DXE EMTR 2021 First assignment (20% of total grade)

Please submit the assignment by 29 Oct in the IS MUNI system. You are allowed to work in groups of maximum size 3.

1 Regression basics

Write a short essay (no more than 1000 words) discussing the following article:
Imbens, Guido W. "Statistical Significance, p-Values, and the Reporting of Uncertainty."Journal of Economic Perspectives 35.3 (2021): 157-74.

These questions could help you to streamline the discussion:

- what makes the (ab)use of p-values problematic in some contexts?
- should p-values be banned?
- what are some possible strategies for addressing the problem of 'p-hacking' and publication bias?

Make sure to add your views/perspective, that may be specific to the field of your research expertise.

2 Identification

Assume that

- Y, X, ϵ are random variables,
- $Y=(X-\theta)^{2}+\epsilon$,
- $E(\epsilon)=0$,
- Data reveals ϕ which is the joint distribution of (Y, X),
- θ is the parameter of interest.

Here are your tasks:

- Define: the model and the structure in the framework of Lewbel, Arthur. "The identification zoo: Meanings of identification in econometrics. "Journal of Economic Literature 57.4 (2019): 835-903..
- Show under what conditions is the parameter θ
- point identified
- set identified and find the identified set
- not identified.
- Try to find an intuitive explanation for your answer from the previous subquestion.
- Suppose we have an additional variable Z, so that the data reveals ϕ which is the joint distribution of (Y, X, Z). Furthermore we replace the assumption $E(\epsilon)=0$ with the following assumptions: $E(Z)=0$, $E(Z e)=0$ and $E(Z X) \neq 0$. Is θ point identified? If so, how would you estimate it?

3 Maximum likelihood

In many situations our dependent variables describe a number of events, so that $Y \in\{0,1,2, \ldots\}$ without a natural upper bound. This may be, for instance, a number of car crashes, a number of earthquakes or a number of visitors. Our ambition may be to find an association between the variation in the y and some explanatory variables $x_{1}, \cdots x_{p}$, these may include weather conditions, geographic location or time of day, depending on what the variable y is.

Consider the special type of regression (called Poisson regression), where we assume the following assumptions:

- Data sample consists of n i.i.d. observations $\left(y_{i}, x_{i 1}, \cdots, x_{i p}\right)$,
- $y_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$,
- $\log \left(\lambda_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\cdots \beta_{p} x_{i p}$,

You are asked to do the following:

- We are interested in estimating the vector of unknown parameters $\left(\beta_{0}, \beta_{1}, \cdots, \beta_{p}\right)$. Derive the likelihood function (conditional on the covariates x_{1}, \cdots, x_{p}), the score function and the Fisher information matrix for this model.
- Using a small simulation study in R :
- demonstrate that the maximum likelihood estimator of β_{1} for this particular model has asymptotically normal distribution. (You don't need to implement the optimization yourself, it is OK if you make use of glm function in R with option family $=$ poisson).
- Explore how the sample size affects the variance of the estimator.

4 Bootstrap

Consider the maximum likelihood estimator of the unknown parameter β_{1} from the previous task.

- Construct a 95% confidence interval based on the non-parametric percentile bootstrap.
- Construct a 95% confidence interval based on the normal approximation and use bootstrap to estimate the standard errors.
- Using a simulation study in R, compare the coverage properties of these two confidence intervals. That is: show that the confidence intervals cover the true value in approximately 95% simulated cases. ${ }^{1}$

Make sure to comment your code and make your best effort to adhere to some reasonable coding standards. Your code must be easy to read. Present your results in a coherent way and whenever possible make use of visualization.

[^0]
[^0]: ${ }^{1}$ Notice that this may require a lot of computing time - if a single bootstrap confidence interval is based on 100 bootstrap samples and you will run 500 simulations, you will need to estimate the Poisson regression model $100 \cdot 500=50000$ times. So you may need to keep the basic model specification simple.

