Linear programming-introduction

Ing.J.Skorkovský,CSc.

USE

- Slitting and Levelling of material (coils, bars, sheets)-Cutting material, trimming,...
- Blending blending, diet, feeding rations for animals, ...
- Transport problems material flow from stock to the destination and route planning - shortest route
- Assignment of resources with limited capacities CCR
- **Sources**: Operation Management, Quality and Competitiveness in a global environment, Russel and Taylor (can be found easily in ESF library)

CCR=Capacity Constraint Resource

See next slide for explanantion of CCR

CCR –additional information

- There are 3 categories of resources from the point of view of capacity:
- Bottleneck
- CCR Capacity Constraint Resource
- Non-CCR

Bottleneck – demand on the machine is higher than the available capacity.

Works 24x7, the whole year around.

Set-up

Production time

CCR (Capacity Constraint Resource) – according to the available time tha you allow it to work, it becomes a trouble maker. The load bigger than 70%. The idle time is so little and unstable that in no time it can turn to Bottleneck.

Non-CCR - idle capacity includes some protective capacity.

Set-up	Production time	Idle	

Formulation of the simple model

Note: A similar task in terms of flow was solved in the P&Q example (only valid for Czech student), where the limitation in resource B and with a maximum capacity of 2400 minutes)

Description x1 and x2 stands for variables, Material means e.g. 4 kg for one piece (product)

Basic structures and used terminology

Target function
7=Cx

We minimize our target function in the form of:

Z = c1*x1+c2*x2+....+cn*xn with respect to the matrix of restrictive conditions: (in our case c1=40 and c2=50 which means return/pc)

```
A11*x1 + A12*x2+ ...+ A1n*xn (<>=) B1
A22*x1 + A22*x2+ ...+ A2n*xn (<>=) B2
Am1*x1 + Am2*x2+ ...+ Amn*xn (<>=)Bm
```

- It is a classical system of linear equations is Ax=B
- The solving of such a linear equation system, e.g. By use of GAUSS-JORDAN algorithm is not required if we will use Excel Solver add-on.
- xij: decision variable = level of operation activity specified by this variable
- **Bi**: restrictive conditions, allowed deviations from the norm (in time and material as well)
- cj : coefficient of the target function (in our case returns, meaning return 40 and 50)
- Aij : restrictive coefficients: work and material for one unit (pcs) of the product

Example I (introduction to the problem – practical demonstration)

Product	Description	Work /hour	Material/pcs	Return/pcs	
Dish	x1	1	4	40	
Mug	x2	2	3	50	
	Z = c1 *x	1+c2*x2++	cn*xn (classic	al equation fr	om)

Target function: $\mathbf{Z} = \overset{\vee}{40} * x1 + \overset{\vee}{50} * x2$, which we must maximize

Maximal production capacity = 40 hours and Maximal quantity of material =120 kg (B1 and B2 in our mathematical expression)

Specifications of task restrictions by use of 2x2 matrix:

```
1*x1 + 2*x2 = 40 (work-no more than 40 hours)

4*x1 + 3*x2 = 120 (material=kg of clay in our case)->x1=(40-2x2)+3x2=120....
```

Manual solving: -> x1=24 a x2=8 and after substitution od variables (24 pcs of Dish and 8 pcs of Mug) in target function we will get Z=40*24+50*8=1360

(optimal Return meets the point B – see next slide)

Graphical solution

I apologize for the inappropriate graphic expression....

Use of Solver (Czech EXCEL)

Supplement

Use o solver (see actual Excel formulas on one of the next slides)

Target function
$$Z = x1*c1 + x2*c2 = 40*x1+50*x2$$

Solver start

Use of Solver (Czech- not for MHP_AOPR)

Využití Řešitele (use of Solver)

Microsoft Excel 15.0 Citlivostní sestava

List: [Simplex_1_Misky_Hrnky_Chairs_Tables_20170228.xlsx]List1

Sestava vytvořena: 9. 3. 2017 16:19:56

Proměnné

		Konečná	Redukovaná	Účelová funkce	Povolený	Povolený
Levá strana omezující podmínky	Název	Hodnota	náklady	koeficient	nárůst	pokles
\$C\$4	Proměnné x1,X2 Miska	24	0	40	26,66666667	15
\$D\$4	Proměnné x1,X2 Hrnek	8	0	50	30	20

Omezující podmínky

			Konečná	Stínová	Pravá	strana	Povolený	Povolený
Levá strana omezující pod	dmínky	Název	Hodnota	cena	omezujíc	í podmínky	nárůst	pokles
\$E\$7	Materiá	l Total	120		6	120	40	60
\$E\$8	Práce T	otal	40	1	.6	40	40	10

Use of Solver (English)

Microsoft Excel 14.0 Citlivostní sestava List: [LP_EXCEL_SOLVER USE_20171101.xlsx]List1 Sestava vytvořena: 2.11.2017 8:49:10

Proměnné buňky

		Konečná	Snížené
Buňka	Název	Hodnota	Gradient
\$D\$6	Varaibles X1, X2 Dish	24	0
\$E\$6	Varaibles X1, X2 Mug	8	0

Omezující podmínky

		Konečná	Lagrangeův
Buňka	Název	Hodnota	multiplikátor
\$F\$10	Material Total	120	6
\$F\$11	Work Total	40	16

New Excel List

Změna úlohy- jiné výnosy jiná omezení typu práce na dvou strojích a jejich kapacitní omezení

(Change of parameters- not necessary for MPH_AOPR !!!!!)

OK?