in every equation - the aim is  
to recognize when it causes a severe problem 

 
► Multicollinearity can be signaled by the underlying theory,  

but it is very sample depending 

 
► We judge the severity of multicollinearity based on the  

properties of our sample and on the results we obtain 

 
► One simple method: examine correlation coefficients  

between explanatory variables 
 

if some of them is too high, we may suspect that the  
coefficients of these variables can be affected by  
multicollinearity 



REMEDIES FOR MULTICOLLINEARITY 
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► Drop a redundant variable 

when the variable is not needed to represent the effect on  
the dependent variable 

in case of severe multicollinearity, it makes no statistical  
difference which variable is dropped 

theoretical underpinnings of the model should be the basis 
for such a decision 

 
► Do nothing 

when multicollinearity does not cause insignificant t-scores  
or unreliable estimated coefficients 

deletion of collinear variable can cause specification bias 

 
► Increase the size of the sample 

the confidence intervals are narrower when we have more  
observations 



EXAMPLE 
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► Estimating the demand for gasoline in the U.S.: 

PCONi . . . petroleum consumption in the i-th state 
TAXi . . . the gasoline tax rate in the i-th state 
UHMi . . . urban highway miles within the i-th state 
REGi . . . motor vehicle registrations in the i-the state 



EXAMPLE 
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► We suspect a multicollinearity between urban highway  
miles and motor vehicle registration across states, because  
those states that have a lot of highways might also have a  
lot of motor vehicles. 

 
► Therefore, we might run into multicollinearity problems.  

How do we detect multicollinearity? 

Look at correlation coefficient. It is indeed huge (0.978). 

Look at the coefficients of the two variables. Are they both  
individually significant? UHM is significant, but REG is  
not. This further suggests a presence of multicollinearity. 

► Remedy: try dropping one of the correlated variables. 



EXAMPLE 
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HETEROSKEDASTICITY 
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► Observations of the error term are drawn from a  
distribution that has no longer a constant variance 

Var(εi) = σ2 , i = 1, 2, . . . , n 
i 

Note: constant variance means: Var(εi) = σ2(i = 1, 2, . . . , n) 

 
► Often occurs in data sets in which there is a wide disparity  

between the largest and smallest observed values 
 Smaller values often connected to smaller variance and  

larger values to larger variance (e.g. consumption of  
households based on their income level) 

► One particular form of heteroskedasticity (variance of the  
error term is a function of some observable variable): 

Var(εi) = h(xi) , i = 1, 2, . . . , n 



HETEROSKEDASTICITY 

X 
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Y
 



CONSEQUENCES OF HETEROSKEDASTICITY 
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► Violation of one of the classical assumptions 

 
1. Estimates remain unbiased and consistent (estimated  

coefficients are not affected) 

2. Estimated standard errors of the coefficients are biased 

 heteroskedastic error term causes the dependent variable to  
fluctuate in a way that the OLS estimation procedure  
attributes to the independent variable 

 heteroskedasticity biases t statistics, which leads to  
unreliable hypothesis testing 

 typically, we encounter underestimation of the standard  
errors, so the t scores are incorrectly too high 



DETECTION OF HETEROSKEDASTICITY 
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► There is a battery of tests for heteroskedasticity 

Sometimes, simple visual analysis of residuals is sufficient  to 
detect heteroskedasticity 

 

► We will derive a test for the model 

yi = β0 + β1xi + β2zi + εi 

 
► The test is based on analysis of residuals 

 

► The null hypothesis for the test is no heteroskedasticity: 
E(e2) = σ2 

Therefore, we will analyse the relationship between e2 and  
explanatory variables 



BREUSCH PAGAN TEST FOR HETEROSKEDASTICITY 
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1. Estimate the equation, get the residuals ei 

2. Regress the squared residuals on all explanatory variables: 

e2 = α0 + α1xi + α2zi + νi (2) 
i 

3. Get the R2 of this regression and the sample size n 

 

5. If nR2 is larger than the χ2 critical value, then we have to 
reject H0 of no heteroskedasticity 



WHITE TEST FOR HETEROSKEDASTICITY 
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1. Estimate the equation, get the residuals ei 

2. Regress the squared residuals on all explanatory variables  
and on squares and cross-products of all explanatory  
variables: 

e2 = α0 + α1xi + α2zi + α3x2 + α4z2 + α5xizi + νi (2) 
i i i 

 

 
3. Get the R2 of this regression and the sample size n 

4. Test the joint significance of (2): test statistic 
where k is the number of slope coefficients in (2) 

5. If nR2    is larger than the χ2 critical value, then we have to k 

reject H0 of no heteroskedasticity 



REMEDIES FOR HETEROSKEDASTICITY 
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1. Redefing the variables 

in order to reduce the variance of observations with  
extreme values 

e.g. by taking logarithms or by scaling some variables 

2. Weighted Least Squares (WLS) 

consider the model yi = β0 + β1xi + β2zi + εi 

suppose Var(εi) = σ2z2
i  

it can be proved that if we redefine the model as 

 

it becomes homoskedastic 

3. Heteroskedasticity-corrected robust standard errors 



HETEROSKEDASTICITY-CORRECTED ROBUST ERRORS 
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► The logic behind: 
 Since heteroskedasticity causes problems with the standard  

errors of OLS but not with the coefficients, it makes sense to  
improve the estimation of the standard errors in a way that  
does not alter the estimate of the coefficients (White, 1980) 

 
► Heteroskedasticity-corrected standard errors are typically  

larger than OLS s.e., thus producing lower t scores 

 
► In panel and cross-sectional data with group-level  

variables, the method of clustering the standard errors is  
the desired answer to heteroskedasticity 



SUMMARY 
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► Multicollinearity 

 does not lead to inconsistent estimates, but it makes them  
lose significance 

 if really necessary, can be remedied by dropping or  
transforming variables, or by getting more data 

 

► Heteroskedasticity 

 does not lead to inconsistent estimates, but invalidates  
inference 

 can be simply remedied by the use of (clustered) robust  
standard errors 

 

► Readings: 
 Studenmund Chapter 8 and 10 
 Wooldridge Chapter 8 


