Drum -Buffer-Rope

Principy

Resource : http://www.allaboutlean.com/drum-buffer-rope/

Simplified Drum Buffer Rope (S-DBR)

Principy

Most importantly, it does try to constrain the work-in-progress (WIP) and aims to prevent an overloading of the system. As such it can be considered sort of a pull system like Kanban or CONWIP (Constant Work in Progress), and hence Drum-Buffer-Rope is superior to the traditional push systems.

WIP=0

DBR disadvantage : no Consideration for Shifting Bottlenecks

System is not controlled

System not controlled and DBR modification

ROPE= feedback

Rope opened raw material valve

We Measure Operational Efficiency

- Work flows from left to right through processes with
 capacity shown.

Process

Capability (Throughput Rate)
Parts/Day
$\mathbf{R M}=$ raw material
FG $=$ finished goods
Excellent Efficiency--Near 100\%
Chronic Complainer

Reward Based on Efficiency

- Work flows from left to right.

Capability(Throughput Rate)

Parts/Day	7	9	5

Both (D and E) found ways to look busy and appear to have a capacity of 5 parts/day.
„down stream"

In reality...

- Processes A and B won't produce more than Process C for long.

Potential Part/Day

Reality

7	9	5	8	6
5	5	5	5	5

P/D=parts/day

Then Variability Sets In

- Processing times are just AVERAGE Estimates

Process	A	B	C	D	E
RM					
Reality	52	52	52	52	52

What's an Average? 50\%

- Half the time there are 5 or more per day at each process--Half the time less

Over all: $0,5^{*} 0,5^{*} 0,5^{*} 0,5^{*} 0,5=0,03125=3 \%$ Chance of 5 per day !!!

Previous Solution (not a good one !): Inventory

- Put a day of inventory (WIP) at each process!

WIP= Work in Progress

System Variability Takes Over \rightarrow Chaos

Inventory (WIP) quickly shifts position. Inventory manager tries to smooth it out. Distribution problems result. Costs go up !!!

Variable
Process

System Variability Takes Over--Chaos

An Average of 5 means sometimes 3 and sometime 7

Variable
52
52
52
52
52

Process

Shifting work-in-progress (WIP) creates large queues at some locations. This makes work wait longer to be processed.
(based on Little s law ->WIP=TH xCT)
TH=průtok
$\mathbf{C T}=\mathbf{C y c l e}$ Time=CT=average time from when the job is released
into station (machine or line) to when it exits

System Variability Takes Over--Chaos

Process A B C D E

WIP

Variable 52525252
Process
Shifting work-in-process creates large queues at some locations. This makes work wait longer to be processed.

Other workstations are starving for work (B). The work they could do is delayed because they have no input material. They can't take advantage of their extra capability. So....... ?

System Variability Takes Over--Chaos

Variable
5252
52
52
52
Process
So... Management Helps! Management puts in more work (Inventory) (rate of input RM) to give everyone something to do (Cost World Approach)!
Result: It takes longer and longer from time of release until final shipping. More and more delay!!!!!!!!!!!

TOC Steps to
 Continuous Improvement

Step 1. Identify the system's constraint.
Step 2. Exploit the system's constraint.
Step 3. Subordinate everything else to the above decision.

Step 4. Elevate the system's constraint.
Step 5. If a constraint is broken (that is, relieved or improved), go back to Step 1. But don't allow inertia to become a constraint.

Five Steps Applied to Flow Operations

Five Focusing Steps
Step 1. Identify the Constraint (The Drum) - CRT
Step 2. Exploit the Constraint (Buffer the Drum) - time reserve
Step 3. Subordinate Everything Else (Rope) - feadback
Step 4. Elevate the Constraint (\$?->related to additional cost)
Step 5. If the Constraint Moves, Start Over

Understanding Buffers

- The "Buffer" is Time!
- In general, the buffer is the total time from work release until the work arrives at the constraint.
- Contents of the buffer alters (see below)
- If different items spend different time at the constraint, then number of items in the buffer changes
- but Time in the buffer remains constant.

We need more than one Buffer

There is variability in the Constraint.
To protect our delivery to our customer we need a finished goods buffer.

- There is variability in our suppliers. We need to protect ourselves from unreliable delivery.

Buffer Time is Constant-Predictable

Buffer Management

Time until Scheduled at Constraint

Problem Identification

Buffer

Additional Buffers

- Constraint Buffer (as we discussed)
- Protects the Constraint from running out of work
- Finished Goods Buffer
- Protects customer delivery from Constraint variation
- Raw Material Buffer
- Protects the Release of material from suppliers
- Assembly Buffer
- Facilitates speedy flow of products See interesting video
https://www.youtube.com/watch?v=8yehd2ZsKH0

DBR additional information

- https://www.dbrmfg.co.nz/Production\ D BR.htm

DBF postulates

- Drum-Buffer-Rope (DBR) is a theory-based resource planning and scheduling solution restriction (TOC).
- The basic assumption of DBR is that there is one or a limited number of capacities in each company
- limited resources that are key to the performance (efficiency) of the company.
- We call this limited resource the "drum" (DRUM) because it sets the pace for everyone
- other resources.
- To achieve the maximum output of the system, we must first manage our limited (limited) system source = DRUM), i.e. its use, planning which orders will be realized on it.

Ensuring that the DRUM operates continuously (see steps 2-3 of the five TOC corks) is necessary.

- Failure of any source inputs (material or loss of sources before our limitation) is
- provided by time reserve (bumper, BUFFER).
- A feedback element ensure synchronization with other sources called a rope (ROPE)

Scheduling

- Each source must be in terms of its load, and available capacity must be assessed individually
- For example, let's have 1000 hours available and demand 880 hours for that capacity.
- However, this demand does not describe the indicated situation with sufficient precision.
- In the picture, we see that most work centers (WC) still have sufficient capacity while WC3 is fully loaded, and it is not possible to use it for a possible next job (time requirement)
- The actual situation is that the capacity of the company is limited because we can not increase the number of orders because we are already determined by the filling capacity of WC3

$C 4+C 1+C 2=1000-880=120$

What we have at our disposal and what are the requirements

We need to consider the time frame in which demand occurs. A monthly or weekly demand plan may not be enough to take action to meet the requirements over time.

Requirement : what we need
Capacity: what is available

TOC Approach

- To improve the system, we must optimize the weakest link; restriction (DRUM). All other sources are subject to this decision. The scheduling is as follows :
- 1.Develop a detailed drum work assignment plan (DRUM)
- 2. BUFFER is added to protect performance our limited resource
- 3. The work schedule of other resources is synchronized according to the schedule drum (DRUM)

Resource utilization (drum) to the maximum

Capacity: what is available
Requirement : what we need
40 hours/week
P1 requirement
51 pcs per day 5
50 pcs per day 3
P2 requirement
10 pcs per days 1-5

Scheduling on CCR (drum)

CCR =Capacity-Constrained Resource, Qty=Quantity

