

Chapter 15

Market Demand

- ◆ Think of an economy containing n consumers, denoted by i = 1, ..., n.
- ◆ Consumer i's ordinary demand function for commodity j is x_j^{*i}(p₁,p₂,mⁱ)

From Individual to Market

Demand Functions

♦ When all consumers are price-takers, the market demand function for commodity j is

$$X_{j}(p_{1},p_{2},m^{1},\cdots,m^{n}) = \sum_{i=1}^{n} x_{j}^{*i}(p_{1},p_{2},m^{i}).$$

♦ If all consumers are identical then

$$X_{j}(p_{1},p_{2},M) = n \times x_{j}^{*}(p_{1},p_{2},m)$$

where M = nm.

- ◆ The market demand curve is the "horizontal sum" of the individual consumers' demand curves.
- ◆ E.g. suppose there are only two consumers; i = A,B.

Elasticities

- ◆ Elasticity measures the "sensitivity" of one variable with respect to another.
- ◆ The elasticity of variable X with respect to variable Y is

$$\varepsilon_{\mathbf{X},\mathbf{y}} = \frac{\% \Delta \mathbf{X}}{\% \Delta \mathbf{y}}.$$

Economic Applications of

Elasticity

- ♦ Economists use elasticities to measure the sensitivity of
 - –quantity demanded of commodity i with respect to the price of commodity i (own-price elasticity of demand)
 - demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand).

Economic Applications of Elasticity

- demand for commodity i with respect to income (income elasticity of demand)
- –quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

- quantity supplied of commodity i
 with respect to the wage rate
 (elasticity of supply with respect to
 the price of labor)
- -and many, many others.

◆ Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity's own price?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?

In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ? It is the same in both cases.

- ◆ Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price?
- ◆ A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

$$\varepsilon_{\mathbf{x}_{1}^{*},\mathbf{p}_{1}} = \frac{\% \Delta \mathbf{x}_{1}^{*}}{\% \Delta \mathbf{p}_{1}}$$

is a ratio of percentages and so has no units of measurement.

Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

Arc and Point Elasticities

- ◆ An "average" own-price elasticity of demand for commodity i over an interval of values for p_i is an arcelasticity, usually computed by a mid-point formula.
- **♦** Elasticity computed for a single value of p_i is a point elasticity.

$$\%\Delta p_{i} = 100 \times \frac{2n}{p_{i}}$$

$$\%\Delta p_{i} = 100 \times \frac{2h}{p_{i}}$$
 $\%\Delta X_{i}^{*} = 100 \times \frac{(X_{i}"-X_{i}"")}{(X_{i}"+X_{i}"")/2}$

$$\varepsilon_{\mathbf{X_i^*,p_i}} = \frac{\% \Delta \mathbf{X_i^*}}{\% \Delta \mathbf{p_i}}$$

$$\%\Delta p_{i} = 100 \times \frac{2h}{p_{i}}$$

$$\%\Delta X_{i}^{*} = 100 \times \frac{(X_{i}"-X_{i}"")}{(X_{i}"+X_{i}"")/2}$$

Arc Own-Price Elasticity $\%\Delta p_{i} = 100 \times \frac{2h}{p_{i}}$

$$\varepsilon_{\mathbf{X}_{i}^{*},\mathbf{p}_{i}} = \frac{\% \Delta \mathbf{X}_{i}^{*}}{\% \Delta \mathbf{p}_{i}}$$

$$\%\Delta X_{i}^{*} = 100 \times \frac{(X_{i}"-X_{i}"")}{(X_{i}"+X_{i}"")/2}$$

So

$$\varepsilon_{X_{i}^{*},p_{i}}^{*} = \frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}^{*}} = \frac{p_{i}'}{(X_{i}'' + X_{i}''')/2} \times \frac{(X_{i}'' - X_{i}''')}{2h}.$$

is the arc own-price elasticity of demand.

Point Own-Price Elasticity

$$\varepsilon_{\mathbf{X}_{i}^{*},\mathbf{p}_{i}} = \frac{\mathbf{p}_{i}}{\mathbf{X}_{i}^{*}} \times \frac{d\mathbf{X}_{i}^{*}}{d\mathbf{p}_{i}}$$

E.g. Suppose $p_i = a - bX_i$. Then $X_i = (a-p_i)/b$ and

$$\frac{dX_{i}^{*}}{dp_{i}} = -\frac{1}{b}.$$
 Therefore,

$$\varepsilon_{X_i^*,p_i} = \frac{p_i}{(a-p_i)/b} \times \left(-\frac{1}{b}\right) = -\frac{p_i}{a-p_i}.$$

Point Own-Price Elasticity

Point Own-Price Elasticity

Point Own-Price Elasticity $\varepsilon_{X_{i}^{*},p_{i}} = \frac{p_{i}}{X_{i}^{*}} \times \frac{dX_{i}^{*}}{dp_{i}}$

E.g.
$$X_i^* = kp_i^a$$
. Then $\frac{dX_i^*}{dp_i} = ap_i^{a-1}$ so
$$\varepsilon_{X_i^*,p_i} = \frac{p_i}{kp_i^a} \times kap_i^{a-1} = a\frac{p_i^a}{p_i^a} = a$$
.

$$X_i^*$$

- ♦ If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
- ♦ Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

- ♦ If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.
- ♦ Hence own-price elastic demand causes sellers' revenues to fall as price rises.

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

$$= X^*(p) \left[1 + \frac{p}{X^*(p)} \frac{dX^*}{dp} \right]$$

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

$$= X^*(p) \left[1 + \frac{p}{X^*(p)} \frac{dX^*}{dp} \right]$$

$$= \mathbf{X}^*(\mathbf{p})[1+\varepsilon].$$

Revenue and Own-Price Elasticity of Demand $\frac{dR}{dp} = X^*(p)[1+\varepsilon]$

$$\frac{\mathsf{dR}}{\mathsf{dp}} = \mathbf{X}^*(\mathbf{p})[1+\varepsilon]$$

so if
$$\varepsilon = -1$$
 then $\frac{dR}{dp} = 0$

and a change to price does not alter sellers' revenue.

$$\frac{dR}{dp} = X^*(p)[1+\varepsilon]$$

but if
$$-1 < \varepsilon \le 0$$
 then $\frac{dR}{dp} > 0$

and a price increase raises sellers' revenue.

$$\frac{dR}{dp} = X^*(p)[1+\varepsilon]$$

And if
$$\varepsilon < -1$$
 then $\frac{dR}{dp} < 0$

and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand In summary:

Own-price inelastic demand; $-1 < \varepsilon \le 0$ price rise causes rise in sellers' revenue. Own-price unit elastic demand; $\varepsilon = -1$ price rise causes no change in sellers' revenue.

Own-price elastic demand; $\varepsilon < -1$ price rise causes fall in sellers' revenue.

◆ A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

$$MR(q) = \frac{dR(q)}{dq}.$$

p(q) denotes the seller's inverse demand function; i.e. the price at which the seller can sell q units. Then

so
$$R(q) = p(q) \times q$$

$$MR(q) = \frac{dR(q)}{dq} = \frac{dp(q)}{dq}q + p(q)$$

$$= p(q) \left[1 + \frac{q}{p(q)} \frac{dp(q)}{dq}\right].$$

$$MR(q) = p(q) \left[1 + \frac{q}{p(q)} \frac{dp(q)}{dq} \right].$$

and
$$\varepsilon = \frac{dq}{dp} \times \frac{p}{q}$$

so
$$MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right].$$

$$MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right]$$
 says that the rate

at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; *i.e.*, upon the of the own-price elasticity of demand.

$$\mathbf{MR}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) \left[1 + \frac{1}{\varepsilon} \right]$$

If
$$\varepsilon = -1$$
 then $MR(q) = 0$.
If $-1 < \varepsilon \le 0$ then $MR(q) < 0$.
If $\varepsilon < -1$ then $MR(q) > 0$.

If $\varepsilon = -1$ then MR(q) = 0. Selling one more unit does not change the seller's revenue.

If $-1 < \varepsilon \le 0$ then MR(q) < 0. Selling one more unit reduces the seller's revenue.

If $\varepsilon < -1$ then MR(q) > 0. Selling one more unit raises the seller's revenue.

Marginal Revenue and Own-Price Elasticity of Demand An example with linear inverse demand. p(q) = a - bq.

Then
$$R(q) = p(q)q = (a - bq)q$$

and $MR(q) = a - 2bq$.

