Binary dependent variables

LECTURE 8

09.12.2022

- · The linear probability model
- Nonlinear probability models
 - Probit
 - Logit
- Brief introduction of maximum likelihood estimation
- Interpretation of coefficients in logit and probit models

- So far the dependent variable (Y) has been continuous:
 - Average hourly earnings
 - · Birth weight of babies
- What if Y is binary?
 - Y = get into college, or not; X = parental income.
 - Y = person smokes, or not; X = cigarette tax rate, income.
 - Y = mortgage application is accepted, or not; X = race, income, house characteristics, marital status ...

The linear probability model

Multiple regression model with continuous dependent variable

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

- The coefficient β_j can be interpreted as the change in Y associated with a unit change in X_i
- · We will now discuss the case with a binary dependent variable
- We know that the expected value of a binary variable Y is

$$E[Y] = 1 \cdot Pr(Y = 1) + 0 \cdot Pr(Y = 0) = Pr(Y = 1)$$

 In the multiple regression model with a binary dependent variable we have

$$E[Y_i|X_{1i},\cdots,X_{ki}]=Pr(Y_i=1|X_{1i},\cdots,X_{ki})$$

It is therefore called the linear probability model.

Example:

- Most individuals who want to buy a house apply for a mortgage at a bank.
- Not all mortgage applications are approved.
- What determines whether or not a mortgage application is approved or denied?
- During this lecture we use a subset of the Boston HMDA data (N = 2380)
 - a data set on mortgage applications collected by the Federal Reserve Bank in Boston

Variable	Description	Mean	SD
deny	 = 1if mortgage application is denied anticipated monthly loan payments / monthly income = 1if applicant is black, = 0 if applicant is white 	0.120	0.325
pi_ratio		0.331	0.107
black		0.142	0.350

 Does the payment to income ratio affect whether or not a mortgage application is denied?

```
. regress deny pi_ratio, robust
Linear regression
```

```
Number of obs = 2380

F(1,2378) = 37.56

Prob > F = 0.0000

R-squared = 0.0397

Root MSE = .31828
```

deny	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
pi_ratio	.6035349	.0984826	6.13	0.000	.4104144	.7966555
_cons	0799096	.0319666	-2.50	0.012	1425949	0172243

- The estimated OLS coefficient on the payment to income ratio equals $\widehat{\beta_1} = 0.6$
- The estimated coefficient is significantly different from 0 at a 1% significance level.
- How should we interpret β̂₁?

 The conditional expectation equals the probability that Y_i = 1 conditional on X_{1i}, · · · · , X_{ki};

$$E[Y_i|X_{1i}, \dots, X_{ki}] = Pr(Y_i = 1|X_{1i}, \dots, X_{ki}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$$

• The population coefficient β_i equals the change in the probability that $Y_i = 1$ associated with a unit change in X_j .

$$\frac{\partial Pr(Y_i = 1|X_{1i}, \cdots, X_{ki})}{\partial X_i} = \beta_i$$

In the mortgage application example:

- $\widehat{\beta_1} = 0.6$
- A change in the payment to income ratio by 1 is estimated to increase the probability that the mortgage application is denied by 0.60.
- A change in the payment to income ratio by 0.10 is estimated to increase the probability that the application is denied by 6% (0.10*0.60*100).

7

The linear probability model

Assumptions are the same as for general multiple regression model:

- $E(u_i|X_{1i},X_{2i},...,X_{ki})=0$
- Big outliers are unlikely
- No perfect multicollinearity.

Advantages of the linear probability model:

- Easy to estimate
- Coefficient estimates are easy to interpret

Disadvantages of the linear probability model

- Predicted probability can be above 1 or below 0!
- Error terms are heteroskedastic

The linear probability model: heteroskedasticity

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

The variance of a Bernoulli random variable:

$$Var(Y) = Pr(Y = 1) \quad (1 - Pr(Y = 1))$$

We can use this to find the conditional variance of the error term

$$Var(u_{i}|X_{1i},...,X_{ki}) = Var(Y_{i} - (\beta_{0} + \beta_{1} X_{1i} + ... + \beta_{k} X_{ki}) | X_{1i},...,X_{ki})$$

$$= Var(Y_{i}|X_{1i},...,X_{ki})$$

$$= Pr(Y_{i} = 1 | X_{1i},...,X_{ki}) \times (1 - Pr(Y_{i} = 1 | X_{1i},...,X_{ki}))$$

$$= (\beta_{0} + \beta_{1} X_{1i} + ... + \beta_{k} X_{ki}) \times (1 - \beta_{0} - \beta_{1} X_{1i} - ... - \beta_{k} X_{ki})$$

$$\neq \sigma_{u}^{2}$$

 Solution: Always use heteroskedasticity robust standard errors when estimating a linear probability model!

The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or above 1!

Example: linear probability model, HMDA data **Mortgage denial v. ratio of debt payments to income** (P/I ratio) in a subset of the HMDA data set (n = 127)

Nonlinear probability models

- Probabilities cannot be less than 0 or greater than 1
- · To address this problem we will consider nonlinear probability models

$$Pr(Y_i = 1) = G(Z)$$

with $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
and $0 \le G(Z) \le 1$

- · We will consider 2 nonlinear functions
- Probit

$$G(Z) = \Phi(Z)$$

2 Logit

$$G(Z) = \frac{1}{1 + e^{-Z}}$$

Probit regression models the probability that Y = 1

- Using the cumulative standard normal distribution function $\Phi(Z)$
- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since $\Phi(z) = Pr(Z \le z)$ we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$
- $z = -2 + 3 \cdot 0.4 = -0.8$
- $Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8)$

Probit

$$Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8) = 0.2119$$

Logit regression models the probability that Y = 1

· Using the cumulative standard logistic distribution function

$$F(Z) = \frac{1}{1 + e^{-Z}}$$

- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since F(z) = Pr(Z ≤ z) we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$
- $z = -2 + 3 \cdot 0.4 = -0.8$
- $Pr(Y = 1) = Pr(Z \le -0.8) = F(-0.8)$

•
$$Pr(Y = 1) = Pr(Z \le -0.8) = \frac{1}{1 + e^{0.8}} = 0.31$$

Logit & probit

How to estimate logit and probit models

- In previous lectures we discussed regression models that are nonlinear in the independent variables
 - · these models can be estimated by OLS
- Logit and Probit models are nonlinear in the coefficients $\beta_0, \beta_1, \dots, \beta_k$
 - these models can't be estimated by OLS
- The method used to estimate logit and probit models is Maximum Likelihood Estimation (MLE).
- The MLE are the values of (β₀, β₁, · · · , β_k) that best describe the full distribution of the data.

Maximum likelihood estimation

- The likelihood function is the joint probability distribution of the data, treated as a function of the unknown coefficients.
- The maximum likelihood estimator (MLE) are the values of the coefficients that maximize the likelihood function.
- MLE's are the parameter values "most likely" to have produced the data.

Lets start with a special case: The MLE with no X

- We have n i.i.d. observations Y_1, \ldots, Y_n on a binary dependent variable
- Y is a Bernoulli random variable
- There is only 1 unknown parameter to estimate:
 - The probability p that Y = 1,
 - which is also the mean of Y

Maximum likelihood estimation (Optional)

Step 1: write down the likelihood function, the joint probability distribution of the data

Yis a Bernoulli random variable we therefore have

$$Pr(Y_i = y) = Pr(Y_i = 1)^y \cdot (1 - Pr(Y_i = 1))^{1-y} = p^y (1 - p)^{1-y}$$

•
$$Pr(Y_i = 1) = p^1(1 - p)^0 = p$$

• $Pr(Y_i = 0) = p^0(1 - p)^1 = 1 - p$

• Y₁,..., Y_n are i.i.d, the joint probability distribution is therefore the product of the individual distributions

$$Pr(Y_1 = y_1, Y_n = y_n) = Pr(Y_1 = y_1) \times ... \times Pr(Y_n = y_n)$$

$$= [p^{y_1}(1-p)^{1-y_1}] \times ... \times [p^{y_n}(1-p)^{1-y_n}]$$

$$= p^{(y_1+y_2+...+y_n)} (1-p)^{n-(y_1+y_2+...+y_n)}$$

We have the likelihood function:

$$f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n) = p^{\sum y_i} (1-p)^{n-\sum y_i}$$

Step 2: Maximize the likelihood function w.r.t p

Easier to maximize the logarithm of the likelihood function

$$ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \left(\sum_{i=1}^n y_i\right) \cdot ln(p) + \left(n - \sum_{i=1}^n y_i\right) ln(1-p)$$

 Since the logarithm is a strictly increasing function, maximizing the likelihood or the log likelihood will give the same estimator.

Maximum likelihood estimation (Optional)

Taking the derivative w.r.t p gives

$$\frac{d}{dp} ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \frac{\sum_{i=1}^n y_i}{p} - \frac{n - \sum_{i=1}^n y_i}{1 - p}$$

· Setting to zero and rearranging gives

$$(1 - p) \times \sum_{i=1}^{n} y_{i} = p \times (n - \sum_{i=1}^{n} y_{i})$$

$$\sum_{i=1}^{n} y_{i} - p \sum_{i=1}^{n} y_{i} = n \cdot p - p \sum_{i=1}^{n} y_{i}$$

$$\sum_{i=1}^{n} y_{i} = n \cdot p$$

Solving for p gives the MLE

$$\widehat{p}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{Y}$$

MLE of the probit model (Optional)

Step 1: write down the likelihood function

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = Pr(Y_1 = y_1) \times \dots \times Pr(Y_n = y_n)$$

$$= [p_1^{y_1} (1 - p_1)^{1 - y_1}] \times \dots \times [p_n^{y_n} (1 - p_n)^{1 - y_n}]$$

• so far it is very similar as the case without explanatory variables except that p_i depends on X_{1i}, \ldots, X_{ki}

$$p_i = \Phi(X_{1i}, \dots, X_{ki}) = \Phi(\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})$$

substituting for p_i gives the likelihood function:

$$\left[\Phi \left(\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1} \right)^{y_1} \left(1 - \Phi \left(\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1} \right) \right)^{1-y_1} \right] \times \dots \\ \times \left[\Phi \left(\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn} \right)^{y_n} \left(1 - \Phi \left(\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn} \right) \right)^{1-y_n} \right]$$

Also with obtaining the MLE of the probit model it is easier to take the logarithm of the likelihood function

Step 2: Maximize the log likelihood function

$$In[f_{probit}(\beta_{0},...,\beta_{k}; Y_{1},...,Y_{n}| X_{1i},...,X_{ki}, i = 1,...,n)]$$

$$= \sum_{i=1}^{n} Y_{i}In[\Phi(\beta_{0} + \beta_{1}X_{1i} + \cdots + \beta_{k}X_{ki})]$$

$$+ \sum_{i=1}^{n} (1 - Y_{i})In[1 - \Phi(\beta_{0} + \beta_{1}X_{1i} + \cdots + \beta_{k}X_{ki})]$$
w.r.t $\beta_{0},...,\beta_{1}$

 There is no simple formula for the probit MLE, the maximization must be done using numerical algorithm on a computer.

MLE of the logit model (Optional)

Step 1: write down the likelihood function

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = [p_1^{y_1}(1 - p_1)^{1 - y_1}] \times \dots \times [p_n^{y_n}(1 - p_n)^{1 - y_n}]$$

• very similar to the Probit model but with a different function for p_i

$$p_i = 1/\left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})}\right]$$

Step 2: Maximize the log likelihood function w.r.t β_0, \ldots, β_1

$$\begin{split} & In\left[f_{logit}\left(\beta_{0}, \ldots, \beta_{k}; \ Y_{1}, \ldots, Y_{n} | \ X_{1i}, \ldots, X_{ki}, i = 1, \ldots, n\right)\right] \\ & = \sum_{i=1}^{n} Y_{i} In\left(1 / \left[1 + e^{-(\beta_{0} + \beta_{1} X_{1i} + \ldots + \beta_{k} X_{ki})}\right]\right) \\ & + \sum_{i=1}^{n} (1 - Y_{i}) In\left(1 - \left(1 / \left[1 + e^{-(\beta_{0} + \beta_{1} X_{1i} + \ldots + \beta_{k} X_{ki})}\right]\right)\right) \end{split}$$

 There is no simple formula for the logit MLE, the maximization must be done using numerical algorithm on a computer.

Probit: mortgage applications

```
. probit deny pi_ratio

Iteration 0: log likelihood = -872.0853

Iteration 1: log likelihood = -832.02975

Iteration 2: log likelihood = -831.79239

Iteration 3: log likelihood = -831.79234
```

Log likelihood = -831.79234

Number of obs	=	2380
LR chi2(1)	=	80.59
Prob > chi2	=	0.0000
Pseudo R2	=	0.0462

deny	Coef.	Std. Err.	Z	P> z	[95% Conf. In	terval]
pi_ratio	2.967907	.3591054	8.26	0.000	2.264073	3.67174
_cons	-2.194159	.12899	-17.01		-2.446974	-1.941343

- The estimated MLE coefficient on the payment to income ratio equals $\widehat{\beta_1} = 2.97$
- The estimated coefficient is positive and significantly different from 0 at a 1% significance level.
- How should we interpret β̂₁?

Probit: mortgage applications

The estimate of β_1 in the probit model CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

- In general the effect on Y of a change in X is the expected change in Y
 resulting from the change in X
- Since Y is binary the expected change in Y is the change in the probability that Y=1

In the probit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20:

$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.20) - \Phi(-2.19 + 2.97 \cdot 0.10) = 0.0495$$

0.30 to 0.40:

$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.40) - \Phi(-2.19 + 2.97 \cdot 0.30) = 0.0619$$

Probit: mortgage applications

Predicted values in the probit model:

All predicted probabilities are between 0 and 1!

Logit: mortgage applications

. logit deny pi_ratio

```
Iteration 0: log likelihood = -872.0853
Iteration 1: log likelihood = -830.96071
Iteration 2: log likelihood = -830.09497
Iteration 3: log likelihood = -830.09403
Iteration 4: log likelihood = -830.09403
```

Logistic regression

```
Log likelihood = -830.09403
```

```
Number of obs = 2380

LR chi2( 1) = 83.98

Prob > chi2 = 0.0000

Pseudo R2 = 0.0482
```

deny	Coef.	Std. Err.	Z	P> z	[95% Conf. Ir	nterval]
pi_ratio _cons	5.884498 -4.028432	.7336006 .2685763		0.000	4.446667 -4.554832	7.322328 -3.502032

- The estimated MLE coefficient on the payment to income ratio equals $\widehat{\beta_1} = 5.88$
- The estimated coefficient is positive and significantly different from 0 at a 1% significance level.
- How should we interpret \(\hat{\eta_1} \)?

Logit: mortgage applications

Also in the Logit model:

The estimate of β_1 CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

In the logit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20:

$$\triangle \widehat{Pr(Y_i=1)} = \left(1/1 + e^{-(-4.03 + 5.88 \cdot 0.20)}\right) - \left(1/1 + e^{-(-4.03 + 5.88 \cdot 0.10)}\right) = 0.023$$

0.30 to 0.40:

$$\triangle \widehat{Pr(Y_i=1)} = \left(1/1 + e^{-(-4.03 + 5.88 \cdot 0.40)}\right) - \left(1/1 + e^{-(-4.03 + 5.88 \cdot 0.30)}\right) = 0.063$$

Logit: mortgage applications

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:

Probit & Logit with multiple regressors

- We can easily extend the Logit and Probit regression models, by including additional regressors
- Suppose we want to know whether white and black applications are treated differentially
- Is there a significant difference in the probability of denial between black and white applicants conditional on the payment to income ratio?
- To answer this question we need to include two regressors
 - P/I ratio
 - Black

Probit with multiple regressors

Probit regressi	on			Number of o	obs =	2380 = 149.90
Log likelihood	= -797.13604			Prob > chi2 Pseudo R2	=	0.0000
deny	Coef.	Std. Err.	Z	P> z [9	5% Conf.	Interval]

black	.7081579	.0834327	8.49	0.000	.5446328	.8716831
pi_ratio cons	2.741637 -2.258738	.3595888	7.62 -17.39	0.000	2.036856 -2.513302	-2.004174

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 0 + 2.74 \cdot 0.3) = 0.0749$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 1 + 2.74 \cdot 0.3) = 0.2327$$

Difference is 15.8%

Logit with multiple regressors

Logistic regression	Number of obs =	2380
	LR chi2(2) =	152.78
	Prob > chi2 =	0.0000
Log likelihood = -795.69521	Pseudo R2 =	0.0876

deny	Coef.	Std. Err.	z 1	P> z	[95% Conf. In	terval]
black	1.272782	.1461983	8.71	0.000	.9862385	1.559325
pi_ratio	5.370362	.7283192	7.37	0.000	3.942883	6.797841
_cons	-4.125558	.2684161	-15.37	0.000	-4.651644	-3.599472

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13 + 5.37 \cdot 0.30)} = 0.075$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13+5.37\cdot0.30+1.27)} = 0.224$$

Difference is 14.8%

LPM, Probit & Logit

Table 1: Mortgage denial regression using the Boston HMDA Data

Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted						
regression model	LPM	Probit	Logit			
black	0.177***	0.71***	1.27***			
	(0.025)	(0.083)	(0.15)			
P/I ratio	0.559***	2.74***	5.37***			
,	(0.089)	(0.44)	(0.96)			
constant	-0.091***	-2.26***	-4.13***			
	(0.029)	(0.16)	(0.35)			
difference Pr(deny=1) between black and white applicant when P/I ratio=0.3	17.7%	15.8%	14.8%			

Threats to internal and external validity

Both for the Linear Probability as for the Probit & Logit models we have to consider threats to

- Internal validity
 - · Is there omitted variable bias?
 - Is the functional form correct?
 - Probit model: is assumption of a Normal distribution correct?
 - Logit model: is assumption of a Logistic distribution correct?
 - Is there measurement error?
 - · Is there sample selection bias?
 - is there a problem of simultaneous causality?
- External validity
 - These data are from Boston in 1990-91.
 - · Do you think the results also apply today, where you live?

Distance to college & probability of obtaining a college degree

Linear regression	on			Nui	mber of obs = F(1, 3794) Prob > F R-squared Root MSE	3796 = 15.77 = 0.0001 = 0.0036 = .44302
college	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Int	cerval]
dist _cons	012471 .2910057	.0031403 .0093045	-3.97 31.28	0.000 0.000	0186278 .2727633	0063142 .3092481
Probit regressi		7		Number LR chi2 Prob > Pseud	chi2 =	3796 14.48 0.0001 0.0033
college	Coef.	Std. Err.	z	P> z	[95% Conf. In	terval]
dist _cons	0407873 5464198	.0109263 .028192	-3.73 -19.38		0622025 6016752	0193721 4911645
Logistic regres		6		Number LR chi2 Prob > Pseud	chi2 =	3796 14.68 0.0001 0.0033
college	Coef.	Std. Err.	z	P> z	[95% Conf. In	terval]
dist cons	0709896 8801555	.0193593 .0476434	-3.67 -18.47		1089332 9735349	033040 786770

Distance to college & probability of obtaining a college degree

The 3 different models produce very similar results.

Summary

- If Y_i is binary, then $E(Y_i|X_i) = Pr(Y_i = 1|X_i)$
- Three models:
- Iinear probability model (linear multiple regression)
- probit (cumulative standard normal distribution)
- 3 logit (cumulative standard logistic distribution)
 - LPM, probit, logit all produce predicted probabilities
 - Effect of ΔX is a change in conditional probability that Y = 1
 - For logit and probit, this depends on the initial X
 - Probit and logit are estimated via maximum likelihood
 - Coefficients are normally distributed for large n
 - Large-n hypothesis testing, conf. intervals is as usual