

Chapter 5

Choice

Economic Rationality

- The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.
- The available choices constitute the choice set.
- ◆ How is the most preferred bundle in the choice set located?

Rational Constrained Choice**Utility** 6_T $\overline{5}$ X_2 Ī $\frac{4}{3}$ $\overline{\mathbf{4}}$ 3 \mathbf{I} $\overline{2}$ x

1

- The most preferred affordable bundle is called the consumer's ORDINARY DEMAND at the given prices and budget.
- Ordinary demands will be denoted by $\mathsf{x_1}^{\star}(\mathsf{p_1},\mathsf{p_2},\mathsf{m})$ and $\mathsf{x_2}^{\star}(\mathsf{p_1},\mathsf{p_2})$ $\mathbf{x_1}^{\star}(\mathsf{p}_1,\mathsf{p}_2,\mathsf{m})$ and $\mathbf{x_2}^{\star}(\mathsf{p}_1,\mathsf{p}_2,\mathsf{m})$.

- \triangleleft When $x_1^* > 0$ and $x_2^* > 0$ the demanded bundle is INTERIOR.
- \blacklozenge If buying (x_1^*,x_2^*) costs \$m then the 1,^2 budget is exhausted.

- \blacklozenge (x₁*,x₂*) satisfies two conditions: 1,^2
- ◆ (a) the budget is exhausted; $\mathbf{p_{1}}$ $x_1^* + p_2^*$ $\mathsf{x_2}^\star$ = m
- \bullet (b) the slope of the budget constraint, -p $_{\textrm{\scriptsize{1}}}$ /p $_{\textrm{\scriptsize{2}}}$ indifference curve containing $(\mathsf{x_1}^\star,\mathsf{x_2}^\star)$ p_1/p_2 , and the slope of the are equal at (x_1^*,x_2^*) . 1,^2

Computing Ordinary Demands

How can this information be used to locate (x_1^*,x_2^*) for given p_1 , p_2 and ן יוץ וויש שט דער 1 (יני 1 P $\bf 2$ m?

◆ Suppose that the consumer has Cobb-Douglas preferences.

\triangle So the MRS is

dx $\frac{\mathbf{x_1}}{\mathbf{x_2}} = -\frac{\mathbf{a}\mathbf{x_1} + \mathbf{x_2}}{\mathbf{x_1}} = -\frac{\mathbf{a}\mathbf{x_2} - \mathbf{x_2}}{\mathbf{x_2}}$ a−1b ∂ U ∂ x₁ ax^{a-1}x /∂ $MRS = \frac{cm}{cm} = -\frac{cm}{cm}$ $d\mathbf{x}_1$ $\partial \mathbf{U}/\partial \mathbf{x}$ $\mathbf{b} \mathbf{x}_1^{\mathbf{a}} \mathbf{x}_2^{\mathbf{b}-1}$ bx the contract of $\frac{\mathsf{a}}{1} \mathbf{x}_2^{\mathsf{b}}$ $=$ $\frac{2}{\Delta x} = -\frac{1}{\lambda 11/\lambda x} = -\frac{1}{\lambda x^2} = -\frac{1}{\lambda}$ 211212 $1 - 2$ 121 $\partial U/\partial$ /

\triangle So the MRS is

 $\triangleleft At (x_1, x_2, x_2)$, MRS = -p $_{\textrm{\scriptsize{1}}}$ /p $_{\textrm{\scriptsize{2}}}$ $_2$ SO

◆ So the MRS is

 $\triangleleft At (x_1, x_2, x_2)$, MRS = -p $_{\textrm{\scriptsize{1}}}$ /p $_{\textrm{\scriptsize{2}}}$ $= -p_1/p_2$ so − → = − <u>− + →</u>
by ^{*} $\frac{ax_2}{bx_1^*} = -\frac{p_1}{p_2} \qquad \Rightarrow \quad x_2^* =$ \rightarrow x $\mathbf{x}_2^* = \frac{\mathbf{bp}}{\mathbf{ap}}$ x211 $\boldsymbol{*}$ γ D₁ \star * $\overline{}$ and $\overline{}$. $\mathsf{b} \mathsf{x}_1$, p_2 , and a p_2 , and a p_2 $_1$ $_2$ 221* \cdot (A)

 $\blacklozenge(\mathsf{x_1}^\star,\mathsf{x_2}^\star)$ also exhausts the budget so

$\mathbf{p_1x_1}+\mathbf{p_2x_2}$ m x^* + p_2x^* $+ p_2x_2 =$ (B)
◆ So now we know that

x

2

 $\boldsymbol{*}$

 $\mathbf{x}_2^* = \frac{\mathbf{bp}}{\mathbf{ap}}$

ap

 $\mathsf{p}_1\mathsf{x}_1+\mathsf{p}_2\mathsf{x}_2=\mathsf{m}$

 $x_2^* = \frac{1001}{100}x_1^*$

x

1

 $p_1x_1 + p_2x_2 = m.$ (B)

 $=\frac{\mathbf{P}\mathbf{P}}{\mathbf{P}\mathbf{P}}\mathbf{x}_1^{\dagger}$ (A)

1

2

 $\boldsymbol{*}$

 $+ p_{2}x_{2} = m.$

ap

 ${\bf p}_1{\bf x}_1+{\bf p}_2{\bf x}_2=$ m.

x

1

 $+\frac{|\mathbf{v}_1|}{\mathbf{a}_2\mathbf{b}_3}\mathbf{x}_1^{\dagger} \tag{A}$

*
{|

1

2

 $\boldsymbol{*}$

◆ So now we know that

x

2

 $\boldsymbol{*}$

*

bp

=

Substitute

(B)

xama + b)p 1 $\boldsymbol{*}$ $\mathbf{a}+\mathbf{b}$ \bullet $+$ 10) p_1

 \bullet

xama + b)p 1 $\boldsymbol{*}$ $\mathbf{a}+\mathbf{b}$ $+$ 10) p_1

Substituting for $x_{1}^{\,*}$ in $\mathsf{p}_1\mathsf{x}_1+\mathsf{p}_2\mathsf{x}_2=\mathsf{m}$ $\boldsymbol{*}$ * $_1$ + p_2x_2 =

then gives

bm $2=\overline{}$ $\boldsymbol{*}$ $\Omega =$ $a + b) p_2$ 2 $(a + b)p$

So we have discovered that the mostpreferred affordable bundle for a consumerwith Cobb-Douglas preferences

> $U(x_1,x_2)=x_1^{\alpha}x$ b $(x_1, x_2) = x_1^{\alpha} x_2^{\alpha}$

is

$$
(x_1^*, x_2^*) = \left(\frac{am}{(a+b)p_1}, \frac{bm}{(a+b)p_2}\right)
$$

Rational Constrained Choice \bullet When $\mathsf{x_1}^\star$ > 0 and $\mathsf{x_2}$ and (x_{1}^{*},x_{2}^{*}) exhausts the budget, $x_1^* > 0$ and $x_2^* > 0$ and indifference curves have no 'kinks', the ordinary demands are obtained by solving:

- \blacklozenge (a) p 1 $x_1^* + p_2^*$ $\mathbf{x_2}^{\star}$ = y
- \bullet (b) the slopes of the budget constraint, -p $_1$ /p $_2$, and of the indifference curve containing $(\mathsf{x_1}^\star,\mathsf{x_2}^\star)$ are equal at $(\mathsf{x_1}^\star,\mathsf{x_2}^\star).$

Rational Constrained Choice

 \blacklozenge But what if $x_1^* = 0$? \blacklozenge Or if $x_2^* = 0$? \triangleleft If either $x_1^* = 0$ or $x_2^* = 0$ then the $1 - 0$ or \mathcal{L}_2 ordinary demand $(x_{1}^{\ast},x_{2}^{\ast})$ is at a corner solution to the problem of maximizing utility subject to a budget constraint.

Examples of Corner Solutions -the Perfect Substitutes CaseSo when $U(x_1,x_2) = x_1 + x_2$, the most preferred affordable bundle is $(\mathsf{x_1}^\star,\mathsf{x_2}^\star)$ $_1$ + x₂, the most where

$$
(\mathbf{x}_1^*, \mathbf{x}_2^*) = \begin{pmatrix} \mathbf{y} \\ \mathbf{p}_1 \end{pmatrix} \quad \text{if } \mathbf{p}_1 < \mathbf{p}_2
$$

and

$$
(\mathbf{x}_1^*, \mathbf{x}_2^*) = \begin{pmatrix} 0, \frac{\mathbf{y}}{\mathbf{p}_2} \end{pmatrix} \quad \text{if } \mathbf{p}_1 > \mathbf{p}_2.
$$

Examples of 'Kinky' Solutions -the Perfect Complements Case(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$.

Examples of 'Kinky' Solutions -the Perfect Complements Case(a) $p_1x_1^* + p_2x_2'^* = m$; (b) $x_2^* = ax_1^*.$ Substitution from (b) for x_2^* in

(a) gives $p_1x_1^* + p_2ax_1^* = m$

Examples of 'Kinky' Solutions -the Perfect Complements Case(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $\frac{*}{\mathbf{x}_{4}} = \frac{\mathbf{m}}{\mathbf{m}}$ $x_1 = \frac{1}{n}$ $1 + aP2$ 1 $p_1 + ap$ $\mathbf{D}_4 +$

Examples of 'Kinky' Solutions -the Perfect Complements Case(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives. The same of the same of \mathbf{A} is the same of \mathbf{A} is the same of \mathbf{A} am ; ^xx $\mathbf{s}_{\mathbf{x_1^*}} = \frac{\mathbf{m}}{\mathbf{p_1} + \mathbf{a} \mathbf{p_2}}$; $\mathbf{x_2^*} = \frac{\mathbf{m}}{\mathbf{p_1} + \mathbf{a} \mathbf{p_2}}$ $p_1 + ap_2$ p₁ + ap $1 + aP2$ 2 $1 - aP2$ 1 $p_1 + ap_2$ $p_1 +$
Examples of 'Kinky' Solutions -the Perfect Complements Case(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives. The state of the state \mathbf{r} is the state of the state of the state \mathbf{r} am ; ^xx $\mathbf{s}^{-*} \mathbf{x}^*_1 = \frac{\mathbf{m}}{\mathbf{p}_1 + \mathbf{a} \mathbf{p}_2}$; $\mathbf{x}^*_2 = \frac{\mathbf{m}}{\mathbf{p}_2}$ $p_1 + ap_2$ $p_1 + ap_2$ 1 ^{- a}P2 2 $1 - aP2$ 1 $p_1 + ap_2$ $p_1 +$ A bundle of 1 commodity 1 unit and a commodity 2 units costs $p_1 + ap_2$; 1a commodity z units costs p_1 · ap $_2$
m/(p₁ + ap₂) such bundles are affor p_1 + ap₂) such bundles are affordable.

