Binary dependent variables

LECTURE 8

09.12.2022

Lecture Outline

- The linear probability model
- Nonlinear probability models
- Probit
- Logit
- Brief introduction of maximum likelihood estimation
- Interpretation of coefficients in logit and probit models

Introduction

- So far the dependent variable (Y) has been continuous:
- Average hourly earnings
- Birth weight of babies
- What if Y is binary?
- $Y=$ get into college, or not; $X=$ parental income.
- $Y=$ person smokes, or not; $X=$ cigarette tax rate, income.
- $Y=$ mortgage application is accepted, or not; $X=$ race, income, house characteristics, marital status ...

The linear probability model

- Multiple regression model with continuous dependent variable

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}+u_{i}
$$

- The coefficient β_{j} can be interpreted as the change in Y associated with a unit change in X_{j}
- We will now discuss the case with a binary dependent variable
- We know that the expected value of a binary variable Y is

$$
E[Y]=1 \cdot \operatorname{Pr}(Y=1)+0 \cdot \operatorname{Pr}(Y=0)=\operatorname{Pr}(Y=1)
$$

- In the multiple regression model with a binary dependent variable we have

$$
E\left[Y_{i} \mid X_{1 i}, \cdots, X_{k i}\right]=\operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \cdots, X_{k i}\right)
$$

- It is therefore called the linear probability model.

Mortgage applications

Example:

- Most individuals who want to buy a house apply for a mortgage at a bank.
- Not all mortgage applications are approved.
- What determines whether or not a mortgage application is approved or denied?
- During this lecture we use a subset of the Boston HMDA data ($N=2380$)
- a data set on mortgage applications collected by the Federal Reserve Bank in Boston

Variable	Description	Mean	SD
deny	$=1$ if mortgage application is denied	0.120	0.325
pi_ratio	anticipated monthly loan payments / monthly income	0.331	0.107
black	$=1$ if applicant is black, = 0 if applicant is white	0.142	0.350

Mortgage applications

- Does the payment to income ratio affect whether or not a mortgage application is denied?

```
regress deny pi_ratio, robust
```

Linear regression

Number of obs $=$		$\mathbf{2 3 8 0}$
F $(1,2378)$	$=$	$\mathbf{3 7 . 5 6}$
Prob $>F$	$=0.0000$	
R-squared	$=$	0.0397
Root MSE	$=.31828$	

deny	Robust				[95\% Conf. Interval]	
pi_ratio	. 6035349	. 0984826	6.13	0.000	. 4104144	. 7966555
_cons	-. 0799096	. 0319666	-2.50	0.012	-. 1425949	-. 0172243

- The estimated OLS coefficient on the payment to income ratio equals $\widehat{\boldsymbol{\beta}_{1}}=0.6$
- The estimated coefficient is significantly different from 0 at a 1% significance level.
- How should we interpret $\widehat{\beta_{1}}$?

The linear probability model

- The conditional expectation equals the probability that $Y_{i}=1$ conditional on $X_{1 i}, \cdots, X_{k i}$:
$E\left[Y_{i} \mid X_{1 i}, \cdots, X_{k i}\right]=\operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \cdots, X_{k i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\cdots \beta_{k} X_{k i}$
- The population coefficient β_{j} equals the change in the probability that $Y_{i}=1$ associated with a unit change in X_{j}.

$$
\frac{\partial \operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \cdots, X_{k i}\right)}{\partial X_{j}}=\beta_{j}
$$

In the mortgage application example:

- $\widehat{\boldsymbol{\beta}_{1}}=0.6$
- A change in the payment to income ratio by 1 is estimated to increase the probability that the mortgage application is denied by 0.60 .
- A change in the payment to income ratio by 0.10 is estimated to increase the probability that the application is denied by $6 \%\left(0.10^{*} 0.60^{* 100}\right)$.

Assumptions are the same as forgeneral mutiple regression model:

- $E\left(u_{i} \mid X_{1 i}, X_{2 i}, \ldots, X_{k i}\right)=0$
- Big outiers are un
- No perfect mullicolmearity.

Advantages of the Fnear probabinty model:

- Easy to estimate
- Coefficientestimates are easy to interpret

Disadvantages of the Fear probabitity model

- Predicted probabity can be above 1 or below 01
- Error terms are heteroskedastic

The linear probability model: heteroskedasticity

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}+u_{i}
$$

- The variance of a Bernoulli random variable:

$$
\operatorname{Var}(Y)=\operatorname{Pr}(Y=1) \quad(1-\operatorname{Pr}(Y=1))
$$

- We can use this to find the conditional variance of the error term

$$
\begin{aligned}
\boldsymbol{\operatorname { V a r }}\left(\mathbf{u}_{\mathbf{i}} \mid \boldsymbol{X}_{\mathbf{1} \mathbf{i}}, \ldots, \boldsymbol{X}_{\mathbf{k i}}\right) & =\boldsymbol{\operatorname { V a r }}\left(\mathbf{Y}_{\mathbf{i}}-\left(\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \boldsymbol{X}_{\mathbf{1 i}}+\ldots+\boldsymbol{\beta}_{\mathbf{k}} \boldsymbol{X}_{\mathbf{k i}}\right) \mid \boldsymbol{X}_{\mathbf{1}, \ldots,}, \boldsymbol{X}_{\mathbf{k i}}\right) \\
& =\boldsymbol{\operatorname { V a r }}\left(\boldsymbol{Y}_{\mathbf{i}} \mid \mathbf{X}_{\mathbf{1}, \boldsymbol{r}}, \boldsymbol{X}_{\mathbf{k i}}\right) \\
& =\operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \cdots, X_{k i}\right) \times\left(1-\operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \cdots, X_{k i}\right)\right) \\
& =\left(\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}\right) \times\left(1-\beta_{0}-\beta_{1} X_{1 i}-\cdots-\beta_{k} X_{k i}\right) \\
& \neq \sigma_{u}^{2}
\end{aligned}
$$

- Solution: Always use heteroskedasticity robust standard errors when estimating a linear probability model!

The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or above 1!

Example: linear probability model, HMDA data Mortgage denial v. ratio of debt payments to income (P / I ratio) in a subset of the HMDA data set ($n=127$)

Nonlinear probability models

- Probabilities cannot be less than 0 or greater than 1
- Toaddress this problem we will consider nonlinear probability models

$$
\begin{gathered}
\operatorname{Pr}\left(Y_{i}=1\right)=G(Z) \\
\text { with } Z=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i} \\
\text { and } 0 \leq G(Z) \leq 1
\end{gathered}
$$

- We will consider 2 nonlinear functions
(1) Probit

$$
G(Z)=\Phi(Z)
$$

(2) Logit

$$
G(Z)=\frac{1}{1+e^{-Z}}
$$

Probit

Probit regression models the probability that $Y=1$

- Using the cumulative standard normal distribution function $\Phi(Z)$
- evaluated at $Z=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}$
- since $\Phi(z)=\operatorname{Pr}(Z \leq z)$ we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z=-2+3 X_{1}$
- We want to know the probability that $Y=1$ when $X_{1}=0.4$
- $z=-2+3 \cdot 0.4=-0.8$
- $\operatorname{Pr}(Y=1)=\operatorname{Pr}(Z \leq-0.8)=\Phi(-0.8)$

Probit

TABLE 1 The Cumulative Standard Normal Distribution Function, $\Phi(z)=\operatorname{Pr}\left(Z^{\prime \prime} z\right)$

$\operatorname{Pr}(Y=1)=\operatorname{Pr}(Z \leq-0.8)=\Phi(-0.8)=0.2119$

Logit

Logit regression models the probability that $Y=1$

- Using the cumulative standard logistic distribution function

$$
F(Z)=\frac{1}{1+e^{-Z}}
$$

- evaluated at $Z=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}$
- since $F(z)=\operatorname{Pr}(Z \leq z)$ we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z=-2+3 X_{1}$
- We want to know the probability that $Y=1$ when $X_{1}=0.4$
- $z=-2+3 \cdot 0.4=-0.8$
- $\operatorname{Pr}(Y=1)=\operatorname{Pr}(Z \leq-0.8)=F(-0.8)$

Logit

Standard logistic density

- $\operatorname{Pr}(Y=1)=\operatorname{Pr}(Z \leq-0.8)=\frac{1}{1+e^{0.8}}=0.31$

Logit \& probit

Standard Logistic CDF and Standard Normal CDF

How to estimate logit and probit models

- In previous lectures we discussed regression models that are nonlinear in the independent variables
- these models can be estimated by OLS
- Logit and Probit models are nonlinear in the coefficients $\beta_{0}, \beta_{1}, \cdots, \beta_{k}$
- these models can't be estimated by OLS
- The method used to estimate logit and probit models is Maximum Likelihood Estimation (MLE).
- The MLE are the values of $\left(\beta_{0}, \beta_{1}, \cdots, \beta_{k}\right)$ that best describe the full distribution of the data.

Maximum likelihood estimation

- The likelihood function is the joint probability distribution of the data, treated as a function of the unknown coefficients.
- The maximum likelihood estimator (MLE) are the values of the coefficients that maximize the likelihood function.
- MLE's are the parameter values "most likely" to have produced the data.

Lets start with a special case: The MLE with no X

- We have n i.i.d. observations Y_{1}, \ldots, Y_{n} on a binary dependent variable
- Y is a Bernoulli random variable
- There is only 1 unknown parameter to estimate:
- The probability \boldsymbol{p} that $Y=1$,
- which is also the mean of Y

Maximum likelihood estimation (Optional)

Step 1: write down the likelihood function, the joint probability distribution of the data

- Y_{i} is a Bernoulli random variable we therefore have

$$
\operatorname{Pr}\left(Y_{i}=y\right)=\operatorname{Pr}\left(Y_{i}=1\right)^{y} \cdot\left(1-\operatorname{Pr}\left(Y_{i}=1\right)\right)^{1-y}=p^{y}(1-p)^{1-y}
$$

- $\operatorname{Pr}\left(Y_{i}=1\right)=p^{1}(1-p)^{0}=p$
- $\operatorname{Pr}\left(Y_{i}=0\right)=p^{0}(1-p)^{1}=1-p$
- Y_{1}, \ldots, Y_{n} are i.i.d, the joint probability distribution is therefore the product of the individual distributions

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =\left[p^{y_{1}}(1-p)^{1-y_{1}}\right] \times \ldots \times\left[p^{y_{n}}(1-p)^{1-y_{n}}\right] \\
& =p^{\left(y_{1}+y_{2}+\ldots+y_{n}\right)}(1-p)^{n-\left(y_{1}+y_{2}+\ldots+y_{n}\right)}
\end{aligned}
$$

Maximum likelihood estimation (Optional)

We have the likelihood function:

$$
f_{\text {Bernouili }}\left(p ; Y_{1}=y_{1}, \ldots Y_{n}=y_{n}\right)=p^{\sum y_{i}}(1-p)^{n-\sum y_{i}}
$$

Step 2: Maximize the likelihood function w.r.t p

- Easier to maximize the logarithm of the likelihood function

$$
\operatorname{In}\left(f_{\text {Berrouili }}\left(p ; Y_{1}=y_{1}, \ldots . Y_{n}=y_{n}\right)\right)=\left(\sum_{i=1}^{n} y_{i}\right) \cdot \ln (p)+\left(n-\sum_{i=1}^{n} y_{i}\right) \ln (1-p)
$$

- Since the logarithm is a strictly increasing function, maximizing the likelihood or the log likelihood will give the same estimator.

Maximum likelihood estimation (Optional)

- Taking the derivative w.r.t p gives

$$
\frac{d}{d p} \ln \left(f_{\text {Bernouili }}\left(p ; Y_{1}=y_{1}, \ldots Y_{n}=y_{n}\right)\right)=\frac{\sum_{i=1}^{n} y_{i}}{p}-\frac{n-\sum_{i=1}^{n} y_{i}}{1-p}
$$

- Setting to zero and rearranging gives

$$
\begin{aligned}
(1-p) \times \sum_{i=1}^{n} y_{i} & =p \times\left(n-\sum_{i=1}^{n} y_{i}\right) \\
\sum_{i=1}^{n} y_{i}-p \sum_{i=1}^{n} y_{i} & =n \cdot p-p \sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{n} y_{i} & =n \cdot p
\end{aligned}
$$

- Solving for p gives the MLE

$$
\widehat{p}_{M L E}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\bar{Y}
$$

MLE of the probit model (Optional)

Step 1: write down the likelihood function

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =\left[p_{1}^{y_{1}}\left(1-p_{1}\right)^{1-y_{1}}\right] \times \ldots \times\left[p_{n}^{y_{n}}\left(1-p_{n}\right)^{1-y_{n}}\right]
\end{aligned}
$$

- so far it is very similar as the case without explanatory variables except that p_{i} depends on $X_{1 i}, \ldots, X_{k i}$

$$
p_{i}=\Phi\left(X_{1 i}, \ldots, X_{k i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}\right)
$$

- substituting for p_{i} gives the likelihood function:

$$
\begin{aligned}
& {\left[\Phi\left(\beta_{0}+\beta_{1} X_{11}+\cdots+\beta_{k} X_{k 1}\right)^{y_{1}}\left(1-\Phi\left(\beta_{0}+\beta_{1} X_{11}+\cdots+\beta_{k} X_{k 1}\right)\right)^{1-y_{1}}\right] \times \cdots} \\
& \quad \times\left[\Phi\left(\beta_{0}+\beta_{1} X_{1 n}+\cdots+\beta_{k} X_{k n}\right)^{y_{n}}\left(1-\Phi\left(\beta_{0}+\beta_{1} X_{1 n}+\cdots+\beta_{k} X_{k n}\right)\right)^{1-y_{n}}\right]
\end{aligned}
$$

MLE of the probit model (Optional)

Also with obtaining the MLE of the probit model it is easier to take the logarithm of the likelihood function

Step 2: Maximize the log likelihood function

$$
\begin{aligned}
& \ln \left[f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right] \\
& =\quad \sum_{i=1}^{n} Y_{i} \ln \left[\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}\right)\right] \\
& \quad+\sum_{i=1}^{n}\left(1-Y_{i}\right) \ln \left[1-\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{k} X_{k i}\right)\right]
\end{aligned}
$$

w.r.t $\beta_{0}, \ldots, \beta_{1}$

- There is no simple formula for the probit MLE, the maximization must be done using numerical algorithm on a computer.

MLE of the logit model (Optional)

Step 1: write down the likelihood function

$$
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots Y_{n}=y_{n}\right)=\left[p_{1}^{y_{1}}\left(1-p_{1}\right)^{1-y_{1}}\right] \times \ldots \times\left[p_{n}^{y_{n}}\left(1-p_{n}\right)^{1-y_{n}}\right]
$$

- very similar to the Probit model but with a different function for p_{i}

$$
p_{i}=1 /\left[1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k)}\right)}\right]
$$

Step 2: Maximize the log likelihood function w.r.t $\beta_{0}, \ldots, \beta_{1}$

$$
\begin{aligned}
& \ln \left[f_{\text {logit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right] \\
& =\quad \sum_{i=1}^{n} Y_{i} \ln \left(1 /\left[1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)}\right]\right) \\
& \quad+\sum_{i=1}^{n}\left(1-Y_{i}\right) \ln \left(1-\left(1 /\left[1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)}\right]\right)\right)
\end{aligned}
$$

- There is no simple formula for the logit MLE, the maximization must be done using numerical algorithm on a computer.

Probit: mortgage applications

Iteration	0: \log	likelihood	$=$	-872.0853
Iteration	1: \log	likelihood	$=$	-832.02975
Iteration	2: \log	likelihood	=	-831.79239
Iteration	3: \log	ikelihood =		-831.79234

Probit regression	Number of obs	$=$	2380
	LR chi2 (1$)$	$=$	80.59
Log likelihood $=-831.79234$	Prob $>$ chi2	$=$	0.0000
	Pseudo R2	$=$	0.0462

deny	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
pi_ratio	2.967907	.3591054	8.26	0.000	2.264073	3.67174
_cons	-2.194159	.12899	-17.01	0.000	$\mathbf{- 2 . 4 4 6 9 7 4}$	-1.941343

- The estimated MLE coefficient on the payment to income ratio equals $\widehat{\boldsymbol{\beta}_{1}}=2.97$
- The estimated coefficient is positive and significantly different from0 at a 1% significance level.
- How should we interpret $\overline{\beta_{1}}$?

Probit: mortgage applications

The estimate of β_{1} in the probit model CANNOT be interpreted as the change in the probability that $Y_{i}=1$ associated with a unit change in X_{1} !!

- In general the effect on Y of a change in X is the expected change in Y resulting from the change in X
- Since Y is binary the expected change in Y is the change in the probability that $Y=1$

In the probit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20 :

$\Delta \widehat{\operatorname{Pr}\left(Y_{i}=1\right)}=\Phi(-2.19+2.97 \cdot 0.20)-\phi(-2.19+2.97 \cdot 0.10)=0.0495$
0.30 to 0.40 :
$\Delta \widehat{\operatorname{Pr}\left(Y_{i}=1\right)}=\Phi(-2.19+2.97 \cdot 0.40)-\phi(-2.19+2.97 \cdot 0.30)=0.0619$

Probit: mortgage applications

Predicted values in the probit model:

- All predicted probabilities are between 0 and 1!

Logit: mortgage applications

- The estimated MLE coefficient on the payment to income ratio equals $\overline{\beta_{1}}=5.88$
- The estimated coefficient is positive and significantly different from0 at a 1% signíficance level.
- How should we interpret $\widehat{\beta_{1}}$?

Logit: mortgage applications

Also in the Logit model:
The estimate of β_{1} CANNOT be interpreted as the change in the probability that $Y_{i}=1$ associated with a unit change in X_{1} !!

In the logit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from
0.10 to 0.20 :
$\left.\triangle \widehat{\operatorname{Pr}\left(Y_{i}\right.}=1\right)=\left(1 / 1+e^{-(-4.03+5.88 \cdot 0.20)}\right)-\left(1 / 1+e^{-(-4.03+5.88 \cdot 0.10)}\right)=0.023$
0.30 to 0.40 :
$\left.\triangle \widehat{\operatorname{Pr}\left(Y_{i}\right.}=1\right)=\left(1 / 1+e^{-(-4.03+5.88 \cdot 0.40)}\right)-\left(1 / 1+e^{-(-4.03+5.88 \cdot 0.30)}\right)=0.063$

Logit: mortgage applications

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:

Probit \& Logit with multiple regressors

- We can easily extend the Logit and Probit regression models, by including additional regressors
- Suppose we want to know whether white and black applications are treated differentially
- Is there a significant difference in the probability of denial between black and white applicants conditional on the payment to income ratio?
- To answer this question we need to include two regressors
- P/l ratio
- Black

Probit with multiple regressors

Probit regression				Number of obs $=$LR chi2 (2)		2380		
				149.90				
				Prob >	i2	0.0000		
Log likelihood $=-797.1360$						Pseudo R2		0.0859
deny	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	erval]		
black	. 7081579	. 0834327	8.49	0.000	. 5446328	. 8716831		
pi_ratio	2.741637	. 3595888	7.62	0.000	2.036856	3.446418		
_cons	-2.258738	. 129882	-17.39	0.000	-2.513302	-2.004174		

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$
\Phi(-2.26+0.71 \cdot 0+2.74 \cdot 0.3)=0.0749
$$

- Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$
\Phi(-2.26+0.71 \cdot 1+2.74 \cdot 0.3)=0.2327
$$

- Difference is 15.8%

Logit with multiple regressors

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$
1 / 1+e^{-(-4.13+5.37 \cdot 0.30)}=0.075
$$

- Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$
1 / 1+e^{-(-4.13+5.37 \cdot 0.30+1.27)}=0.224
$$

- Difference is 14.8%

LPM, Probit \& Logit

Table 1: Mortgage denial regression using the Boston HMDA Data

regression model	LPM	Probit	Logit
black	$\begin{aligned} & 0.177 * * * \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.71 * * * \\ & (0.083) \end{aligned}$	$\begin{gathered} 1.27 * * * \\ (0.15) \end{gathered}$
P/I ratio	$\begin{aligned} & 0.559 * * * \\ & (0.089) \end{aligned}$	$\begin{gathered} 2.74 * * * \\ (0.44) \end{gathered}$	$\begin{gathered} 5.37 * * * \\ (0.96) \end{gathered}$
constant	$\begin{aligned} & -0.091^{* * *} \\ & (0.029) \end{aligned}$	$\begin{gathered} -2.26 * * * \\ (0.16) \end{gathered}$	$\begin{gathered} -4.13 * * * \\ (0.35) \end{gathered}$
difference $\operatorname{Pr}($ deny $=1)$ between black and white applicant when P / I ratio $=0.3$	17.7\%	15.8\%	14.8\%

Threats to internal and external validity

Both for the Linear Probability as for the Probit \& Logit models we have to consider threats to
(1) Internal validity

- Is there omitted variable bias?
- Is the functional form correct?
- Probit model: is assumption of a Normal distribution correct?
- Logit model: is assumption of a Logistic distribution correct?
- Is there measurement error?
- Is there sample selection bias?
- is there a problem of simultaneous causality?
(2) External validity
- These data are from Boston in 1990-91.
- Do you think the results also apply today, where you live?

Distance to college \& probability of obtaining a college degree

Distance to college \& probability of obtaining a college degree

- The 3 different models produce very similar results.

Summary

- If Y_{i} is binary, then $E\left(Y_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)$
- Three models:
(1) linear probability model (linear multiple regression)

2 probit (cumulative standard normal distribution)
(3) logit (cumulative standard logistic distribution)

- LPM, probit, logit all produce predicted probabilities
- Effect of ΔX is a change in conditional probability that $Y=1$
- For logit and probit, this depends on the initial X
- Probit and logit are estimated via maximum likelihood
- Coefficients are normally distributed for large n
- Large- n hypothesis testing, conf. intervals is as usual

