Microeconomic

 S Dali Laxton

The Costs of

Production

Chapter 13

Brainstorming costs

You run Ford Motor Company.

- List three different costs you have.
- List three different business decisions that are affected by your costs.

Lecture Today

- What is a production function? What is marginal product? How are they related?
- What are the various costs? How are they related to each other and to output?
- How are costs different in the short run vs. the long run?
- What are "economies of scale"?

Total Revenue, Total Cost, Profit

- We assume that the firm's goal is to maximize profit.

Profit $=$ Total revenue - Total cost

the amount a
firm receives
from the sale
of its output
the market value of the inputs a firm uses in production

Costs: Explicit vs. Implicit
" Explicit costs require an outlay of money, e.g., paying wages to workers.

- Implicit costs do not require a cash outlay, e.g., the opportunity cost of the owner's time.
- Remember one of the Ten Principles:

The cost of something is what you give up to get it.

- This is true whether the costs are implicit or explicit. Both matter for firms' decisions.

Explicit vs. Implicit Costs: An Example

You need $\$ 100,000$ to start your business. The interest rate is 5%.
" Case 1: borrow \$100,000
" explicit cost = $\$ 5000$ interest on loan
" Case 2: use \$40,000 of your savings, borrow the other $\$ 60,000$
" explicit cost = \$3000 (5\%) interest on the loan
" implicit cost = \$2000 (5\%) foregone interest you could have earned on your $\$ 40,000$.

In both cases, total ($\exp +\mathbf{i m p}$) costs are $\$ 5000$.

Economic Profit vs. Accounting Profit

- Accounting profit
= total revenue minus total explicit costs
- Economic profit
= total revenue minus total costs (including explicit and implicit costs)
- Accounting profit ignores implicit costs, so it's higher than economic profit.

active learning 2
 Economic profit vs. accounting profit

The equilibrium rent on office space has just increased by $\$ 500 / m o n t h$.

Determine the effects on accounting profit and economic profit if:
a. you rent your office space
b. you own your office space

Answers

The rent on office space increases \$500/month.
a. You rent your office space.

Explicit costs increase \$500/month.
Accounting profit \& economic profit each fall \$500/month.
b. You own your office space.

Explicit costs do not change, so accounting profit does not change. Implicit costs increase \$500/month (opp. cost of using your space instead of renting it) so economic profit falls by $\$ 500 /$ month.

The Production Function

- A production function shows the relationship between the quantity of inputs used to produce a good and the quantity of output of that good.
- It can be represented by a table, equation, or graph.
" Example 1:
" Farmer Slavko grows wheat.
- He has 5 acres of land.
- He can hire as many workers as he wants.

eXAMPLE 1: Farmer Slavko's Production Function

\boldsymbol{L} (no. of workers)	\boldsymbol{Q} (bushels of wheat)
0	0
1	1000
2	1800
3	2400
4	2800
5	3000

Marginal Product

" If Slavko hires one more worker, his output rises by the marginal product of labor.
" The marginal product of any input is the increase in output arising from an additional unit of that input, holding all other inputs constant.

- Notation:
Δ (delta) = "change in..."
Examples:
$\Delta Q=$ change in output, $\Delta L=$ change in labor
- Marginal product of labor $(M P L)=\frac{\Delta Q}{\Delta L}$

EXAMPLE 1: Total \& Marginal Product

MPL

0
1000
1800
2400
2800
3000 $\begin{cases}\Delta Q=1000 & 1000 \\ \Delta Q=800 & 800 \\ \Delta Q=600 & 600 \\ \Delta Q=400 & 400 \\ \Delta Q=200 & 200\end{cases}$

EXAMPLE 1: MPL = Slope of Prod Function

Why MPL Is Important

" Recall one of the Ten Principles: Rational people think at the margin.
" When Farmer Slavko hires an extra worker,
" his costs rise by the wage he pays the worker
" his output rises by MPL
" Comparing them helps Slavko decide whether he should hire the worker.

Why MPL Diminishes

- Farmer Slavko's output rises by a smaller and smaller amount for each additional worker. Why?
* As he adds workers, the average worker has less land to work with and will be less productive.
" In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.).
" Diminishing marginal product: The marginal product of an input declines as the quantity of the input increases (other things equal).

eXAMPLE 1: Farmer Slavko's Costs

" Farmer must pay \$1000 per month for the land, regardless of how much wheat he grows.
" The market wage for a farm worker is $\$ 2000$ per month.

- So Slavko's costs are related to how much wheat he produces....

EXAMPLE 1: Farmer Slavko's Costs

$\begin{array}{ccccc}\boldsymbol{L} & \mathbf{Q} & \begin{array}{c}\text { Cost of }\end{array} & \begin{array}{c}\text { Cost of }\end{array} & \begin{array}{c}\text { Total } \\ \text { (no. of } \\ \text { workers) }\end{array} \\ \text { (bushels wheat) }\end{array} \quad \begin{gathered}\text { land } \\ \text { labor }\end{gathered} \quad \begin{gathered}\text { cost }\end{gathered}$

0	0	$\$ 1,000$	$\$ 0$	$\$ 1,000$
1	1000	$\$ 1,000$	$\$ 2,000$	$\$ 3,000$
2	1800	$\$ 1,000$	$\$ 4,000$	$\$ 5,000$
3	2400	$\$ 1,000$	$\$ 6,000$	$\$ 7,000$
4	2800	$\$ 1,000$	$\$ 8,000$	$\$ 9,000$
5	3000	$\$ 1,000$	$\$ 10,000$	$\$ 11,000$

EXAMPLE 1: Slavko's Total Cost Curve

Marginal Cost

" Marginal Cost (MC) is the increase in Total Cost from producing one more unit:

$$
M C=\frac{\Delta T C}{\Delta Q}
$$

EXAMPLE 1: Total and Marginal Cost

\boldsymbol{Q}	(bushels
of wheat)	Total
Cost	

Marginal
Cost (MC)

EXAMPLE 1: The Marginal Cost Curve

(bushels of wheat)	TC	MC		\$12 $\$ 10$			*
0	\$1,000		碞	\$8			
1000	\$3,000	\$2.00	-	\$6			
1800	\$5,000	\$2.50	$\begin{aligned} & \text { Cㅡㅡㅇ } \\ & \text { 읃 } \end{aligned}$	\$4			
		\$3.33				-	
2400	\$7,000			\$2			
		\$5.00					
2800	\$9,000			\$0			
3000	\$11,000	\$10.00		0	1,000	2,000	3,000
3000	\$11,000						

Why MC Is Important

- Farmer Slavko is rational and wants to maximize his profit. To increase profit, should he produce more or less wheat?
" To find the answer, he needs to "think at the margin."
- If the cost of an additional wheat ($M C$) is less than the revenue he would get from selling it, then Alejandro's profits rise if he produces more.

Fixed and Variable Costs

- Fixed costs (FC) do not vary with the quantity of output produced.
- For Farmer Slavko, FC = \$1000 for his land
- Other examples: cost of equipment, loan payments, rent
" Variable costs (VC) vary with the quantity produced.
" For Farmer Slavko, VC = wages he pays workers
- Other example: cost of materials
- Total cost (TC) = FC + VC

EXAMPLE 2

" Our second example is more general, applies to any type of firm producing any good with any types of inputs.

EXAMPLE 2: Costs

\boldsymbol{Q}	$F C$	$V C$	$T C$
0	$\$ 100$	$\$ 0$	$\$ 100$
1	100	70	170
2	100	120	220
3	100	160	260
4	100	210	310
5	100	280	380
6	100	380	480
7	100	520	620

EXAMPLE 2: Marginal Cost

\boldsymbol{Q}	TC	$M C$
0	$\$ 100$	$\$ 70$
1	170	50
2	220	40
3	260	40
4	310	50
5	380	70
6	480	100
7	620	140

EXAMPLE 2: Average Fixed Cost

\boldsymbol{Q}	$F C$	$A F C$
0	$\$ 100$	n / a
1	100	$\$ 100$
2	100	50
3	100	33.33
4	100	25
5	100	20
6	100	16.67
7	100	14.29

EXAMPLE 2: Average Variable Cost

\boldsymbol{Q}	$V C$	$A V C$
0	$\$ 0$	n / a
1	70	$\$ 70$
2	120	60
3	160	53.33
4	210	52.50
5	280	56.00
6	380	63.33
7	520	74.29

EXAMPLE 2: Average Total Cost

\boldsymbol{Q}	TC	ATC	AFC	AVC
0	$\$ 100$	n / a	n / a	n / a
1	170	$\$ 170$	$\$ 100$	$\$ 70$
2	220	110	50	60
3	260	86.67	33.33	53.33
4	310	77.50	25	52.50
5	380	76	20	56.00
6	480	80	16.67	63.33
7	620	88.57	14.29	74.29

Average total cost (ATC)/cost per unit/unit cost equals total cost divided by the quantity of output:

$$
\begin{aligned}
& \quad A T C=T C / Q \\
& \text { Also, }
\end{aligned}
$$

$$
A T C=A F C+A V C
$$

EXAMPLE 2: Average Total Cost

\boldsymbol{Q}	$T C$	$A T C$
0	$\$ 100$	n $/ \mathrm{a}$
1	170	$\$ 170$
2	220	110
3	260	86.67
4	310	77.50
5	380	76
6	480	80
7	620	88.57

EXAMPLE 2: The Various Cost Curves Together

$$
\begin{aligned}
& \rightarrow A T C \\
& \rightarrow A V C \\
& \rightarrow A F C \\
& \rightarrow M C
\end{aligned}
$$

Calculating costs

Fill in the blank spaces of this table.

\boldsymbol{Q}	VC	TC	AFC	AVC	ATC	MC
0		$\$ 50$	n / a	n / a	n / a	$\$ 10$
1	10			$\$ 10$	$\$ 60.00$	
2	30	80				30
3			16.67	20	36.67	
4	100	150	12.50		37.50	
5	150			30		60
6	210	260	8.33	35	43.33	

Answers

First, deduce $F C=\$ 50$ and use $F C+V C=T C$.

\boldsymbol{Q}	VC	TC	AFC	AVC	ATC	MC
0	$\$ 0$	$\$ 50$	n / a	n / a	n / a	
	$\$ 10$					
1	10	60	$\$ 50.00$	$\$ 10$	$\$ 60.00$	$\$ 0$
2	30	80	25.00	15	40.00	20
3	60	110	16.67	20	36.67	30
4	100	150	12.50	25	37.50	40
5	150	200	10.00	30	40.00	50
6	210	260	8.33	35	43.33	60

EXAMPLE 2: Why ATC Is Usually U-Shaped

As \boldsymbol{Q} rises:
Initially,
falling AFC pulls ATC down.

Eventually, rising AVC pulls ATC up.

Efficient scale:
The quantity that minimizes ATC.

EXAMPLE 2: ATC and MC

When MC < ATC, ATC is falling.

When MC > ATC, $A T C$ is rising.

The MC curve crosses the ATC curve at the ATC curve's minimum.

Costs in the Short Run \& Long Run

- Short run:

Some inputs are fixed (e.g., factories, land). The costs of these inputs are FC.

- Long run:

All inputs are variable
(e.g., firms can build more factories or sell existing ones).

- In the long run, $A T C$ at any \mathbf{Q} is cost per unit using the most efficient mix of inputs for that \boldsymbol{Q} (e.g., the factory size with the lowest ATC).

EXAMPLE 3: LRATC with 3 factory sizes

Firm can choose from three factory Avg sizes: S, M, L.

Each size has its own SRATC curve.

The firm can change to a different factory size in the long
 run, but not in the short run.

EXAMPLE 3: LRATC with 3 factory sizes

To produce less than $\boldsymbol{Q}_{\boldsymbol{A}}$, firm will Avg than $\boldsymbol{Q}_{\mathrm{B}}$, firm will choose size \mathbf{L} in the long run.

A Typical LRATC Curve

In the real world, factories come in many sizes, each with its own SRATC curve.

So a typical LRATC curve looks like this:

How ATC Changes as the Scale of Production Changes

Economies of scale: ATC falls as \boldsymbol{Q} increases.

Constant returns to scale: ATC stays the same as \boldsymbol{Q} increases.

Diseconomies of scale: ATC rises
 as \mathbf{Q} increases.

> How ATC Changes as the Scale of Production Changes

- Economies of scale occur when increasing production allows greater specialization: workers are more efficient when focusing on a narrow task.
- More common when \boldsymbol{Q} is low.
- Diseconomies of scale are due to coordination problems in large organizations.
E.g., management becomes stretched, can't control costs.
- More common when \mathbf{Q} is high.

CONCLUSION

- Costs are critically important to many business decisions including production, pricing, and hiring.
- This chapter has introduced the various cost concepts.
- The following chapters will show how firms use these concepts to maximize profits in various market structures.

Summary

- Implicit costs do not involve a cash outlay, yet are just as important as explicit costs to firms' decisions.
- Accounting profit is revenue minus explicit costs. Economic profit is revenue minus total (explicit + implicit) costs.
- The production function shows the relationship between output and inputs.

Summary

- The marginal product of labor is the increase in output from a one-unit increase in labor, holding other inputs constant. The marginal products of other inputs are defined similarly.
- Marginal product usually diminishes as the input increases. Thus, as output rises, the production function becomes flatter and the total cost curve becomes steeper.
- Variable costs vary with output; fixed costs do not.

Summary

- Marginal cost is the increase in total cost from an extra unit of production. The MC curve is usually upward-sloping.
- Average variable cost is variable cost divided by output.
- Average fixed cost is fixed cost divided by output. AFC always falls as output increases.
- Average total cost (sometimes called "cost per unit") is total cost divided by the quantity of output. The ATC curve is usually U-shaped.

Summary

- The MC curve intersects the ATC curve at minimum average total cost. When MC < ATC, ATC falls as Q rises. When MC > ATC, ATC rises as Q rises.
- In the long run, all costs are variable.
- Economies of scale: ATC falls as Q rises. Diseconomies of scale: ATC rises as Q rises. Constant returns to scale: ATC remains constant as Q rises.

