Linear programming-introduction

Ing.J.Skorkovský,CSc.

USE

- Slitting and Levelling of material (coils, bars, sheets)-Cutting material, trimming,...
- Blending - blending, diet, feeding rations for animals, ..
- Transport problems - material flow from stock to the destination and route planning - shortest route
- Assignment of resources with limited capacities - CCR
- Sources : Operation Management, Quality and Competitiveness in a global environment, Russel and Taylor (can be found easily in ESF library)

CCR -additional information

- There are 3 categories of resources from the point of view of capacity:
- Bottleneck
- CCR - Capacity Constraint Resource
- Non-CCR

Bottleneck - demand on the machine is higher than the available capacity. Works 24×7, the whole year around.

CCR (Capacity Constraint Resource) - according to the available time tha you allow it to work, it becomes a trouble maker. The load bigger than 70%. The idle time is so little and unstable that in no time it can turn to Bottleneck.

Non-CCR - idle capacity includes some protective capacity.

Formulation of the simple model

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

Which combination of products will have the greatest return at the limits of maximum production capacity type $=40$ hours and moreover, the amount of material that is limited to $\mathbf{1 2 0} \mathbf{~ k g}$ of clay?

Note: A similar task in terms of flow was solved in the P\&Q example (only valid for Czech student), where the limitation in resource
B and with a maximum capacity of 2400 minutes)

Description x 1 and x 2 stands for variables, Material means e.g. 4 kg for one piece (product)

Basic structures and used terminology

Target function

- We minimize our target function in the form of:

Z=Cx

$\mathrm{Z}=\mathrm{c} 1^{*} \times 1+\mathrm{c} 2^{*} \times 2+\ldots . . .+n^{*} \mathrm{xn}$ with respect to the matrix of restrictive conditions: (in our case c1=40 and c2=50 which means return/pc)

- It is a classical system of linear equations is $A x=B$
- The solving of such a linear equation system, e.g. By use of GAUSS-JORDAN algorithm is not required if we will use Excel Solver add-on.
- \quad xij : decision variable = level of operation activity specified by this variable
- Bi : restrictive conditions, allowed deviations from the norm (in time and materiál as well)
- cj : coefficient of the target function (in our case returns, meaning return 40 and 50)
- Aij : restrictive coefficients: work and material for one unit (pcs) of the product

Example | (introduction to the problem - practical demonstration)

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

$$
\mathbf{Z}=\mathbf{c} \mathbf{1}^{*} \mathbf{x} \mathbf{1 + c} \mathbf{2}^{*} \mathbf{x} \mathbf{2 +}+\ldots . \mathbf{H}^{*} \mathbf{x n} \text { (classical equation from) }
$$

Target function: $\mathbf{Z}=40^{*} \times 1+50^{*} x 2$, which we must maximize

Maximal production capacity $=40$ hours and Maximal quantity of material $=120 \mathrm{~kg}$ (B1 and B2 in our mathematical expression)

Specifications of task restrictions by use of 2×2 matrix:

```
\(1^{*} x 1+2^{*} x 2=40 \quad\) (work-no more than 40 hours)
\(4^{*} x 1+3 * x 2=120\) (material=kg of clay in our case)->x1=(40-2x2)+3x2=120....
```

Manual solving : -> $x 1=24$ a $\times 2=8$ and after substitution od variables (24 pcs of Dish and 8 pcs of Mug)
in target function we will get

$$
Z=40 * 24+50 * 8=1360
$$

(optimal Return meets the point B - see next slide)

Graphical solution

I apologize for the inappropriate graphic expression....

Use of Solver (Czech EXCEL)

Možnosti aplikace Excel

| Obecné |
| :--- | :--- |
| Vzorce |
| Kontrola pravopisu a mluvnice |
| Uložit |
| Jazyk |
| Upřesnit |
| Prizpúsobit pás karet |
| Panel nástrojủ Rychlý pǐistup |
| Doplňky |
| Centrum zabezpečení |

Neaktivní doplñky aplikací
Analytické nástroje
Analyticke nàstroje
Analytické nástroje - VBA
Analytické nást
Datum (XML)
Datum (XML)
Microsoft Actions Pane 3
Microsoft Actions Pane 3
Nástroje pro měnu euro
Neviditelný obsah
Sknté listy
Skryté radky a sloupce
Vlastní data XML
Záhlaví a zápatí

Use o solver

Target function $\mathrm{Z}=\mathrm{x} 1^{*} \mathrm{c} 1+\mathrm{x} 2^{*} \mathrm{c} 2=40^{*} \mathrm{x} 1+50^{*} \mathrm{x} 2$
$4^{*} \times 1+3$ *x2 =120 - capacity restrictions= max quantity of material $=\mathrm{B} 1$
1 *x1 + 2 *x2 = 40 -capacity restrictions by max work capacity=B2

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

Solver start

Use of Solver (Czech- not for MHP_AOPR)

Využití Řešitele (use of Solver)

Microsoft Excel 15.0 Citlivostní sestava						
List: [Simplex_1_Misky_Hrnky_Chairs_Tables_20170228.x\|sx]List1 Sestava vytvořena: 9. 3. 2017 16:19:56						
Proměnné						
Levá strana omezující podmínky	Název	Konečná Hodnota	Redukovaná náklady	Účelová funkce koeficient	Povolený nárůst	Povoleny pokles
\$C\$4	Proměnné $\times 1, \times 2$ Miska	24	0	40	26,66666667	15
\$D\$4	Proměnné $\mathrm{x} 1, \mathrm{X} 2$ Hrnek	8	0	50	30	20
Omezující podmínky						
		Konečná	Stínová	Pravá strana	Povoleny	Povoleny
Levá strana omezující podmínky	Název	Hodnota	cena	omezující podmínky	nárůst	pokles
\$E\$7	Materiál Total	120	6	120	40	60
\$E\$8	Práce Total	40	16	40	40	10

Use of Solver (English)

Omezující podmínky

Buñka	Název	Konečná Hodnota	Lagrangeuiv
$\$ F \$ 10$	Material Total	120	6
$\$ F \$ 11$	Work Total	40	16

 (Change of parameters- not necessary for MPH_AOPR !!!!!)

