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We may be fortunate to run a randomized experiment.
This makes identification and estimation of causal effects easy.

But even a proper experiment may be "broken” in many interesting ways.

In many other cases, this is not possible.

We rely on the fact that observable characteristics make the treatment "as
good as random”.

There are different ways how to do this. With different pros and cons.



Randomization

@ N individuals

@ D; € {0,1} treatment indicator

@ Yi(D;) potential outcomes

@ Y, =Yi(1)D;+ (1 —D;)Y;(0) observe variable

@ Yj(.) is only a function of i-th treatment nad there are no interactions
@ there are no hidden versions of the treatment, everyone receives 0 or 1

is individual treatment effect



Y(1) and Y(0)

@ What are they really?
@ Pr(Yi(1)=y)=Pr(Y;=y|do(D=1))
@ What if we cannot manipulate the treatment? What if it does not make

sense?
@ Is it enough if we can contemplate it?
@ Sometimes we can manipulate the treatment.
@ Sometimes nature can manipulate the treatment (e.g. gender).
@ Missing data problem. You have to fix this.
@ Somehow.



Observational data



Randomized trial



Observational data



Randomized trial




Treatment is randomized.
All the parents of D are removed.
There is no way how X or U have any influence on D.

Y is a "collider” on the path between D and X and the path is therefore
blocked.

D1 Xand D 1 U



Randomization manipulated the treatment status of these people.

If randomization was successful, these two groups will not differ in terms of
X



Randomization is the benchmark

If randomization worked, we should have:
E[X|D=1] = E[X|D=0]

and this can be checked in the data.

The subjects should ideally only differ in terms of D.

Apples to apples.
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Better service availability and stronger incentives improved vaccination rates.

Abhijit Banerjee, Esther Duflo and Michael Kremer for their experimental
approach to alleviating global poverty

https:/www.nobelprize.org/prizes/economic-sciences/2019/press-release/



We aim to have comparable units.



E[Y(1)— Y(0)] - Average treatment effect

E[Y|do(D=1)] = E[Y(1)] = E[Y(1)|D=1] = E[Y(1)|D=0]
obs;?ved unob‘sgrved

E[Y|do(D = 0)] = E[Y(0)] = E[Y(0)|D = 0] = E[Y(0)|D = 1]

observed unobserved

E[Y(1)] - E[Y(0)] = E[Y(1)|D = 1] - E[Y(0)|D = 0] = E[Y|D = 1] - E[Y|D = O]



E[Y(1)— Y(0)|D = 1] - Average treatment effect on the
treated

E[Y(1)|D=1] = E[¥(1)|D=0]

observed unobserved

E[Y(1)~ Y(0)|D=1]=E[Y(1)|D = 1] - E[¥(0)|D= 1] = E[Y|D= 1]~ E[Y|D=0]

observed unobserved

Here, only one counterfactual is needed.



Decomposition

ATT=E[Y(1)—Y(0)|D=1]

E[YID=1]-E[Y|D=0] = E[Y(1)[D=1]-E[¥(0)[D=1]
E[ Y\B:1 ] unobserved

+ E[Y(0)|D=1]-E[¥(0)|D=0]
unobserved E[ Y\\B:O]

N J/

Selection bias

Selection bias is zero under randomization.



Potential problems (not outcomes this time)

Randomization itself

Outcome attrition

Knowing you are in an experiment
Sample size (expensive)

External validity

Non-scalability

@ Peer-effects, general equlibrium effects

Duflo, Esther, Rachel Glennerster, and Michael Kremer. "Using randomization in development economics research: A toolkit." Handbook of development

economics 4 (2007): 3895-3962.



Some further tips

@ Prospective trials often lead to surprises.
@ Some programs fail. Beware of publication bias.

@ Not only effects we are interested in, but also mechanisms, potential
side effects.

@ RCTs are costly, difficult, but feasible.
@ Spillovers effects are real.

Kremer, Michael. "Randomized evaluations of educational programs in developing countries: Some lessons.” American Economic Review 93.2 (2003):

102-106.



Implementation matters too
Important to have a partner company you can trust.

Feature » BM]Investigation

Covid-19: Researcher blows the whistle on data integrity issues in Pfizer’s vaccine
trial

BMJ 2021 ;375 doi: https://doi.org/10.1136/bmj.n2635 (Published 02 November 2021)
Cite this as: BMJ 2021;375:n2635

Read our latest coverage of the coronavirus pandemic

Article Related content Metrics Responses

Paul D Thacker, investigative journalist

Author affiliations v

Revelations of poor practices at a contract research company helping to carry out Pfizer's
pivotal covid-19 vaccine trial raise questions about data integrity and regulatory oversight.
Paul D Thacker reports



Example: Tennessee STAR experiment

@ Student Teacher Achievment Ratio
@ Do smaller classes make sense?
@ They are expensive.

@ Cost $12mil and implemented on 11600 kids in kindergartens in
1985/86

@ Long, expensive, logistically difficult
@ Useful benchmark, but we might want to learn about the effects sooner

You can try to work with it on your own https:/dataverse.harvard.edu/dataset.xhtml?persistentld=hdl:1902.1/10766



Example: Tennessee STAR experiment

Apples to apples?
Students who entered STAR in kindergarten

Variable ar_ Regular/Aide, Joint P-value
1. Free lunch .50 .09
2.  White/Asian X .26
3. Agein 1985 32
4. Attrition rate .02
5. Class size in kindergarten D .00
6. Percentile score in kindergarten .00

Table 2.2.1 of Angrist and Pischke (2009)



RCT and regression

Y = D
Lt p b
E(Y(0))  v(1)-v(0) Y(0)—E(Y(0))

-
E[Y|D=1] = a+p+E[n|D=1]
E[Y|D=0] = a+E[n|D=0]
E[Y|D=1]—E[Y|D=0] = p +E[n|D=1]—E[n|D=0]
A ~ ~~
treatment effect selection bias

if we assume that p is non-random (homogenous treatment effects)



RCT and regression + covariates

@ assignment was random only within schools - add schools specific

intercept
@ inclusion of covariates may improve the statistical precision of p
estimate
Y=0+pD+X"y+n
Note:

@ we still assume homogenous treatment effects
@ we now assume a specific linear form how X is connected to Y
@ this may be thought of as an approximation

[Adjusting for X in RCT or not? See Negi and Wooldridge 2021.]



Example: Tennessee STAR experiment

Experimental estimates of the effect of class-size assignment on test scores

Explanatory variable (1)

Small class 482 [5.37 536 5.37
(2.19) [(1.26) (1.21) (1.19)
Regular/aide class 12 29 53 3
(223 (113" (1.09) (1.07)

White/Asian (1 = yes) - 8.35 8.44
. (1.35) (1.36)

Girl (1 = yes) rfﬂsgqhua 448 439
(.63) (.63)
Free lunch (1 = yes) - - -13.15  -13.07
(m ()

White teacher - - - -.87
(2.10)

Teacher experience - - - .26
(10)

Master’s degree - - - -0.51
(1.06)

School fixed effects No Yes Yes es
R? 01 —l:a 31 ?

Table 2.2.2 of Angrist and Pischke (2009)



Selection on observables

Y(0), Y(1) L D|X

@ We rarely have the luxury of an RCT, especially in economics.
@ Observational data may be useful in recovering causal relationship.
@ This often requires modelling and deep institutional knowledge.

@ Sometimes we have something that resembles RCT, we will discuss this
later

Assume that the richness of X allows us to close all the backdoor paths from
DtoY.



Selection on observables

Y(0), Y(1) L D|X

It has various labels:
@ Conditional independence assumption
@ Unconfoundedness
@ Ignorability



Selection on observables

()
(—

How realistic is this model?
@ WEell, obviously: it depends.

@ If you have rich set of information (many many variables X), it might be
fine.

@ But then it is tricky to model, you also need large data set.

@ Within a large data set, units are very different and homogeneity makes
rarely sense.



Selection on observables

@ Identification is straightforward.

@ There are, however, different statistical techniques how to estimate the
effects.

We will cover these classes of estimation techniques:
@ Regression
@ Matching
@ Propensity score weighting

What do they have in common?
@ Estimated from observation data.
@ There is no randomization, no quasi-randomization involved.



Regression
We know a lot about the mechanics of the linear regression, projections etc.

In the first part of the course we were silent about the causal interpretation.
We have assumed that the model is correctly specified.

Y=a+pD+X"y+g

E[Y()|X] = E[Y|X,D=1]=a+p+X"y
E[Y(0)|X] = E[Y|X,D=0]=a+X"y

For a simple linear model - no heterogeneity:

ATT = E[Y(1) — Y(0)|X] = p = E[Y(1) — Y(0)] = ATE



We made use of E[e|X,D] =0



Linearity?

Y = #(D,X)+¢
E[Y(1))|X,D=1] = E[Y|X,D=1]=f(1,X)
E[Y(0)IX,D=1] = E[Y|X,D=0]=1(0,X)

CIA

8x = E[Y|X,D=1]— E[Y|X,D = 0]
E[Y(1)— Y(0)|X, D =1] = £(1,X) — (0, X) = 6x
C.I.A.

E[Y(1)=Y(0)|[D=1] = E[E[Y(1)— Y(0)|X,D=1]] :ZSXPr X=x|D=1)

E[Y(1)—Y(0)] = E[E[Y(1)-Y(0)|X]] 25 Pr(X = x)



Matching

Matching is a class of statistical techniques that takes:

We aim to have comparable units.

very seriously.



Example: Matching - Titanic @

@ 700 out of 2200 on board survived
@ did wealth affected survival probability?

@ women and children were given priority, but they were also likely to be
in the first class

@ D - first class
@ X; - gender

@ X, - age (old/young)
G “ @ Y - survived
* Two back-door paths.
@ Any unobserved confounders are ruled out.



Example: Matching - Titanic @

@ 4 categories: {young male, young female, old male, old female}

E[Y|D=1]—-E[Y|D=0] = 0.354
E[Y(1)—Y(0)] = ) 6.Pr(X=x)=0.196
E[Y(1)—Y(0)D=1] = Y 6Pr(X=x|D=1)=0.238

E[Y(1)—-Y(0)[D=0] = Y 6,Pr(X=x|D=0)=0.189



@ By stratification we lose information.
@ As areward, we get something that is easy to interpret and implement.

@ If we do not stratify, we may have few observations in a certain group.
There is no 12yo boy in the first class.

p ) ° }_( different categories
ATT — Z (y1,k_ yo,k),& @ Y'¥ - mean outcome of treated in group k
k=1 NT o Y0k - mean outcome of control in group k
@ NX NK, N¥ - number of treated, controls,

K K
_ _ N (e

ATC=) (Y'k-Y0FK). N—C overall within category k

k=1 © o N7, Ng, N - number of treated, controls, overall

K _ _ Nk
ATE =Y (YIr— VoK. —
k=1 N



Example: Matching - Angrist (1998)

@ Voluntary military service. How did it affect wages?
@ Military was the largest employer.

@ Military size declined sharply in 1987.

@ Compares applicants. 50% of them enlisted.

@ Applicants are not chosen at random



Example: Matching - Angrist (1998)

@ 698’000 observations

@ Information in X: year of application, test score group, schooling level,
year of birth.

@ Heterogenous across race: Separate estimates for Whites and
Non-whites

@ 8'760 cells, but only 5’654 had at least 25 observations



25,0001 T T T T T T T T 7]

Fig.2 in Angrist (1998)



Fig.3 in Angrist (1998)



Whites

- s w—
Mean in Means® Contrast Estimates
Year (1 @ 3) @)
A. Earnings® Vo HM I'hb RZ;,
74 182.7 =26.1 ~14.0 -13.
7.0 (9.2) (9.4)
75 2319 —41.4 -14.2 =120
6.3) (7.6) 7.8
76 4734 -479 —14.8 -12.7
‘.1 9.00 9.3
77 10129 =71 8.6 9.4
(1.3 (123) ay (122)
78 2147.1 40.3 =235 -224
16.7) (18.1) (17.2)
79 35607 188.0 -84 o -11.2
21.0) (23.2) (21.6)
80 4709.0 5729 178.0 175.9
(23.4) 27.2) (24.6)
81 6226.0 855.5 2495 2499
(27.2) (324) ™ (0.0
82 72006 15085 783.3 7824
(30.3) (36.4) (32.5)

Part of Table 2 in Angrist (1998)
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84
85
86
87
88
89
90

91

8398.1

0874.2
10972.7
12004.5
13045.7
14136.1
14716.1
14886.1

144079

S885 601,
@ < ees)

-235.7 ~198.5
(46.9) [E3)]
-5213 £ 4596

(52.6) (46.8)
-557.3 —491.7
(59.00 (52.5)

—548.0 —464.3
(63.9) (56.8)
—415.5 -311.7
(68.2) (60.6)
—248.6 -136.3
(71.2) (63.2)
—154.5 -53.2
(73.6) (65.2)
29.8 146.2

(75.6) (66.9)



Matching vs. Regression

These results differ. Why?

Explore the simplest possible case. Binary X.



Binary X
Saturated model (heterogenous effects)

Y =Bo+Bi X+ 8D(1—X)+ 6:DX

8 = E[Y|X=1,D=1]—E[Y|X=1,D=0]
&% = E[Y|X=0,D=1]—E[Y|X=0,D=0]

Non saturated model (homogenous effects)
Y=0+pD+yX+E¢

CATT is assumed to be the same for both X =1 and X =0



Saturated model (heterogenous effects)

Y =Bo+Bi X+ 8D(1—X)+ 6:DX

8 = E[Y|IX=1,D=1]—E[Y|X=1,D=0]
& = E[Y|X=0,D=1]—E[Y|X=0,D=0]
E[Y(1)—Y(0)[D=1]=) 6.Pr(X=x|D=1)

= &Pr(X=0D=1)+68Pr(X=1|D=1)

PH(D=1]X=0)-P(X=0) < Pr(D=1]X=1)-P(X=1)
P(D=1) ‘ P(D=1)

= 50Wé\/,—|—5~| W1M

— &



Non-saturated model (homogenous effects)

Non saturated model (homogenous effects)

Y=0+pD+yX+E¢

...[3.8.1 in Angrist and Pischke (2009)]...

e}
1

Y Ok[Pr(D=1|X=x)(1—Pr(D=1|X = x))]|Pr(X = x)
Y [Pr(D=1|X=x)(1—Pr(D=1|X = x))]Pr(X = x)

= 50W('?+51 W1R



Comparison - Matching vs Regression ©

~share of treated among X=x

N

v Pr(D=1]X=x))
S P(D=1)

-Pr(X = x)

~variance of D given X=x

_ Pr(D=1|X=x)(1—Pr(D=1|X = x)) -
"= P D= 11X =x)(1 - PO =X =x)|Pr(X=x) X =)

)




Matching
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Matching




Different types of Matching

@ In many interesting cases exact matches are not possible
@ We need to introduce some measure on how similar different units are
@ There are many ways how this can be done



Overlap

0 < P(D = 1|X) < 1
—~— —~—

for E[Y(1)|D=0] for E[Y(0)|D=1]

@ It is important to have comparable units.

@ If we don't we may drop these observations or we may rely on
extrapolation.

@ Dropping observations means we estimate effects only on a
subpopulation, so the object of interest changes.

@ You don't want to extrapolate much, but, at the same time, you want to
have your effect representative enough.



One to one matching

— 1

ATT = — Yi— Yy,
NT i:D,Z—1( j(l))

J(7) is "similar” to i in terms of X in the control group

We compare Y; to the similar unit



One to many matching

Jm(i) is one of the M "similar” units from the control group to i in terms of X

We compare Y; to the average of the similar units



Nearest neighbour covariate matching

How to measure how similar the units are?

1= X1l = /(X = X)T (X~ X) = \/Z (X — X2

Or weight by the variance

(X X
X=Xl = /(6= X)TV (X=X \/z o X"

Or weight by the covariance

16— 11 = /(X = X)T5 (X~ %)



Bias

@ The larger the dimension of X, the more difficult is to find matches
@ Data greedy
@ X; converges to X only slowly

Bias corrected matching estimator

— 1 N ~
AToo= - 3 ((¥i= i) - (ELY1X = X, D= 0] — E[Y|X = X, D=0]))

bias correction term



Variance?

Without replacement
Use control units only once.

2
1 1 —
A2 o :
K] (”‘M L Y’m<""ATT)

With replacement
Use control units possibly more than once.

2
. 1 1Y /\ 1 Ki(1— K) (Y — V)2
GA?TTZN—T ) (Yi—ﬂéﬁm(i)—/‘ﬁ) tan o ( v :

2
i:Dj=1 T j:Di=1 M 2

(in this particular case bootstrap fails - Abadie and Imbens (2008)



Matching vs Regression - Practical considerations

@ There are many different ways how one can perform matching.

@ There are many different ways how one can perform regression.

@ Researchers degree of freedom is a problem.

@ Matching is appealing because it is easy to communicate to outsiders.

@ Regression is appealing as there seems to be (or are?) fewer degrees of
freedom



2.2 Regression Estimators

Differences between regression and matching strategies for the estimation of
treatment effects are partly cosmetic. While matching methods are often more
transparent to nonspecialists, regression estimation is more straightforward to
implement when covariates are continuously distributed because matching on
continuous covariates requires stratification or pairing (Cochran (1968)). Note,
however, that both methods require a similar sort of approximation since
regression on continuous covariates in any finite sample requires functional
form restrictions. The fact that both stratification and functional form approxi-
mations can be made increasingly accurate as the sample size grows suggests
that the manner in which continuous covariates are accommodated is not the
most important difference between the two methods.

Angrist (1998), page 255: Angrist, Joshua. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military

Applicants.” Econometrica 66.2 (1998): 249-288.



Example: LaLonde (1986)

Very influential study.
@ Does job training increase future wages?

@ Having randomized treatment (NSW - National Support Work),
LaLonde can compare matching estimators (from two different
observational datasets: CPS - Current Population Survey and PSID -
Panel Survey of Income Dynamics) to the one from the randomized,
which served as a benchmark

@ Results pessimistic: Estimates from obs. datasets are all over the place!
@ E.g. $800 vs -$8000 vs - $4400
Well, the samples are very different



@ ltisimportant to check how comparable treated and controls are in our
matched sample

@ This is called a balance

@ The success of matching can be shown using a balance graph.

@ Excellent implementation is in MatchIt package in R

Distributional Balance for "race" Distributional Balance for "educ”

Unadjusted Sample Adjusted Sample Unadusted Sample Adjusted Sample

Treatment Treatment
0

1

Proportion
Density

o
1

LS L

o 5 15 0
race educ




Propensity score

p(x) = P(D=1|X=x)

We may skip the high-dimensionality of X in a very neat way.

Projecting them on the quantity that matters - probability of treatment
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Propensity score matching

This idea comes from Donald Rubin (e.g. Rubin,1977) and Paul Rosenbaum
(Rosenbaum and Rubin, 1983, over 30k citations).

Pr(D=1]Y(1), ¥(0),p(X))

Y(0),Y(1) LD | X



Propensity score matching

Conditioning on p(X) closes the backdoor path.

Also, notice that D L X|p(X) as Y is the collider on the path.



Propensity score matching

)

p(x) = E(Y|D=1,p(X)) — E(Y|D =0,p(X))

E[Y(1)—Y(0)|D = 1] = E[5y(x)|D = 1]



Propensity score matching

1. Use logit/probit to estimate propensity scores.

2. Sort observations according to p(X)

3. Stratify sample to blocks so that mean scores are not statistically
different among treated and controls

4. Check for balance. If no balance within a block — split the block. If, for
some variable, no balance in all the blocks — check the model
specification in Step 1.

Implemented in Stata by Becker, Sascha O., and Andrea Ichino. "Estimation of average treatment effects based on propensity scores.” The stata journal

2.4 (2002): 358-377.



There are other ways how PS matching can be implemented
@ Nearest neighbour matching
@ Radius matching

@ Kernel matching - weight controls by a Kernel function - those controls
close to propensity score of the treated get larger weight



Example: Dehejia and Wahba (2002)

@ Use data from LaLonde (1986)

@ Compares randomized NSW data to two observational datasets: CPS
and PSID

PS Matching in detail

@ With or without replacement? Smaller PS distance vs. Fewer
comparison units.

@ How many comparison units? Smaller PS distance vs. Increased
precision.

@ Which matching method to use? Caliper matching can use more (fewer)
matches if (not) available.

If overlap is good, different matching will lead to similar results.



TABLE 1.—SAMPLE MEANS AND STANDARD ERRORS OF COVARIATES
For MALE NSW PARTICIPANTS

National Supported Work Sample (Treatment and Control)
Dehejia-Wahba Sample
Variable 'DC\ Treatment V—‘%ontml

258T(052)
10.35 (0.15)
0.71 (0.03)
0.84 (0.03)
0.06 (0.017)
0.19 (0.03)

25.05 (0.45)

10.09 (0.1)
0.83 (0.02)
0.83 (0.02)
0.10 (0.019)
0.15 (0.02)

Age

Years of schooling
Proportion of school dropouts
Proportion of blacks
Proportion of Hispanic
Proportion married

Number of children 0.41 (0.07) 0.37 (0.06)
No-show variable 0(0) n/a
Month of assignment (Jan. 1978 = 0) 18.49 (0.36) 17.86 (0.35)

1,689 (235)
2,096 (359)
294 (36)

1,425 (182)
2,107 (353)
243 (27)
267 (37)

Real earnings 12 months before training
Real earnings 24 months before training
Hours worked 1 year before training
Hours worked 2 years before training
Sample size

@ National Supported
Work Program

@ Provided work
experience to people
with social problems

@ Here is a randomized
sample from LaLonde
(1986)



FiGure 1.—HISTOGRAM OF ESTIMATED PROPENSITY SCORE, FIGURE 2.—HISTOGRAM OF ESTIMATED PROPENSITY SCORE,
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Fig 1 and 2 from Dehejia and Wahba (2002)



FIGURE 5.—PROPENSITY SCORE FOR TREATED AND MATCHED

CompARISON UNITs, HIGHEST TO LOWEST
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FIGURE 6.—PROPENSITY SCORE FOR TREATED AND MATCHED
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TABLE 2.—SAMPLE CHARACTERISTICS AND ESTIMATED IMPACTS FROM THE NSW aND CPS SaMPLES

Treatment
CPS ﬂ‘f_pg Mean Effect Regression

No. o Propensity No (Diff. in  Treatment
Control Sample Observations ~ Score® Age School Black Hispanic Degree Married RE74 RE75 U74 U75  Means) Effect
NSW 185 037 2582 1035 084 0.06 071 019 2095 1532 029 040 17948 1672¢
; (633) (638)
Fulf 15992 0.01 3323 1203 007 0.07 030 071 14017 13651 088 089 —8498 1066

0.02)° (0.53) (0.15) (0.03) (002) (0.03) (0.03) (367) (248) (0.03) (0.04) (583)F (554)
Without replacement:

Random 185 032 2526 1030 084 0.06 0.65 022 2305 1687 037 051 1559 1651
(0.03) (0.79) (023) (0.04) (003) (0.05) (004) (495) (341) (005) (0.05) (733) (709)

Low to high 185 032 2523 1028 084 0.06 066 022 2286 1687 037 051 1605 1681
(0.03) (0.79) (023) (0.04) (003) (0.05) (004) (495) (341) (005) (0.05) (730) (704)

High to low 185 032 2526 1030 084 0.06 0.65 022 2305 1687 037 051 1559 1651

(0.03) (0.79) (0.23) (0.04) (003) (0.05) (0.04) (495) (341) (0.05) (0.05) (733) (709)
With replacement:

Nearest neighbor 119 037 2536 1031 084 006 069 017 2407 1516 035 049 1360 1375
(0.03)  (1.04) (031) (006) (004) (0.07) (0.06) (727) (506) (007) (007)  (913) (907)
Caliper, ® = 000001 325 037 2526 1031 084 007 069 0.7 2424 1509 036 050 1119 1142
(0.03)  (103) (030) (006) (004) (007) (0.06) (845) (647) (006) (006)  (875) (874)
Caliper, 3 = 0.00005 1043 037 2529 1028 084 007 069 0.7 2305 1523 035 049 1158 1139
(002)  (103) (032) (005) (004) (0.06) (006) (877) (675) (006) (060)  (852) (851)
Caliper, 8 = 0.0001 1731 037 2519 1036 084 007 069 017 2213 1545 034 050 1122 1119

(0.02) (L.03) (0.31) (005 (004) (0.06) (006) (890) (701) (0.06) (0.06) (850) (843)

Table 2 from Dehejia and Wahba (2002)



TABLE 3.—SAMPLE CHARACTERISTICS AND ESTIMATED IMPACTS FROM THE NSW AND PSID SAMPLES

Treatment
Mean Effect  Regression
No. of Propensity No RE74 RET75 (Diff. in  Treatment
Control Sample Observations ~ Score® Age School Black Hispanic Degree Married US$ US$ U74 U75  Means) Effect
NSW 185 037 2582 1035 084 006 07 0.19 2095 1532 029 040 17948 1672¢
(633) (638)
Ful PSID 2490 0.02 3485 12112 025 003 031 0.87 19429 19063 0.10 009 -—15205 4
©.02° (0.57) (0.16) (0.03) (002) (0.03) (0.03) (449) (361) (0.04) (0.03) (657)F  (1014)
Without replacement: . =
Random 185 025 1030 007 060 040 77
(0.03) 090) (025) (0.04) (003) (005 (065 4) 5 (0.05) (983)
Low to high 185 025 29.17 1030 0.68 0.07 0.60 0.52 4659 3263 040 77
©03) (090) (025) (004) (003) (005 (0.05) (554) (361) (0.05) (983)
High to low 185 025 29.17 1030 0.68 0.07 0.60 0.52 4659 3263 040 77
" (0.03) (090) (0.25) (0.04) (003) (0.05) (0.05) (554) (361) (0.05) 83)
With replacement: ‘o f
Nearest Neighbor (5) 070 @ 10.72 W 009 053 054 2315
(0.07) 778) (054) (U711) (005 (0.12) (C¢ (IZ48) (9% (0.11) (1131)
Caliper, 3 = 0.00001 85 0.70 2485 1072 0.78 0.09 0353 0.13 2216 1819 054 2327
(0.08) (1.80) (0.56) (0.12) (0.05) (0.12) (0.12) (1859) (1896) (0.10) (1129)
Caliper, & = 0.00005 193 0.70 2483 1072 0.78 0.09 0.53 0.14 2247 1778 054 2349
0.06) (2.17) (0.60) (0.11) (0.04) (0.11) (0.10) (1983) (1869) (0.09) (1121)
Caliper, & = 0.0001 337 0.70 2492 1073 0.78 0.09 053 0.14 2228 1763 054 2411
0.05) (2.30) (0.67) (0.11) (004) (0.11) (0.09) (1965) (1777) (0.07) (1122)
Caliper, 3 = 0.001 2021 0.70 2498 1074 0.79 0.09 0353 0.13 2398 1882 053 2333
0.03) (2.37) (0.70) (0.09) (0.04) (0.10) (0.07) (2950) (2943) (0.06) (1101)

Table 3 from Dehejia and Wahba (2002)



Lessons to take

@ When few control units are available, use sampling with replacement
(you can use the same control twice)

@ When enough control units are available, sampling without replacement
would be fine

@ Careful diagnostics aid the right choices.
@ So perhaps it is not as bad as LaLonde (1986) suggested?



— Reply: Smith, Jeffrey A., and Petra E. Todd. "Does matching overcome
LaLonde’s critique of nonexperimental estimators?.” Journal of
econometrics 125.1-2 (2005): 305-353.

@ Results are sensitive to covariates in PS estimation and to choice of the
sample.
o PSM"...does not represent a general solution to the evaluation problem”

— Rejoinder: Dehejia, Rajeev. "Practical propensity score matching: a reply
to Smith and Todd.” Journal of econometrics 125.1-2 (2005): 355-364.
@ Yes, one should check the sensitivity of estimates to the PS model
specification.
e High quality comparison group should not be too sensitive.
@ With this on your mind, PSM works fine. Even in the different subsamples
of LaLonde (1996)



Implementation issues

There are other ways how PS matching can be implemented

Step 0:
Decide
between
PSM and
CVM

Step 1:
Propensity
Score
Estimation
(Sec. 3.1)

Step 2:
Choose
Matching
Algorithm
(Sec. 3.2)

Step 3:
Check Over-
lap/Common
Support

(Sec. 3.3)

Step 4:
Matching
Quality/Effect
Estimation
(Sec. 3.4-3.8)

Step 5:
Sensitivity
Analysis

(Sec. 3.9)

CVM: Covariate Matching, PSM: Propensity Score Matching

Fig 1 in Caliendo, Marco, and Sabine Kopeinig. "Some practical guidance for the implementation of propensity score matching.” Journal of economic

surveys 22.1 (2008): 31-72.



Inverse Propensity Score Weighting

Y(0),Y(1) LD| X

-

ATE = E[Y(1)] — E[Y(0)] = E {%} -k {%{XD))}

ATT = E[Y(1)|D=1] - E[Y(0)|D=1] = E[Y-D] - £ {Y'“ P f(;?X)}




Inverse Propensity Score Weighting

(18] - el el rofmo-on

— £|e| iD= 1.x] o] = ELEV(1)ID= 1.3 = ETV(1)

and other quantities similarly.



Inverse Propensity Score Weighting

First: estimate p.

Then:
ATE

AT




Inverse Propensity Score Weighting ©

Normalized versions (more stable):

— 1 Y,D, D | |vY(1-D) (1-D)
ATE = Z Zl_:la(x,) [Z,: 1—p(X)) /[;1—/5()(/)
ATT = _N;Y’D’]/[N;D’ _[;Y’(“D’)f(g(li) /B2

Weigthing: Hirano and Imbens (2001)

Performance for different constructions of standard errors: Bodory,
Camponovo, Huber, and Lechner, (2020)

R package treatweight by Bodory and Huber (2021)



@ Sensitive to specification of p(-)
@ May require trimming
@ Does not rely on stratification nor matching (less degrees of freedom?)

@ Standard errors need to take into account that the propensity scores
are only estimated (Hirano, Imbens and Ridder, 2003)



Wrap-up

There are different ways how we can estimate the quantity of interest (e.g.
ATE, ATT) if our observables are informative in explaining the selection bias.

Regression, Matching, IPW.
They all have pros and cons.

It is the selection on observables assumption that drive the identification.
Without this, any estimator is dubious at best.



Thank you for your attention!
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