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@ In many situations the treatment happens on an aggregate level (city,
state).
@ We may not have a natural unit to use as a control

@ We create it artificially (hence synthetic) by weighting other units so
that the characteristics of the weighted unit resembles the one of the

treated unit



Example: Tabacco control program and cigarettes sales
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Example: The economic cost of a conflict
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Example: Reunification of Germany and Economic growth
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@ time1,2,...,T
@ J+1units, listreatedin To+1,..., T
@ Synthetic control is a weighted average of the J control units.
(W, ..., Wyi1) With w; >0 ):J+21 W =
@ Weights wj* are chosen optimally to make the synthetic control similar
to the control one in observed characteristics.
@ Synthetic control estimator is
J+1

pa %
Te=Yi— Y, W Vi
j=2



Choosing the weights

What does optimally mean?

We need some metric. Assume k variables Xi, ..., Xk. E.g. we can choose
weighted Euclidean metric.

Pre-intervention outcomes are also included in the set of predictors!

Larger weights on more important predictors.

K J+1 2
argmin Vi | Xp1 — Wh, - Xpj
g " /; h hi /;2 h* Xnj



Assuming a linear factor model: If you manage to match controls and
outcome in the pre-treatment periods (T = 1,..., Tp) then you can bound the
bias of the synthetic control method (Abadie, Diamond, and Hainmueller
2010).



Example: Tabacco again
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Example: Tabacco again
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Weigh
e I g tS Table 2. State weights in the synthetic California

State Weight State Weight

Alabama 0 Montana 0.199

Alaska - Nebraska 0

Arizona qQ - Nevada 0234

Arkansas 0 New Hampshire 0 z

Colorado 0.164 New Jersey - §

Connecticut 0.069 New Mexico 0 Z

Delaware 0 New York - =3

District of Columbi - North Carolina 0 5

Florida - North Dakota 0 E

Georgia 0 Ohio. 0 ]

Hawaii /> - Oklahoma 0 R I N
Idaho 0 Oregon - £

linois SFO\Y%( 0 Pennsylvania 0 s

Indiana (1 a 3ofog> 0 Rhode Island 0o £

Towa \3 0 South Carolina 0 3

Kansas 0 South Dakota 0 %

Kentucky 0 Tennessee 0 g o

Louisiana Q) ¢ Texas o £ 9 :

Maine 0 Utah 034 & Passage of Proposition 99 —> ~"\
Maryland - Vermont 0 =

Massachusetts - Virginia 0 T

Michigan - Washington - .

Mimesota ’ s Virginia 0 L
Mississippi 0 Wisconsin 0 5 2
Missouri 0 Wyoming

Ysynth,t = 0.1o04 YCo/orado,t +0.069 YConnecticut,t)"‘ 0.1999 YMontana,t +
0.234 YNevada,t +0.334 YUtah,t
%Ca/ifornia,t - YCalifornia,t - YsynthJ
N—— N—— N——

real outcome  synthetic control



Balance

Table 1. Cigarette sales predictor means

California
Average of
Variables Real Synthetic 38 control states
o |
Ln(GDP per capita) 10.08 9.86
Percent aged 15-24 17.40 wu_'\ 17.29
Retail price 89.42 87.27
Beer consumption per capita 2428801242 23.75
Cigarette sales per capita 1988 | 90.10 114.20
Cigarette sales per capita 1980 [20.2 136.58
Cigarette sales per capita 1975 127.1 132.81

Abadie, Diamond and Hainmueller (2010)



Inference

Use permutation method.

@ Consider every control as a "fake” treatment and estimate placebo
effect

@ Compare the effect for treated unit with those placebo effects
@ Effect for the treated should be much larger than the placebo units
@ But the pre-treatment fits may be different for different control units

@ Abadie et al. (2010) suggests to look a the distribution of ratio of post
vs pre-treatment fit

@ Yes, we look at the whole distribution, not only p-values.



Placebos

gap in per—capita cigarette sales (in packs)
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Inference

California

) \

frequency

! T T T | | T
0 20 40 60 80 100 120

post/pre—Proposition 99 mean squared prediction error

Abadie, Diamond and Hainmueller (2010)



@ If the fit is poor in the pre-intervention period. Do not do SCM, do
something else.

@ Small Ty and large J — risk of overfitting

@ Homogenise your pool of potential controls. Make them similar to the
control unit.

@ Again make comparison more plausible.



But why not regression instead?
Predictors X (with intercept) are used to predict y ; (post intervention
outcomes for J control units at time t € To+1,..., T):

Bos: = (X X0) ' XJ your

A _ Ty \—1yT. _ T
Xi_Porsi = Xi(X i@ Xo Yot =W _ Yo
XK Kx1 wT = OLS weights X g
Let us denote Yy = [y0770+1 Yo.To+2 -+ Yo,r| Whichis J x (T — Tp) matrix.
Bors = (X X ) 'X] Y
Kx(T—To) KxdJ JxK KxdJ Jx(T—Tp)
o _ Ty \-1yTyv _ T
X1 BOLS = \)(1 (XO Xo) XO YO = W Yo

e 5
XK Kx(T—To) wT = OLS weights X Ux(T—To)



But why not regression instead?

SYNTHETIC CONTROL WEIGHTS FOR WEST GERMANY

TABLE 2

Australia
Austria
Belgium
Denmark
France
Greece

Ttaly

Japan
Netherlands
New Zealand
Norway
Portugal
Spain
Switzerland
United Kingdom
United States

Abadie (2021)

TABLE 3

REGRESsSION WEIGHTS FOR WEST GERMANY

Australia
Austria
Belgium
Denmark
France
Greece

Ltaly

Japan
Netherlands
New Zealand
Norway
Portugal
Spain
Switzerland
United Kingdom
United States

0.12

0.26

0.00

0.08

0.04

—0.09

N )—0.05
weights = o

0.14
. 0.12
V\JLE‘)M'\U(_ “ 0.04
\; —0.08

—0.01

) o
0.06

0.13




@ From OLS we have also weights (!)

@ May be negative — difficult to interpret
@ OLS weights are not sparse

@ Sparsity is nice for interpretation



Sparsity?

Abadie (2021)



Induce sparsity (penalized estimator)

We may induce the sparsity, so penalize for large differences.

1

k J4-1 JH4-1 %
arg mwi/n Z V| Xp1 — Z Wh - Xh/ +A Z Wh Z Vh- Xh1 th
h=1

J/

Regular SCM Penalty for non-sparse solution

We are in between the two extreme cases:
@ 1 — 0 - synthetic control method
@ 1 — oo - nearest neighbor matching



Alberto Abadie on DAGs

"Synthetic controls,... like in any other method for causal inference, what you
won't be able to do is to whisper a question in a microphone to a computer and
DAG will produce the answer for you. You have to make design decisions about
what is a good comparison and what is not. And that’s the case here too.”

(Abadie in https://wuw.youtube.com/watch?v=nKzNp-qpE-I (from 59:50))



Advantages

@ No extrapolation is made

@ The weights make it transparent

@ We know exactly how much each control unit contributes
@ Weights are non-negative (unlike for OLS)

@ You can fix the weights before the change has occurred.

@ Thus you avoid specification fishing.

@ You don't need many units, but the right units

@ You are relatively close to the data — the method is simple



We keep getting back to the most important question:

What do we need to do in order to have a
meaningful comparison?



What do many of these methods (RDD, DiD, SCM) have in common??

[dramatic pause]

They are visual.

Professional graphics sells. Make sure to produce beautiful graphs. (See the
works of Jonathan Schwabish on how to make great visualizations).

o Schwabish, Jonathan A. "An economist’s guide to visualizing data.” Journal of Economic Perspectives 28.1 (2014): 209-34.
] Schwabish, Jonathan. Better presentations. Columbia University Press, 2016.

[~ ] Schwabish, Jonathan. Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks. Columbia University Press, 2021.



Synthetic controls and experimentation

@ What is the impact of a new policy?
@ We can only experiment on larger units (say cities).

@ We choose some units (cities) and weight them to construct synthetic
treatment unit, that resembles the population of interest.

@ Construct synthetic control unit for this synthetic treatment unit
@ And compare them. Yes, that's it.

@ This has been used in the industry for a longer time.

@ Abadie and Zhao (2021) worked out the math.



@ SCMis new

@ It is very popular and constantly getting more traction
@ Much will be done in the next few years

@ It became a standard in econometrics toolbox



Thank you for your attention!
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