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Causal graph

D Y

U

Z

Y is the outcome
D is a variable of interest
(treatment)
Z is an instrument
U is an unobserved variable

In this situation, it is not possible to (non-parametrically) identify the causal
effect of D on Y .

Things are not completely hopeless though.



Homogenous treatment effects

Let us simplify it a little bit.

We will assume:
homogeneity of the effect
linearity of the function forms

Thus, we will assume a lot...

But it makes it possible to proceed in a rather straightforward manner.



D Y

U

ε
The true relationship is
Yi = α + δDi + γUi + εi︸ ︷︷ ︸

=ηi

But Ui is unobserved
Yi = α + δDi + ηi

δ̂ =
Cov(Y ,D)

Var(D)
=

E [YD]−E [Y ]E [D]

Var(D)

=
E [αDi + δD2

i + γUiDi + εiDi ]−E [α + δDi + γUi + εi ]E [D]

Var(D)
= δ + γ

Cov(U,D)

Var(D)



D Y

U

Z

ε
The true relationship is
Yi = α + δDi + γUi + εi︸ ︷︷ ︸

=ηi

But Ui is unobserved
Yi = α + δDi + ηi

New variable Z
Notice: no Z → U or Z → Y

Cov(Y ,Z ) = Cov(α + δD + γU + ε,Z ) = E [(α + δD + γU + ε)Z ]−E [D]E [Z ]

= δCov(D,Z ) + γ Cov(U,Z )︸ ︷︷ ︸
=0

+Cov(ε,Z )︸ ︷︷ ︸
=0

=⇒

δ =
Cov(Y ,Z )

Cov(D,Z )



Exclusion restriction

There are no arrows

Z → U

Z → Y

This is called an exclusion restriction

Z provides us with the much needed exogenous source of variation



The regression coefficient δ = Cov(Y ,Z)
Cov(D,Z) can be estimated by

δ̂ =
Ĉov(Y ,Z )

Ĉov(D,Z )
=

1
n ∑

n
i=1(Zi − Z̄ )(Yi − Ȳ )

1
n ∑

n
i=1(Zi − Z̄ )(Di − D̄)

If we assume

Yi = α + δDi + ηi

Di = β0 + βzZi + υi

Then

δ̂ =
1
n ∑

n
i=1(Zi − Z̄ )

=α+δDi+ηi︷︸︸︷
Yi

1
n ∑

n
i=1(Zi − Z̄ )Di

= δ +

→P0︷ ︸︸ ︷
1
n ∑

n
i=1(Zi − Z̄ )ηi

1
n ∑

n
i=1(Zi − Z̄ )Di



Yi = α + δ

β0+βzZi+υi︷︸︸︷
Di +ηi = α0 +

δ ·βZ︷︸︸︷
αZ Zi + ωi︸ ︷︷ ︸

Reduced form eq.

Di = β0 + βzZi + υi︸ ︷︷ ︸
First stage eq.

Take a closer look at δ̂

δ̂ =
Ĉov(Y ,Z )

Ĉov(D,Z )
=

Ĉov(Y ,Z)
V̂ar(Z)

Ĉov(D,Z)
V̂ar(Z)

=
α̂Z

β̂Z



Two-stage least squares

δ̂ =
Ĉov(Y ,Z )

Ĉov(D,Z )
=

β̂Z Ĉov(Y ,Z )

β̂Z Ĉov(D,Z )
=

Ĉov(Y , β̂Z Z )

β̂ 2
Z V̂ar(Z )

=
Ĉov(Y , β̂Z Z )

V̂ar(β̂Z Z )
= · · ·= Ĉov(Y , D̂)

V̂ar(D̂)

where D̂ = β̂0 + β̂Z Z

This suggest the following two-stage strategy:
Step 1 Estimate (β̂0, β̂Z ) from Di = β0 + βzZi + υi and obtain D̂ = β̂0 + β̂Z Z

Step 2 Plug D̂ and estimate (α̂, δ̂ ) from Yi = α + δ D̂i + ηi

Such regression coefficient δ̂ will be identical to α̂Z

β̂Z



Additional covariates?

D Y

U

Z

X

It is important to close all these paths (D← X → Y ) too.



Wald estimator

In case of abinary instrument and no covariates, the IV estimator is

δ̂IV =
Ê [Y |Z = 1]− Ê [Y |Z = 0]

Ê [D|Z = 1]− Ê [D|Z = 0]



Additional covariates?

D Y

U

Z

ε

X

υ

Yi = α + δDi + δX Xi +

=ηi︷ ︸︸ ︷
δUUi + εi

= α0 + αZ Zi + αX Xi + ωi︸ ︷︷ ︸
Reduced form eq.

Di = β0 + βzZi + βX Xi + υi︸ ︷︷ ︸
First stage eq.

Step 1 Estimate (β̂0, β̂Z , β̂X ) from Di = β0 + βzZi + βxXi + υi and obtain
D̂ = β̂0 + β̂Z Z + β̂X X

Step 2 Plug D̂ and estimate (α̂, δ̂ , δ̂X ) from Yi = α + δ D̂i + δX Xi + ηi



Instrument

There are two qualities that the instrument needs to have:

Validity - instrument Z has no direct effect on Y . It only operates via D.
Z needs to be uncorrelated with ηi and therefore with both Ui and εi

Relevance - Z is correlated with D



Where are we now:

So far, we were unable to non-parametrically identify ATE. We could
not close the paths going via confounder U.

By simplifying a lot, we can at least identify and estimate the regression
coefficient δ within a linear model.
This is a ratio of coefficients from two regression OR we can look at it
as two stage estimator
That is all great as long as the linear model is correct and effects are
homogenous.
Let us see it in action.



Example: children and labor supply

We wish to understand the causal link between the family size and the labor
supply.

Do parents of bigger families work more?

A lot of literature found negative correlation between family size and female
labor supply.

How to estimate these? Clearly, the family size is not ”randomly assigned”.

Angrist, Joshua, and William Evans. ”Children and Their Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size.” American Economic

Review 88.3 (1998): 450-77.



Example: children and labor supply
Where do we find a proper instrument, that would provide an exogenous
variation in the family size?

Parents have preference for
mixed genders
The gender ”assignment” itself
is as good as random
Parents with these kids
{(♀,♀),(♂,♂)} are more likely
to have another one in
comparison to parents with
{(♀,♂),(♂,♀)} kids
Exogenous variation in the
probability of having a third
child!



Gender of the first kid does not predict the probability of having the second
child.

Table 3 from Angrist and Evans (1998)



Gender composition predicts the probability of having a third child.

Table 3 from Angrist and Evans (1998)



Ordinary least squares
estimator (for comparison
purposes)

Yi = α + δDi + δX Xi + ηi

Instrumental variable
estimation

Yi = α + δDi + δX Xi + ηi

Di = β0 + βzZi + βX Xi + υi

Y is one of these
worked
weeks worked
hours/week
log family income
non-wife income

D is an indicator of having more than 2
children
X consists of: age, age at first birth, black
indicator, hispanic indicator, boy 1st
indicator, boy 2nd indicator
z is one of these

same sex
two boys, two girls (as separate
instruments)



No covariates - Wald estimates

Table 5 from Angrist and Evans (1998)



Instrument is relevant

Table 6 from Angrist and Evans (1998)



With covariates
Magnitude of the effect is smaller than under OLS

Table 7 from Angrist and Evans (1998)



Mechanics

Step 1 Estimate (β̂0, β̂Z , β̂X ) from Di = β0 + βzZi + βxXi + υi and obtain
D̂ = β̂0 + β̂Z Z + β̂X X

Step 2 Plug D̂ and estimate (α̂, δ̂ , δ̂X ) from Yi = α + δ D̂i + δX Xi + ηi

Can be translated as

Step 1 Regress D on all sources of exogenous variation (Z and X )
Step 2 Regress Y on the predicted values D̂ of D and exogenous variables X

(not instruments!)



Mechanics (it is a simple projection)

X = [1,X ,D] Z = [1,X ,Z ] yi = X iβ + ei

β̂OLS = (X T X)−1X T Y 6→P β

because E(X T e) 6= 0

Regress all the columns of X onto Z to obtain X̂
X̂ = Z(Z T Z)−1Z T X = PZ X
(note that projecting X on Z will give us the same X because it is in Z !)

Regress y on X̂
β̂IV = (X̂

T
X̂)−1X̂

T
y = ((PZ X)T PZ X)−1(PZ X)T y = (X T PZ︸︷︷︸

=PT
Z PZ

X)−1X T PZ y



Careful with the standard errors

The second-stage regression does not give you the correct standard errors.
(It ignores the first stage uncertainty).

Notice that IV estimator is weighted least squares estimator:
β̂IV = (X̂

T
X̂)−1X̂

T
y = (X T PZ X)−1X T PZ y

and thus σ̂2(X T PZ X)−1 is a consistent estimator of covariance matrix of β̂IV

under homoscedasticity.



Weak instruments

D Y

U

Z

X

We relied on the fact that there exists this connection: Z → D

But what if the link is only weak?



Weak instruments

So what if the correlation is very small(?)

δ̂ =
Ĉov(Y ,Z )

Ĉov(D,Z )︸ ︷︷ ︸
very small

=

Ĉov(Y ,Z)
V̂ar(Z)

Ĉov(D,Z)
V̂ar(Z)

=
α̂Z

β̂Z

Then the β̂Z is very imprecisely estimated. And this leads to an imprecise
estimator for δ̂ itself.



Weak instruments

δ̂ = δ +

→P0???︷ ︸︸ ︷
1
n ∑

n
i=1(Zi − Z̄ )ηi

1
n

n

∑
i=1

(Zi − Z̄ )Di︸ ︷︷ ︸
very small

Even a tiny small deviation from the exogeneity Cov(Z ,η) = 0 may severely
bias our estimator(!)

This is a huge deal.
Bound, John, David A. Jaeger, and Regina M. Baker. ”Problems with instrumental variables estimation when the correlation between the instruments and

the endogenous explanatory variable is weak.” Journal of the American statistical association 90.430 (1995): 443-450.



Weak instruments

Luckily, we can check if we have this problem simply by looking at the first
stage.

Common rule of thumb is to have the value of F -statistic from the first stage
regression at least 10.

There is a huge strain of literature on weak instruments, many weak instruments etc.
Older Survey: Stock, James H., Jonathan H. Wright, and Motohiro Yogo. ”A survey of weak instruments and weak identification in generalized method of
moments.” Journal of Business & Economic Statistics 20.4 (2002): 518-529.
Newer survey Andrews, Isaiah, James H. Stock, and Liyang Sun. ”Weak instruments in instrumental variables regression: Theory and practice.” Annual
Review of Economics 11 (2019): 727-753.

Statistical Inference: Staiger, Douglas O., and James H. Stock. ”Instrumental variables regression with weak instruments.” (1994).



Heterogenous effects

https://www.nobelprize.org/uploads/2021/10/fig4 ek en 21 LATE.pdf



Heterogenous effects

A natural question to ask is the following:

Do all people have the same effect from the treatment?

If not, who are these people who benefit from the treatment?



Interpretation

We now drop the linearity assumption and consider binary treatment and
binary instrument.

Every individual i may have her own effect δi = Yi(1)−Yi(0) depending on
the treatment

Every individual i may also react different in terms of treatment Di(1)−Di(1)
on the instrument

Z - randomly offered training
D - actual training
Y - outcome



always-taker Di(1) = 1 and Di(0) = 1

complier Di(1) = 1 and Di(0) = 0

defier Di(1) = 0 and Di(0) = 1

never-taker Di(1) = 0 and Di(0) = 0

Denote Yi(d ,z) as a potential outcome under Di = d and Zi = z.



If
Instrument is independent of potential outcomes:
(Yi(Di(1),1).Yi(Di(0),0),Di(1),Di(0))⊥⊥ Zi

Exclusion restriction: Yi(d)≡ Yi(d ,1) = Yi(d ,0)

Relevance restriction: E[Di(1)−Di(0)] 6= 0

Monotonicity: Di(1)≥ Di(0)

Stable Unit Treatment Value Assumption: There are no interaction between
individuals and there is no hidden variation in the treatment

then

δIV =
E [Y |Z = 1]−E [Y |Z = 0]

E [D|Z = 1]−E [D|Z = 0]
= E [Y (1)−Y (0)|D(1) > D(0)]︸ ︷︷ ︸

Local average treatment effect

Imbens, G. W. and Angrist, J. D. (1994). Identication and Estimation of Local Average Treatment Effects. Econometrica



Proof
E[Y |Z = 1] =︸︷︷︸

exclusion

E[Y (0)+(Y (1)−Y (0))D|Z = 1] =︸︷︷︸
Ind.

E[Y (0)+(Y (1)−Y (0))D(1)]

and also
E[Y |Z = 0] = E[Y (0)+(Y (1)−Y (0))D(0)]

so

E[Y |Z = 1]−E[Y |Z = 0] =︸︷︷︸
mono

E[(Y (1)−Y (0))(D(1)−D(0))]

= E[(Y (1)−Y (0))|D(1)> D(0)]P(D(1)> D(0))

Similarly

E[D|Z = 1]−E[D|Z = 0] = E[D(1)−D(0)] = P(D(1)> D(0))



Effects on the compliers



Effects on the compliers

LATE interpretation is specific for the instrument
no restrictions were placed on the homogeneity of the effects
no linearity was assumed

Extensions:
Further discussions: Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of Causal Effects Using Instrumental Variables. Journal
of the American Statistical Association.
Multiple valued treatment: Angrist, Joshua D., and Guido W. Imbens. ”Two-stage least squares estimation of average causal effects in models
with variable treatment intensity.” Journal of the American statistical Association 90.430 (1995): 431-442.

Non-parametric LATE with covariates: Frölich, Markus. ”Nonparametric IV estimation of local average treatment effects with covariates.”
Journal of Econometrics 139.1 (2007): 35-75.



Further applications
Returns to schooling - Quarter of birth instrument (Andgrist and
Krueger, 1991)
Returns to schooling - Nearby college instrument (Card, 1995)
Returns to schooling - Different instruments (Ichino and Winter-Ebmer,
1999)
Classroom size - Legislative rule as instrument (Angrist and Lavy 1999)
Effect of military service on labor market outcomes - Draft lottery
instrument (Angrist, 1990)
Impact of institutions on economic growth - Mortality instrument
(Acemoglu, Johnson and Robinson, 2001), Comment (Albouy, 2012),
Reply (AJR, 2012)
Impact of economic conditions on prob. of a conflict - rainfall
instrument (Miguel, Satyanath and Segenti, 2004)



Further applications

Demand for fish - Weather as an IV (Angrist, Graddy and Imbens)
Childbearing on labor supply - twin births as a natural experiment
(Jacobsen, Pearce and Rosenbloom. 1999) and (Black, Devereux and
Salvanes, 2015)
Using economic theory to estimate supply and demand curves using
variation in a single tax rate(!) (Zoutman, Gavrilova and Hopland. 2018)
Parental Meth Abuse and Foster Care - use supply shock on meth
market as instrument (Cunningham and Finlay, 2013)



Measurement error

Suppose that X is measured with error:

Yi = β0 + βX (X∗i + ui)︸ ︷︷ ︸
Xi

+εi

β̂X =
Ĉov(X ,Y )

V̂ar(X)
=

Ĉov(X∗+ u,β0 + βX (X∗+ u) + ε)

V̂ar(X∗+ u)
→P βX

σ2
X

σ2
X + σ2

u

which is attenuated even if ui is uncorrelated with both X∗i and εi



AJR 2001

Institutions - with more secure property rights people will invest more
in physical and human capital. Also includes indpendent judiciary, equal
access to education and ensuring civil liberties
Do institutions matter? well, they do: North/South Korea, West/East
Germany.
Different colonization policies: extractive (Kongo) vs strong property
rights (Australia, Canada, USA)
Higher mortality made it more difficult to set up settlements with
strong property rights
Settler mortality→ Settlements→ Early institutions→ Current
institutions→ Current performance



Reduced form

Fig 1 in AJR 2001



AJR 2001

Exclusion restriction: mortality more that 100yrs ago have no direct
impact on GDP per capita today (apart the channel via institutions).
Why? Mortality mainly due to malaria and yellow fever.
Insensitive to outliers (USA, Canada, NZ, Australia)
Africa dummy and distance to equator insignificant
Results robust to different covariates added: identify of main colonizer,
climate, religion, geography, natural resources, current disease. (in DAG
language: closing all the backdoor paths)



Table 1 in AJR 2001



Model

AJR 2001



Fig 3 in AJR 2001



IV estimates

Table 4 in AJR 2001



First stage

Table 4 in AJR 2001



OLS

Table 4 in AJR 2001

This is compatible with attenuation bias explanation.



Example: Meth, Parents and Foster Care
(Cunningham and Finley, 2013)

effect of drug abuse on parenting
In 1994 - regulation on ephedrine→ more difficult to produce meth



Fig 3 from Cunningham and Finley (2013)



Fig 4 from Cunningham and Finley (2013)



Fig 5 from Cunningham and Finley (2013)



s - state
t - specific month
γs,δs - state fixed effects
φs,λt - month fixed effects
tst ,ωst - state specific linear time trends
Xst - log of state population of whites aged 0-19, 15-49, cigarette tax,
state unemployment rate, log of alcohol treatment cases for whites



Part of Table 3 from Cunningham and Finley (2013)



Overidentifying restrictions test
Z may be multidimensional.

Two stage least squares procedure still can be used.

Say we have 2 instruments: Under instrument exogeneity, both of them are
fine and hence β̂IV1 should be similar to β̂IV2

Under exogeneity, both Z1 and Z2 should have zero coefficients in a
regression with residuals (using original X and β̂IV )

F -statistic that jointly tests this multiplied with m is called J-statistic ∼ χ2
q .

Where m is the number of instruments, q is the number of endogenous
variables and q = m− k is the number of over-identifying restrictions.

See row Sargan-row in summary table of ivreg.



Wrap up

IV approach allows to make use of quasi-experimental variation in the
treatment that is induced by the instrument.
IV provides this exogenous variation
IV needs to be strong enough otherwise estimates are sensitive
Under monotonicity condition, results informs us only about a specific
subpopulation (compliers).



(*) More on IVs

Testable implications on IVs
Balke and Pearl (1997) for binary Y - based on linear programming
Huber and Mellace, (2015) - under LATE assumptions
Kitagawa, (2021) extends Balke and Peal (1997) results to continuous Y

Zhang. Tian and Bareinboim (2021) - general algorithm for
identification of distributions of counterfactual outcomes



Fig 1 in Balke and Pearl (1997)

If Y ,D,Z are discrete, we have that

max
d

∑
y

max
z

P(y ,d |z)≤ 1

Furthermore ATE = E [Y (1)−Y (0)] is bounded.



Thank you for your attention!
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