Binary dependent variables

LECTURE 8

03.12.2021

- The linear probability model
- · Nonlinear probability models
 - Probit
 - Logit
- Brief introduction of maximum likelihood estimation
- Interpretation of coefficients in logit and probit models

- So far the dependent variable (Y) has been continuous:
 - Average hourly earnings
 - Birth weight of babies
- What if Y is binary?
 - Y = get into college, or not; X = parental income.
 - Y = person smokes, or not; X = cigarette tax rate, income.
 - Y = mortgage application is accepted, or not; X = race, income, house characteristics, marital status ...

The linear probability model

Multiple regression model with continuous dependent variable

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

- The coefficient β_j can be interpreted as the change in Y associated with a unit change in X_j
- · We will now discuss the case with a binary dependent variable
- · We know that the expected value of a binary variable Y is

$$E[Y] = 1 \cdot Pr(Y = 1) + 0 \cdot Pr(Y = 0) = Pr(Y = 1)$$

In the multiple regression model with a binary dependent variable we have

$$E[Y_i|X_{1i}, \cdots, X_{ki}] = Pr(Y_i = 1|X_{1i}, \cdots, X_{ki})$$

• It is therefore called the linear probability model.

Mortgage applications

Example:

- Most individuals who want to buy a house apply for a mortgage at a bank.
- · Not all mortgage applications are approved.
- What determines whether or not a mortgage application is approved or denied?
- During this lecture we use a subset of the Boston HMDA data (N = 2380)
 - a data set on mortgage applications collected by the Federal Reserve Bank in Boston

Variable	Description	Mean	SD
deny	 = 1if mortgage application is denied anticipated monthly loan payments / monthly income = 1if applicant is black, = 0 if applicant is white 	0.120	0.325
pi_ratio		0.331	0.107
black		0.142	0.350

Mortgage applications

 Does the payment to income ratio affect whether or not a mortgage application is denied?

. regress deny	pi_ratio, ro	bust							
Linear regression					Number of obs =				
					F(1,23	78) =	37.56		
					Prob > F	=	0.0000		
					R-squared	=	0.0397		
					Root MSE	=	.31828		
		Robust							
donu	Coof	Ctd Exm	+	DN +	IDES Conf	Totor			

deny	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	iterval]
pi_ratio	.6035349	.0984826	6.13	0.000	.4104144	.7966555
_cons	0799096	.0319666	-2.50	0.012	1425949	0172243

- The estimated OLS coefficient on the payment to income ratio equals $\widehat{\beta_1} = 0.6$
- The estimated coefficient is significantly different from 0 at a 1% significance level.
- How should we interpret β₁?

The linear probability model

 The conditional expectation equals the probability that Y_i = 1 conditional on X_{1i}, · · · , X_{ki}:

 $E[Y_i|X_{1i}, \cdots, X_{ki}] = Pr(Y_i = 1|X_{1i}, \cdots, X_{ki}) = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$

• The population coefficient β_j equals the change in the probability that $Y_i = 1$ associated with a unit change in X_j .

$$\frac{\partial Pr(Y_i = 1 | X_{1i}, \cdots, X_{ki})}{\partial X_j} = \beta_j$$

In the mortgage application example:

$$\widehat{\beta_1} = 0.6$$

- A change in the payment to income ratio by 1 is estimated to increase the probability that the mortgage application is denied by 0.60.
- A change in the payment to income ratio by 0.10 is estimated to increase the probability that the application is denied by 6% (0.10*0.60*100).

The linear probability model

Assumptions are the same as for general multiple regression model:

- $E(u_i|X_{1i}, X_{2i}, ..., X_{ki}) = 0$
- Big outliers are unlikely
- No perfect multicollinearity.

Advantages of the linear probability model:

- Easy to estimate
- Coefficient estimates are easy to interpret

Disadvantages of the linear probability model

- Predicted probability can be above 1 or below 0!
- Error terms are heteroskedastic

The linear probability model: heteroskedasticity

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

· The variance of a Bernoulli random variable:

$$Var(Y) = Pr(Y = 1) (1 - Pr(Y = 1))$$

· We can use this to find the conditional variance of the error term

$$Var(u_{i}|X_{1i},...,X_{ki}) = Var(Y_{i} - (\beta_{0} + \beta_{1} X_{1i} + ... + \beta_{k} X_{ki})|X_{1ir}, X_{ki})$$

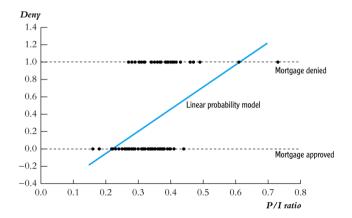
= $Var(Y_{i}|X_{1ir}, X_{ki})$
= $Pr(Y_{i} = 1|X_{1i}, ..., X_{ki}) \times (1 - Pr(Y_{i} = 1|X_{1i}, ..., X_{ki}))$
= $(\beta_{0} + \beta_{1} X_{1i} + ... + \beta_{k} X_{ki}) \times (1 - \beta_{0} - \beta_{1} X_{1i} - ... - \beta_{k} X_{ki})$
 $\neq \sigma_{u}^{2}$

 Solution: Always use heteroskedasticity robust standard errors when estimating a linear probability model!

The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or above 1!

Example: linear probability model, HMDA data **Mortgage denial v. ratio of debt payments to income** (P/I ratio) in a subset of the HMDA data set (*n* = 127)



Nonlinear probability models

- Probabilities cannot be less than 0 or greater than 1
- · To address this problem we will consider nonlinear probability models

 $Pr(Y_i = 1) = G(Z)$ with $Z = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$ and $0 \le G(Z) \le 1$

- · We will consider 2 nonlinear functions
- Probit

$$G(Z) = \Phi(Z)$$

2 Logit

$$G(Z) = \frac{1}{1 + e^{-Z}}$$

Probit

Probit regression models the probability that Y = 1

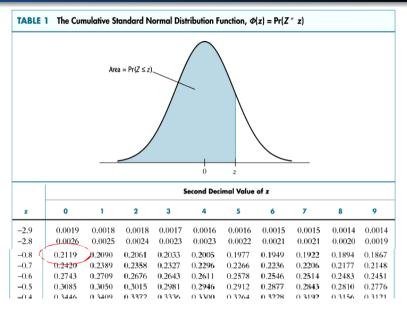
- Using the cumulative standard normal distribution function $\Phi(Z)$
- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since Φ(z) = Pr (Z ≤ z) we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$
- $z = -2 + 3 \cdot 0.4 = -0.8$

•
$$Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8)$$

Probit



 $Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8) = 0.2119$

Logit regression models the probability that Y = 1

· Using the cumulative standard logistic distribution function

$$F(Z) = \frac{1}{1 + e^{-Z}}$$

- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since $F(z) = Pr(Z \le z)$ we have that the predicted probabilities of the probit model are between 0 and 1

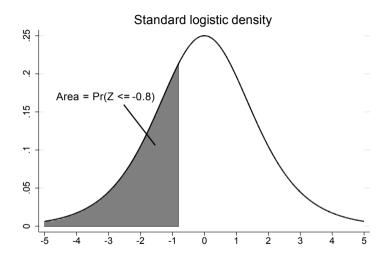
Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$

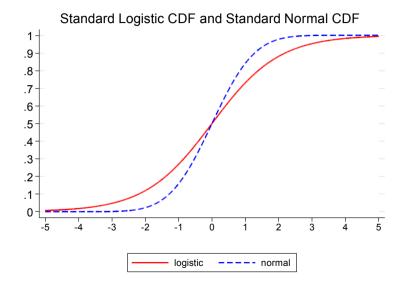
•
$$z = -2 + 3 \cdot 0.4 = -0.8$$

•
$$Pr(Y = 1) = Pr(Z \le -0.8) = F(-0.8)$$

Logit



• $Pr(Y = 1) = Pr(Z \le -0.8) = \frac{1}{1+e^{0.8}} = 0.31$



How to estimate logit and probit models

- In previous lectures we discussed regression models that are nonlinear in the independent variables
 - · these models can be estimated by OLS
- Logit and Probit models are nonlinear in the coefficients $\beta_0, \beta_1, \cdots, \beta_k$
 - · these models can't be estimated by OLS
- The method used to estimate logit and probit models is Maximum Likelihood Estimation (MLE).
- The MLE are the values of (β₀, β₁, · · · , β_k) that best describe the full distribution of the data.

Maximum likelihood estimation

- The **likelihood function** is the joint probability distribution of the data, treated as a function of the unknown coefficients.
- The **maximum likelihood estimator (MLE)** are the values of the coefficients that maximize the likelihood function.
- MLE's are the parameter values "most likely" to have produced the data.

Lets start with a special case: The MLE with no X

- We have *n* i.i.d. observations Y_1, \ldots, Y_n on a binary dependent variable
- Y is a Bernoulli random variable
- There is only 1 unknown parameter to estimate:
 - The probability \boldsymbol{p} that Y = 1,
 - which is also the mean of Y

Maximum likelihood estimation (Optional)

Step 1: write down the likelihood function, the joint probability distribution of the data

Y_i is a Bernoulli random variable we therefore have

 $Pr(Y_i = y) = Pr(Y_i = 1)^{y} \cdot (1 - Pr(Y_i = 1))^{1-y} = p^{y}(1 - p)^{1-y}$

•
$$Pr(Y_i = 1) = p^1(1 - p)^0 = p$$

• $Pr(Y_i = 0) = p^0(1 - p)^1 = 1 - p$

 Y₁,..., Y_n are i.i.d, the joint probability distribution is therefore the product of the individual distributions

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = Pr(Y_1 = y_1) \times \dots \times Pr(Y_n = y_n)$$
$$= [p^{y_1}(1-p)^{1-y_1}] \times \dots \times [p^{y_n}(1-p)^{1-y_n}]$$
$$= p^{(y_1+y_2+\dots+y_n)} (1-p)^{n-(y_1+y_2+\dots+y_n)}$$

Maximum likelihood estimation (Optional)

We have the likelihood function:

$$f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n) = p^{\sum y_i} (1-p)^{n-\sum y_i}$$

Step 2: Maximize the likelihood function w.r.t p

· Easier to maximize the logarithm of the likelihood function

$$ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \left(\sum_{i=1}^n y_i\right) \cdot ln(p) + \left(n - \sum_{i=1}^n y_i\right) ln(1-p)$$

• Since the logarithm is a strictly increasing function, maximizing the likelihood or the log likelihood will give the same estimator.

Maximum likelihood estimation (Optional)

Taking the derivative w.r.t p gives

$$\frac{d}{dp} ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \frac{\sum_{i=1}^n y_i}{p} - \frac{n - \sum_{i=1}^n y_i}{1 - p}$$

Setting to zero and rearranging gives

$$(1 - p) \times \sum_{i=1}^{n} y_{i} = p \times (n - \sum_{i=1}^{n} y_{i})$$
$$\sum_{i=1}^{n} y_{i} - p \sum_{i=1}^{n} y_{i} = n \cdot p - p \sum_{i=1}^{n} y_{i}$$
$$\sum_{i=1}^{n} y_{i} = n \cdot p$$

Solving for p gives the MLE

$$\widehat{p}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{Y}$$

MLE of the probit model (Optional)

Step 1: write down the likelihood function

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = Pr(Y_1 = y_1) \times \dots \times Pr(Y_n = y_n)$$
$$= [p_1^{y_1}(1 - p_1)^{1 - y_1}] \times \dots \times [p_n^{y_n}(1 - p_n)^{1 - y_n}]$$

 so far it is very similar as the case without explanatory variables except that p_i depends on X_{1i},..., X_{ki}

$$p_i = \Phi(X_{1i}, \ldots, X_{ki}) = \Phi(\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki})$$

• substituting for *p_i* gives the likelihood function:

$$\begin{bmatrix} \Phi (\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1})^{y_1} (1 - \Phi (\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1}))^{1-y_1} \end{bmatrix} \times \dots \\ \times \begin{bmatrix} \Phi (\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn})^{y_n} (1 - \Phi (\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn}))^{1-y_n} \end{bmatrix}$$

Also with obtaining the MLE of the probit model it is easier to take the logarithm of the likelihood function

Step 2: Maximize the log likelihood function

$$In [f_{probit} (\beta_0, ..., \beta_k; Y_1, ..., Y_n | X_{1i}, ..., X_{ki}, i = 1, ..., n)]$$

= $\sum_{i=1}^n Y_i ln [\Phi (\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})]$
+ $\sum_{i=1}^n (1 - Y_i) ln [1 - \Phi (\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})]$

w.r.t β_0, \ldots, β_1

 There is no simple formula for the probit MLE, the maximization must be done using numerical algorithm on a computer.

MLE of the logit model (Optional)

Step 1: write down the likelihood function

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = \left[p_1^{y_1}(1-p_1)^{1-y_1}\right] \times \dots \times \left[p_n^{y_n}(1-p_n)^{1-y_n}\right]$$

very similar to the Probit model but with a different function for p_i

$$p_i = 1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki})} \right]$$

Step 2: Maximize the log likelihood function w.r.t $\beta_0, ..., \beta_1$ $ln [f_{logit} (\beta_0, ..., \beta_k; Y_1, ..., Y_n | X_{1i}, ..., X_{ki}, i = 1, ..., n)]$ $= \sum_{i=1}^n Y_i ln \left(1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki})} \right] \right)$ $+ \sum_{i=1}^n (1 - Y_i) ln \left(1 - \left(1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki})} \right] \right) \right)$

 There is no simple formula for the logit MLE, the maximization must be done using numerical algorithm on a computer.

. probit deny p	pi_ratio						
Iteration 0: 1 Iteration 1: 1 Iteration 2: 1 Iteration 3: 10	log likelihood log likelihood	= -832.02 = -831.72	2975 9239				
Probit regressi	lon			Number c			2380
Log likelihood	= -831.79234			LR chi2(Prob > c Pseudo	hi2		0.0000
deny	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
pi_ratio _cons	2.967907 -2.194159	.3591054 .12899	8.26 -17.01			26407 44697	

- The estimated MLE coefficient on the payment to income ratio equals $\widehat{m{\beta_1}}=2.97$
- The estimated coefficient is positive and significantly different from 0 at a 1% significance level.
- How should we interpret β₁?

Probit: mortgage applications

The estimate of β_1 in the probit model CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

- In general the effect on *Y* of a change in *X* is the expected change in *Y* resulting from the change in *X*
- Since Y is binary the expected change in Y is the change in the probability that Y = 1

In the probit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20:

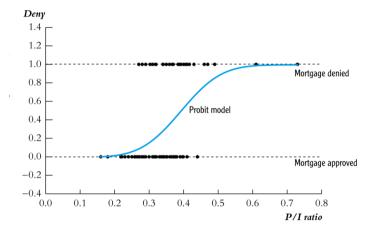
$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.20) - \Phi(-2.19 + 2.97 \cdot 0.10) = 0.0495$$

0.30 to 0.40:

$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.40) - \Phi(-2.19 + 2.97 \cdot 0.30) = 0.0619$$

Probit: mortgage applications

Predicted values in the probit model:



All predicted probabilities are between 0 and 1!

. logit deny pi_ratio

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: 10	log likelihood log likelihood log likelihood	$\begin{array}{rcl} d & = & -830.9 \\ d & = & -830.0 \\ d & = & -830.0 \end{array}$	96071 99497 99403				
Logistic regre: Log likelihood				Number c LR chi2(Prob > c Pseudo	1) hi2		2380 = 83.98 0.0000 0.0482
deny	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
pi_ratio _cons	5.884498 -4.028432	.7336006 .2685763	8.02 -15.00			.44666 .55483	

- The estimated MLE coefficient on the payment to income ratio equals $\widehat{\beta_1}=5.88$
- The estimated coefficient is positive and significantly different from 0 at a 1% significance level.
- How should we interpret $\widehat{\beta_1}$?

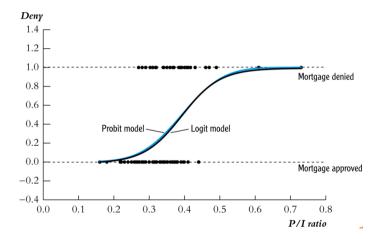
Also in the Logit model:

The estimate of β_1 CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

In the logit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20: $\triangle \widehat{Pr(Y_i = 1)} = \left(\frac{1}{1} + e^{-(-4.03 + 5.88 \cdot 0.20)}\right) - \left(\frac{1}{1} + e^{-(-4.03 + 5.88 \cdot 0.10)}\right) = 0.023$ 0.30 to 0.40: $\triangle \widehat{Pr(Y_i = 1)} = \left(\frac{1}{1} + e^{-(-4.03 + 5.88 \cdot 0.40)}\right) - \left(\frac{1}{1} + e^{-(-4.03 + 5.88 \cdot 0.30)}\right) = 0.063$

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:



Probit & Logit with multiple regressors

- We can easily extend the Logit and Probit regression models, by including additional regressors
- Suppose we want to know whether white and black applications are treated differentially
- Is there a significant difference in the probability of denial between black and white applicants conditional on the payment to income ratio?
- To answer this question we need to include two regressors
 - P/I ratio
 - Black

Probit with multiple regressors

<pre>Probit regression Log likelihood = -797.13604</pre>				Number o LR chi2 Prob > o Pseudo	(2) chi2 =	2380 = 149.90 0.0000 0.0859
deny	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
black pi_ratio _cons	.7081579 2.741637 -2.258738	.0834327 .3595888 .129882	8.49 7.62 -17.39	0.000 0.000 0.000	.5446328 2.036856 -2.513302	5 3.446418

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 0 + 2.74 \cdot 0.3) = 0.0749$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 1 + 2.74 \cdot 0.3) = 0.2327$$

Difference is 15.8%

Logit with multiple regressors

Logistic regres Log likelihood		Number o LR chi2 Prob > o Pseudo	(2) =	2380 152.78 0.0000 0.0876		
deny	Coef.	Std. Err.	z	₽> z	[95% Conf. In	terval]
black pi_ratio _cons	1.272782 5.370362 -4.125558	.1461983 .7283192 .2684161	8.71 7.37 -15.37	0.000 0.000 0.000	.9862385 3.942883 -4.651644	1.559325 6.797841 -3.599472

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13+5.37\cdot0.30)} = 0.075$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13+5.37\cdot 0.30+1.27)} = 0.224$$

Difference is 14.8%

Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted							
regression model	LPM	Probit	Logit				
black	0.177***	0.71***	1.27***				
	(0.025)	(0.083)	(0.15)				
P/I ratio	0.559***	2.74***	5.37***				
	(0.089)	(0.44)	(0.96)				
constant	-0.091***	-2.26***	-4.13***				
	(0.029)	(0.16)	(0.35)				
difference Pr(deny=1) between black and white applicant when P/I ratio=0.3	17.7%	15.8%	14.8%				

Table 1: Mortgage denial regression using the Boston HMDA Data

Threats to internal and external validity

Both for the Linear Probability as for the Probit & Logit models we have to consider threats to

Internal validity

- · Is there omitted variable bias?
- · Is the functional form correct?
 - · Probit model: is assumption of a Normal distribution correct?
 - Logit model: is assumption of a Logistic distribution correct?
- Is there measurement error?
- · Is there sample selection bias?
- · is there a problem of simultaneous causality?

2 External validity

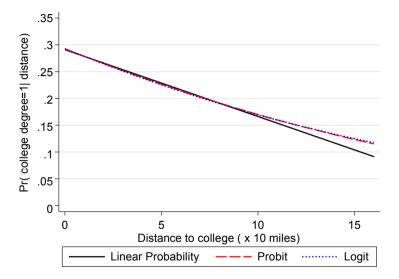
- These data are from Boston in 1990-91.
- · Do you think the results also apply today, where you live?

Distance to college & probability of obtaining a college degree

Linear regressio	n			Nur	mber of obs = F(1, 3794) Prob > F R-squared Root MSE	3796 = 15.77 = 0.0001 = 0.0036 = .44302
college	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
dist _cons	012471 .2910057	.0031403 .0093045	-3.97 31.28	0.000 0.000	0186278 .2727633	0063142 .3092481
Probit regressic Log likelihood =				3796 14.48 0.0001 0.0033		
college	Coef.	Std. Err.	Z	₽> z	[95% Conf. I	nterval]
dist cons	0407873 5464198	.0109263	-3.73		0622025	0193721

Logistic regression Log likelihood = -2204.8006			Number of obs = 379 LR chi2(1) = 14.6 Prob > chi2 = 0.000 Pseudo R2 = 0.003				
college	Coef.	Std. Err.	Z	₽> z	[95% Conf. 3	[nterval]	
dist _cons	0709896 8801555	.0193593 .0476434	-3.67 -18.47	0.000	1089332 9735349		

Distance to college & probability of obtaining a college degree



The 3 different models produce very similar results.

- If Y_i is binary, then $E(Y_i|X_i) = Pr(Y_i = 1|X_i)$
- · Three models:
- linear probability model (linear multiple regression)
- probit (cumulative standard normal distribution)
- 3 logit (cumulative standard logistic distribution)
 - LPM, probit, logit all produce predicted probabilities
 - Effect of ΔX is a change in conditional probability that Y = 1
 - For logit and probit, this depends on the initial X
 - Probit and logit are estimated via maximum likelihood
 - · Coefficients are normally distributed for large n
 - Large-n hypothesis testing, conf. intervals is as usual