

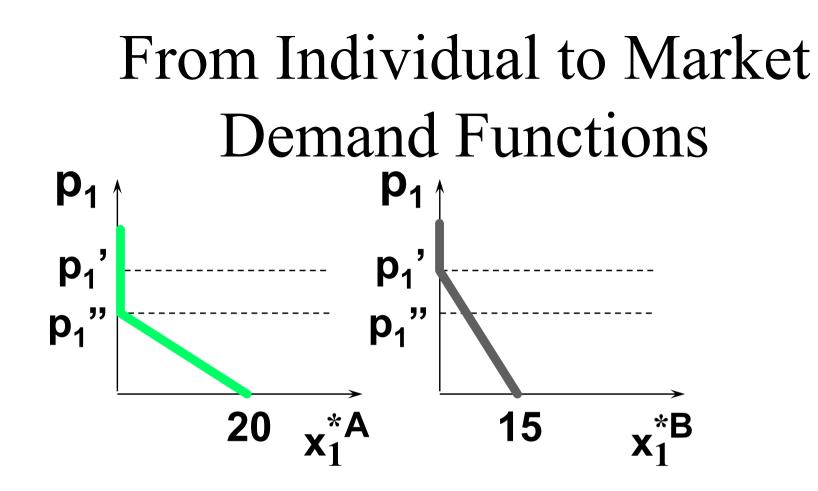
From Individual to Market Demand Functions

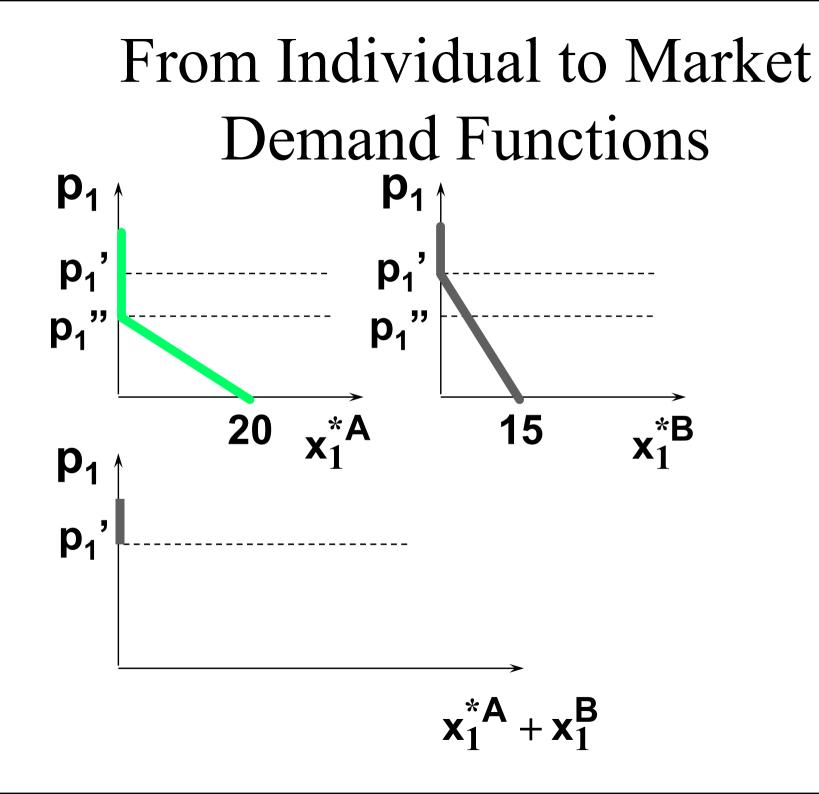
- Think of an economy containing n consumers, denoted by i = 1, ..., n.
- Consumer i's ordinary demand function for commodity j is $x_{j}^{*i}(p_{1},p_{2},m^{i})$

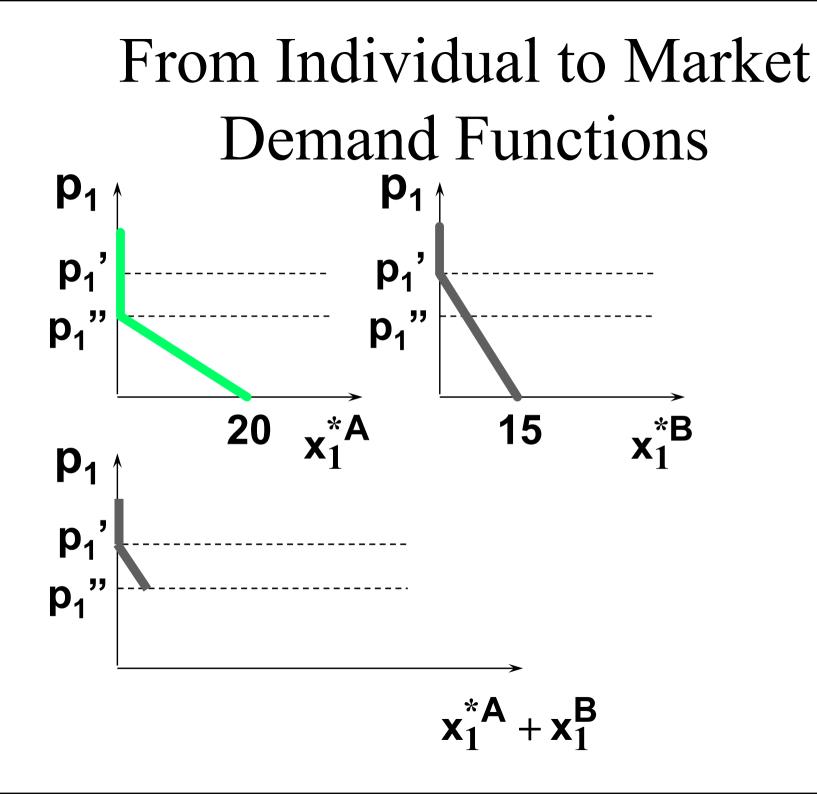
From Individual to Market **Demand Functions** When all consumers are price-takers, the market demand function for commodity j is $X_{j}(p_{1},p_{2},m^{1},\cdots,m^{n}) = \sum_{j=1}^{n} x_{j}^{*i}(p_{1},p_{2},m^{i}).$ If all consumers are identical then $X_i(p_1,p_2,M) = n \times x_i^*(p_1,p_2,m)$ where M = nm.

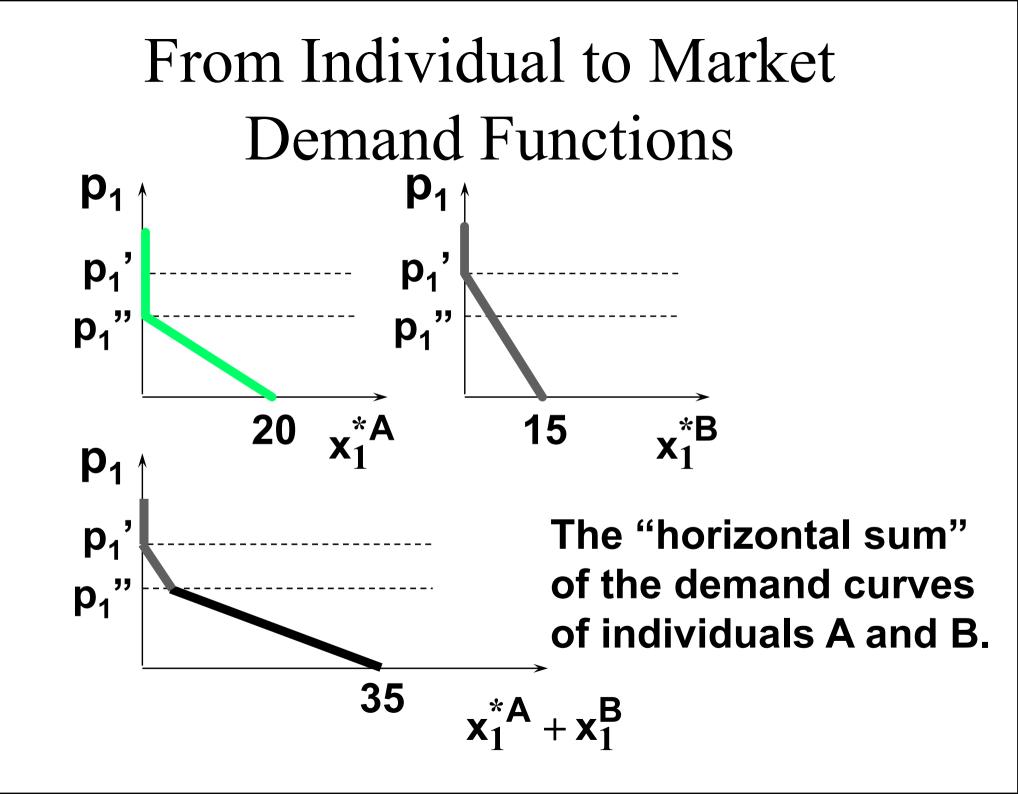
From Individual to Market Demand Functions

- The market demand curve is the "horizontal sum" of the individual consumers' demand curves.
- E.g. suppose there are only two consumers; i = A,B.









Elasticities

- Elasticity measures the "sensitivity" of one variable with respect to another.
- The elasticity of variable X with respect to variable Y is

$$\varepsilon_{\mathbf{X},\mathbf{y}} = \frac{\% \Delta \mathbf{X}}{\% \Delta \mathbf{y}}.$$

- - quantity demanded of commodity i with respect to the price of commodity i (own-price elasticity of demand)
 - demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand).

Economic Applications of Elasticity

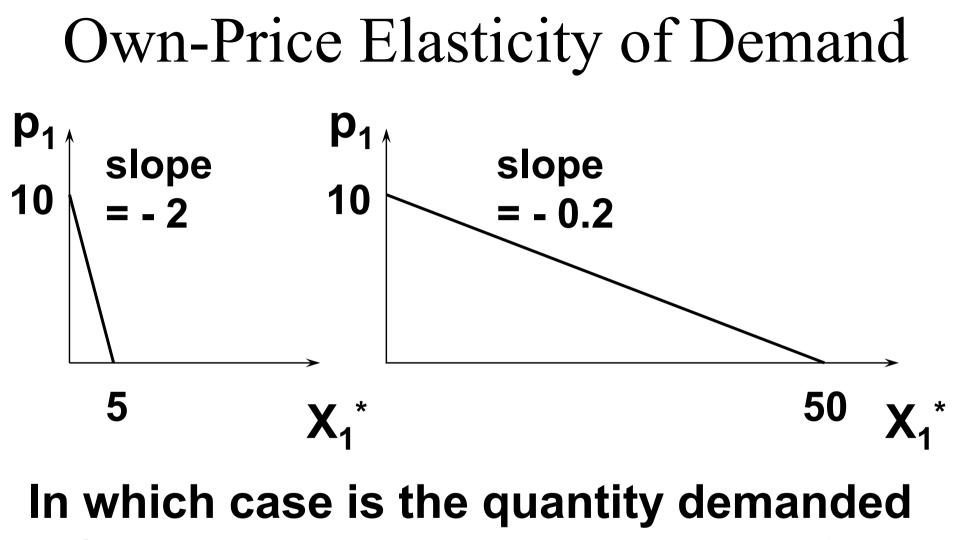
- demand for commodity i with respect to income (income elasticity of demand)
- quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

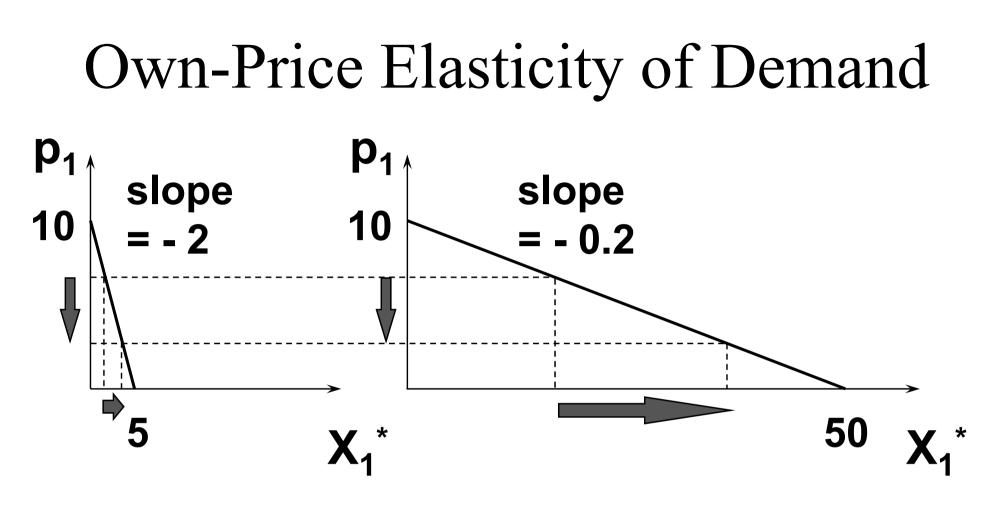
- quantity supplied of commodity i with respect to the wage rate (elasticity of supply with respect to the price of labor)
- -and many, many others.

Own-Price Elasticity of Demand

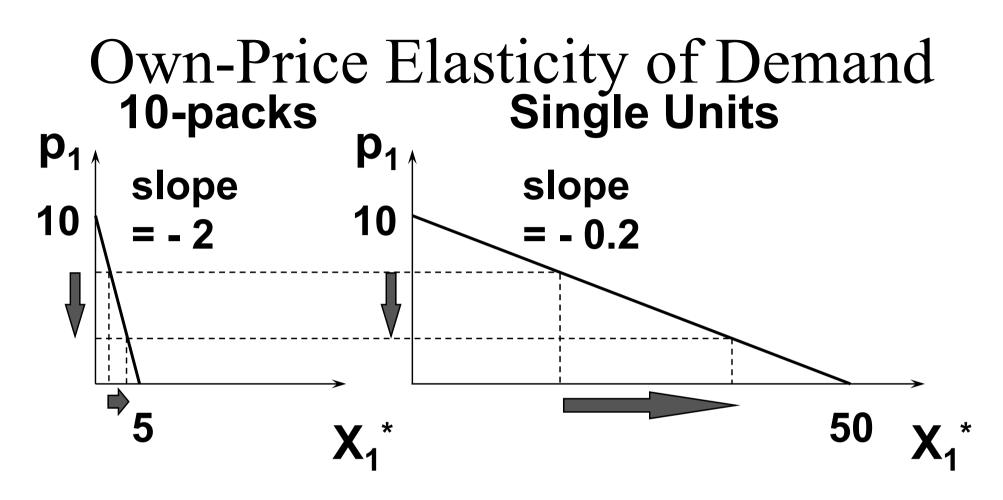
Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity's own price?



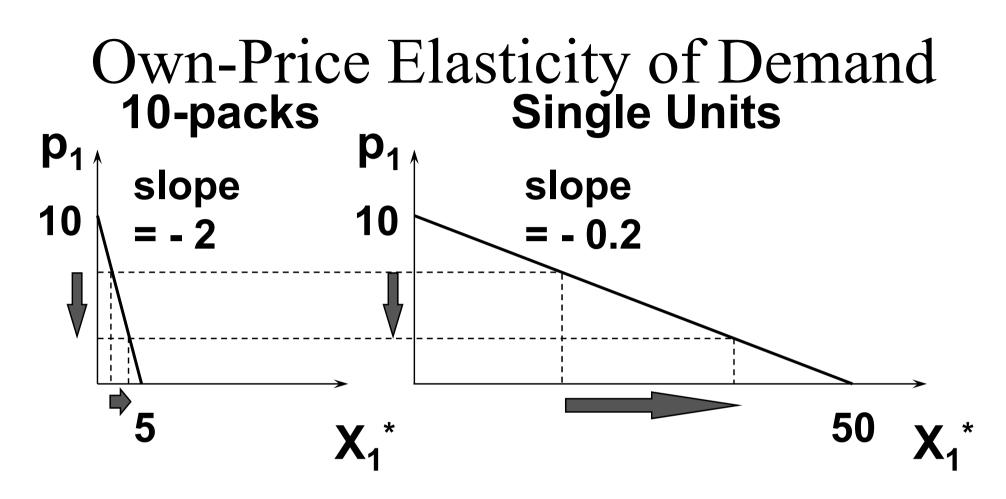
 X_1^* more sensitive to changes to p_1 ?



In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?



In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ?



In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ? It is the same in both cases.

Own-Price Elasticity of Demand

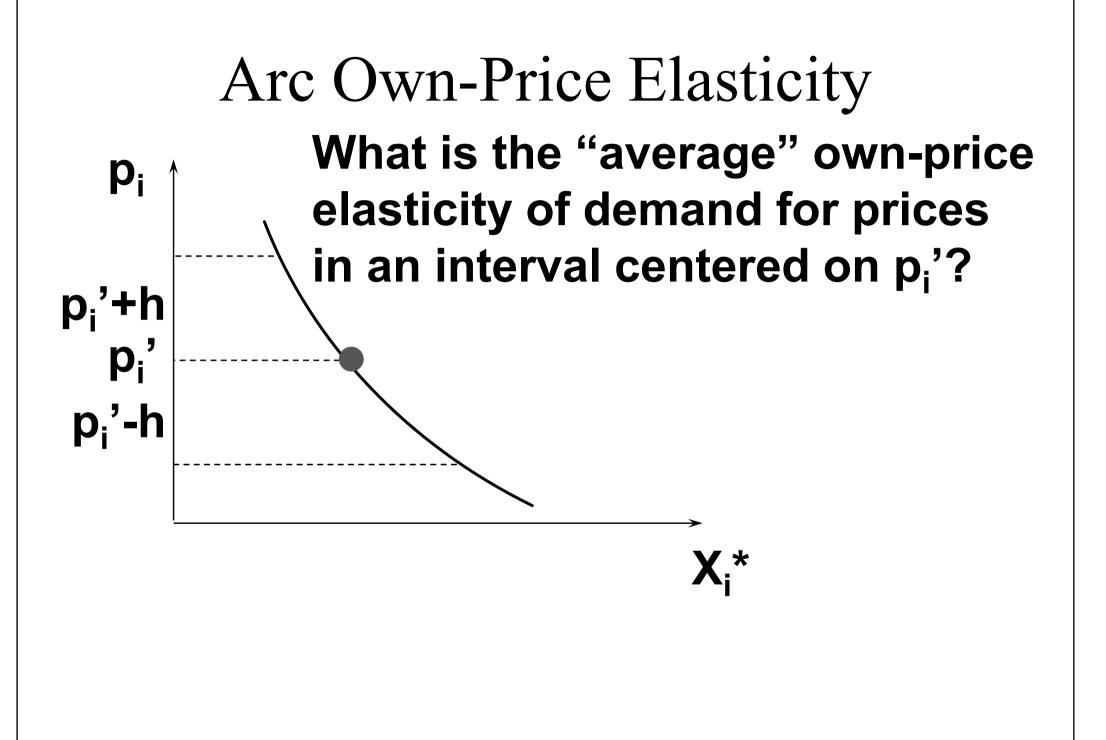
- Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price?
- A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

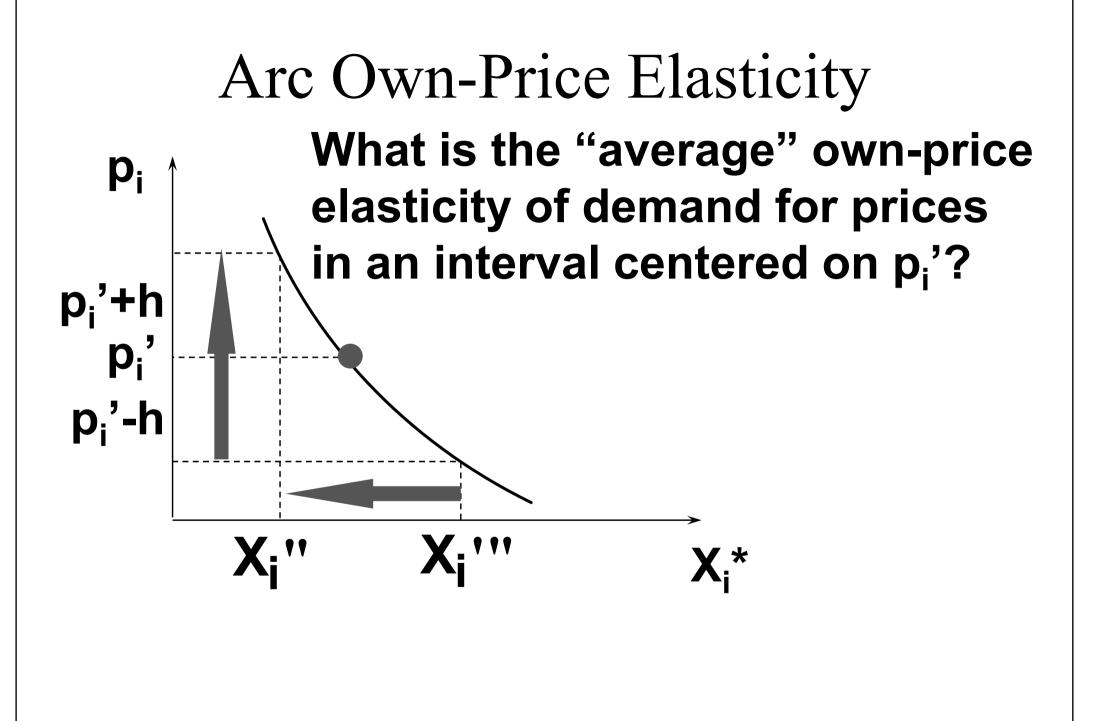
Own-Price Elasticity of Demand $\mathcal{E}_{\mathbf{x}_{1}^{*},\mathbf{p}_{1}} = \frac{\sqrt[6]{\Delta \mathbf{x}_{1}^{*}}}{\sqrt[6]{\Delta \mathbf{p}_{1}}}$

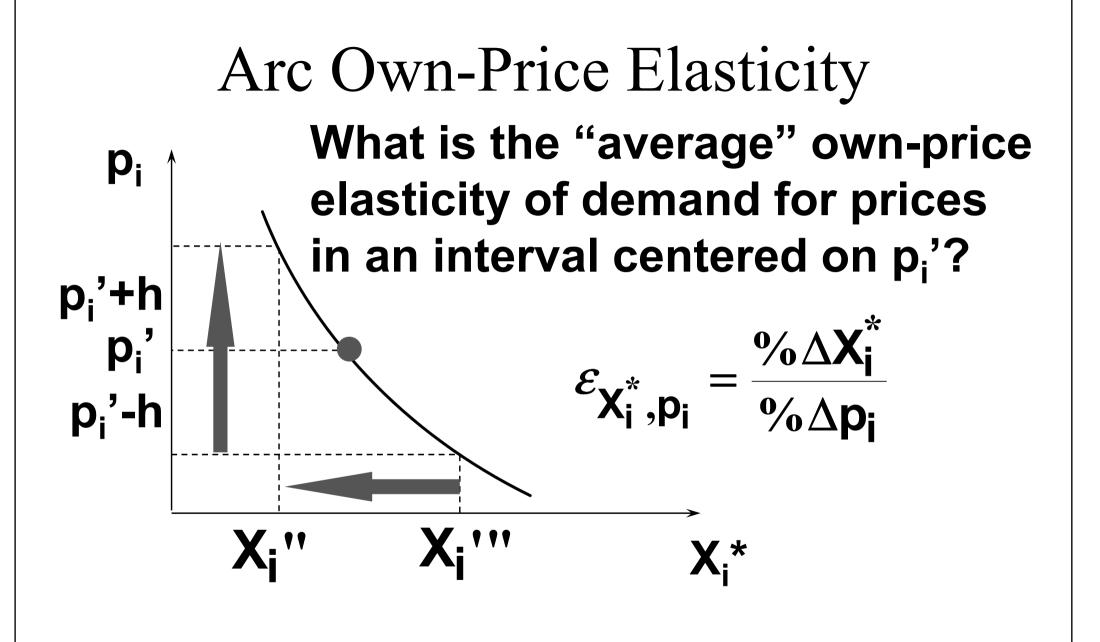
is a ratio of percentages and so has no units of measurement. Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

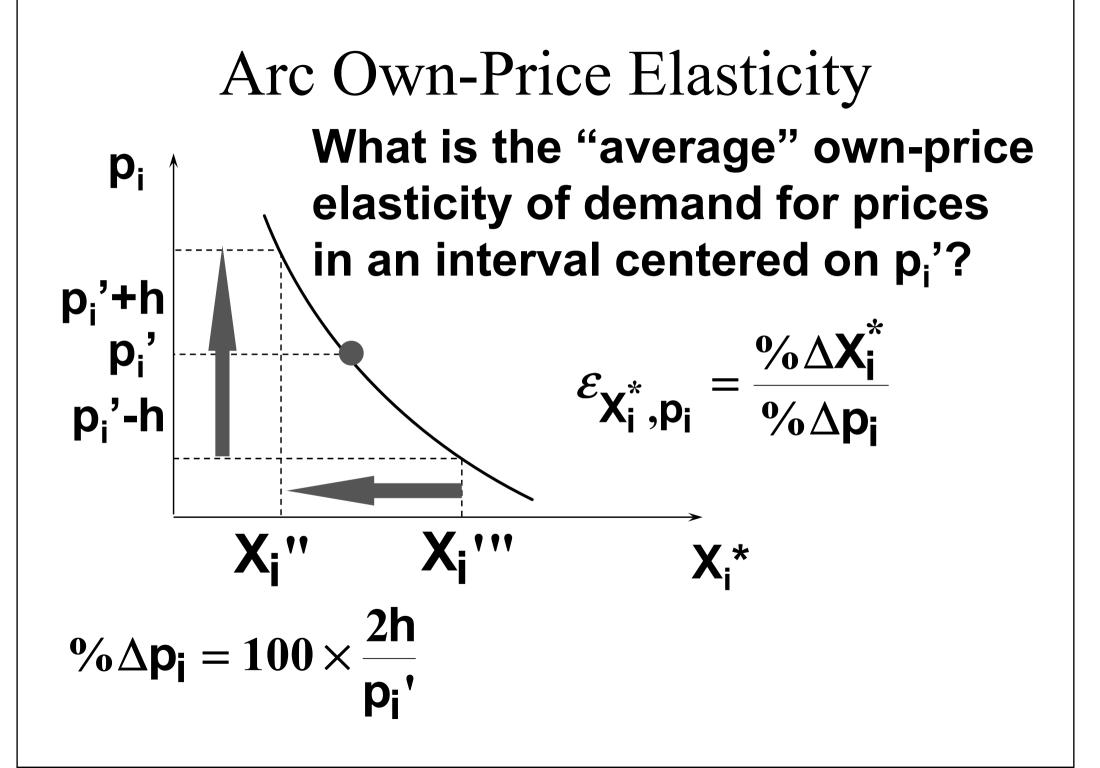
Arc and Point Elasticities

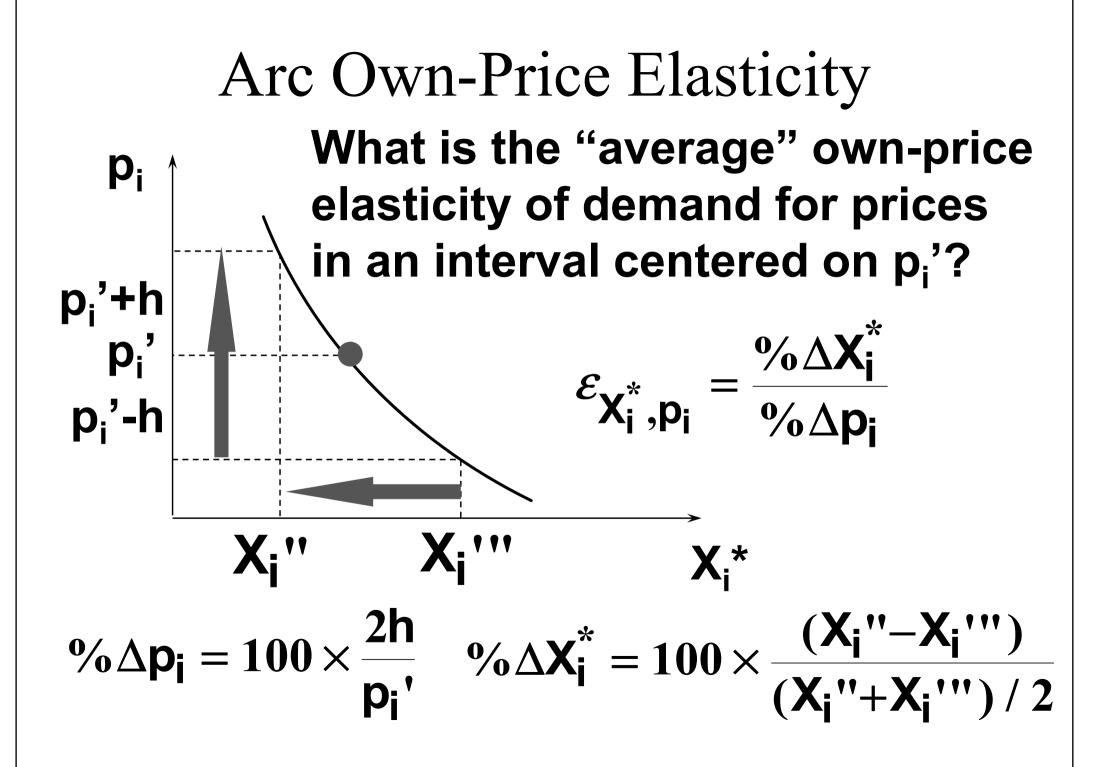
- An "average" own-price elasticity of demand for commodity i over an interval of values for p_i is an arcelasticity, usually computed by a mid-point formula.
- Elasticity computed for a single value of p_i is a point elasticity.









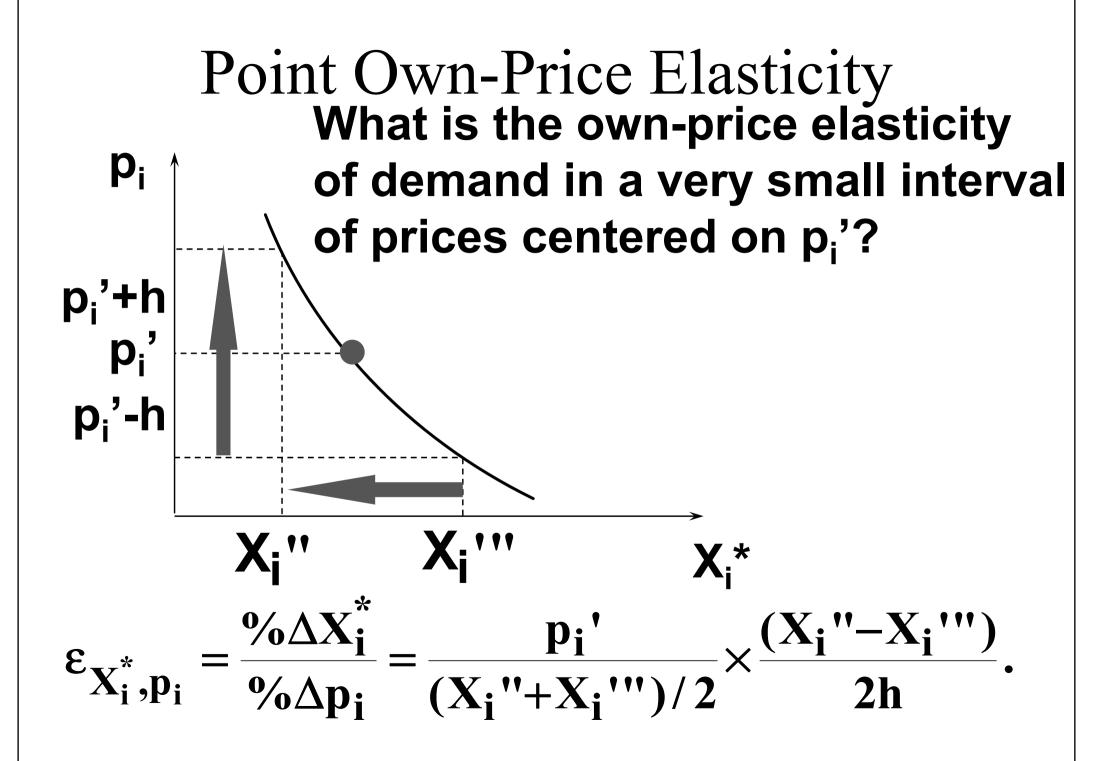


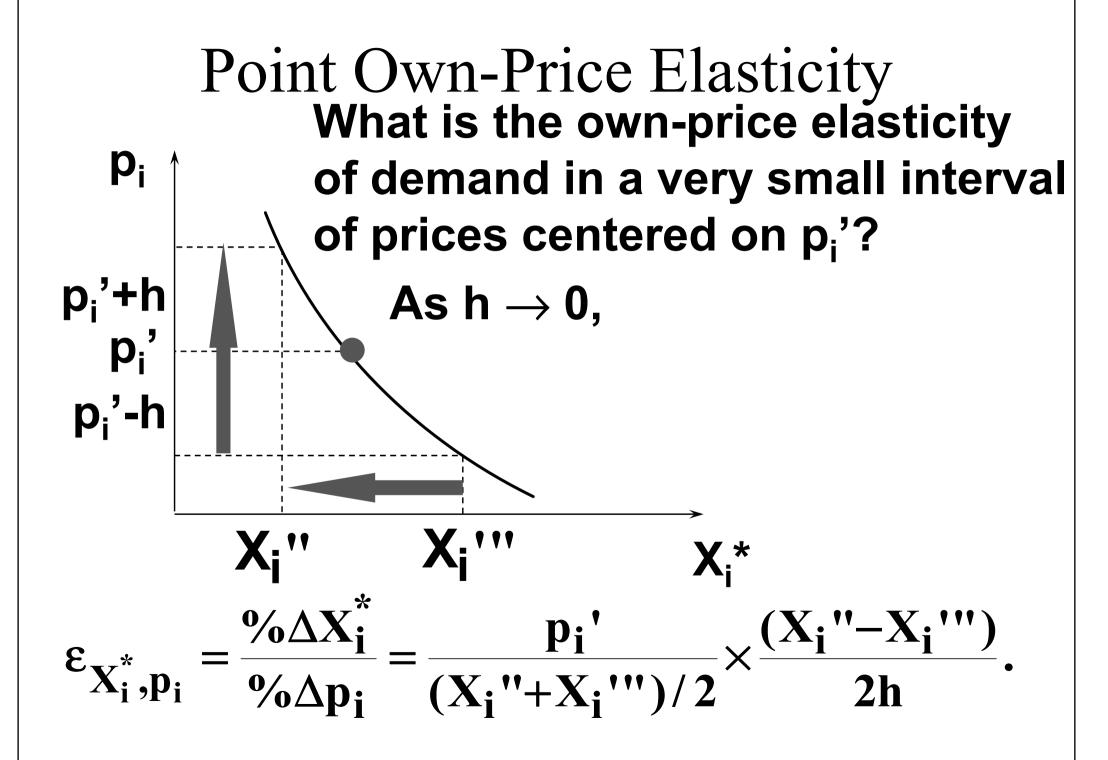
Arc Own-Price Elasticity

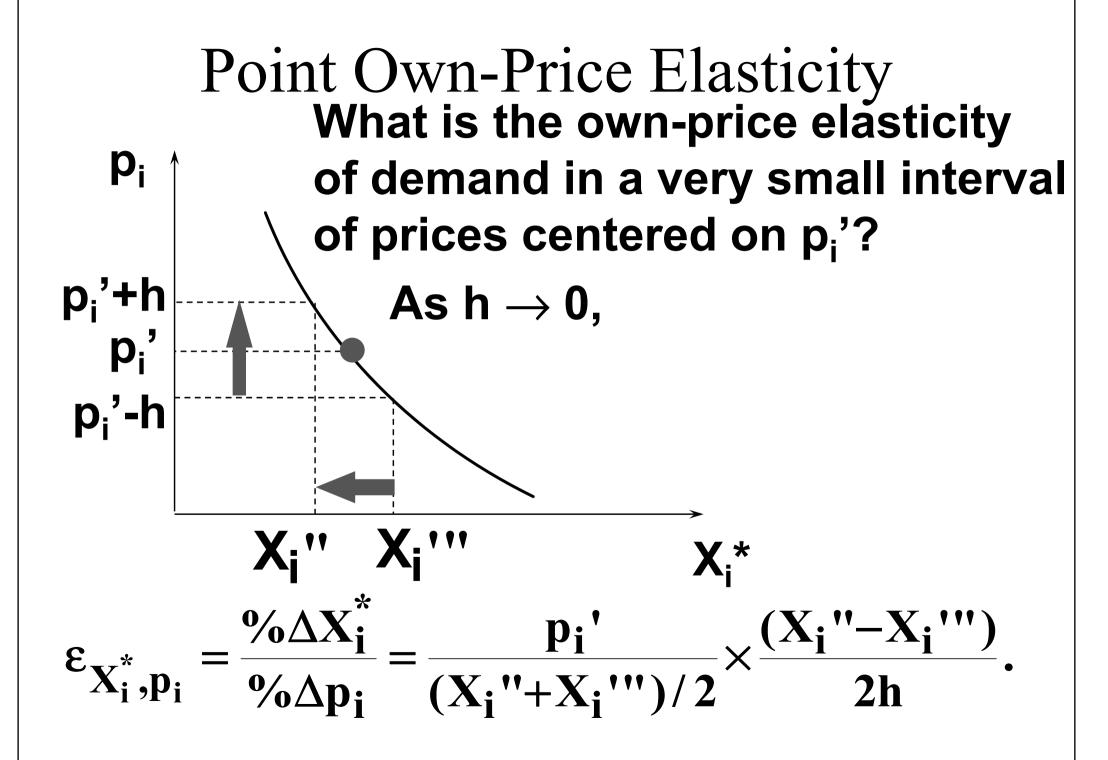
$$%\Delta p_{i} = 100 \times \frac{2h}{p_{i}}$$

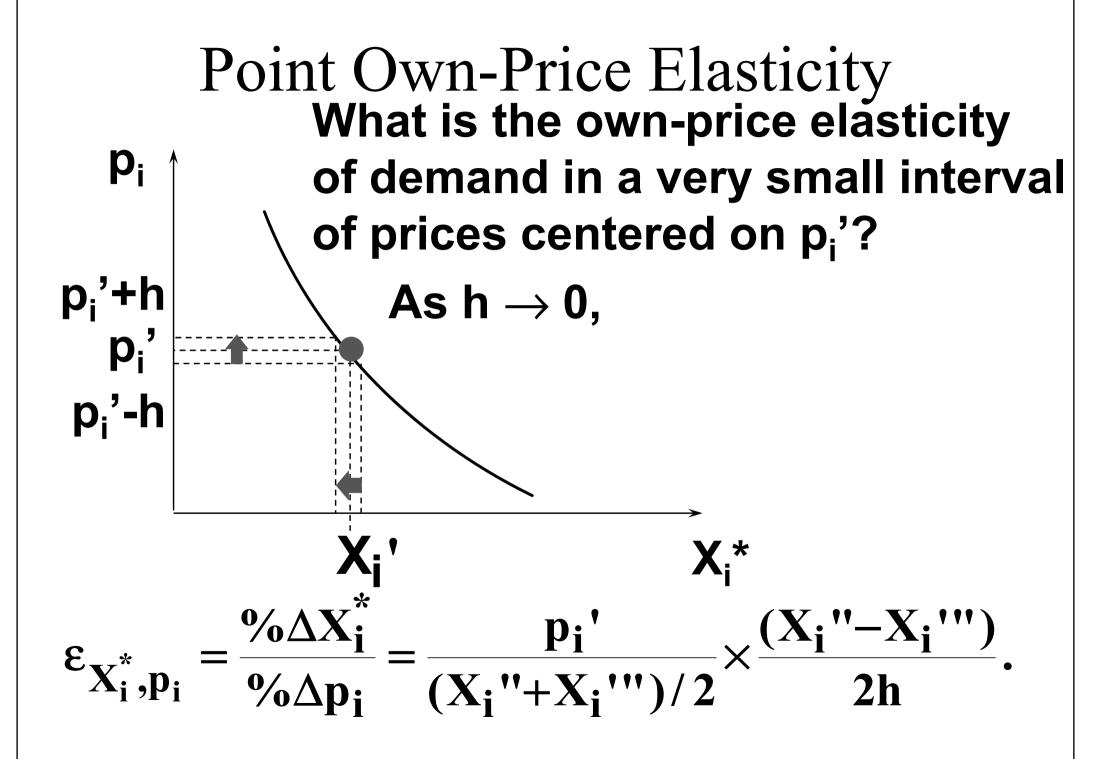
 $\varepsilon_{X_{i}^{*},p_{i}} = \frac{\%\Delta X_{i}^{*}}{\%\Delta p_{i}}$
 $\%\Delta X_{i}^{*} = 100 \times \frac{(X_{i}^{"}-X_{i}^{"})}{(X_{i}^{"}+X_{i}^{"})/2}$

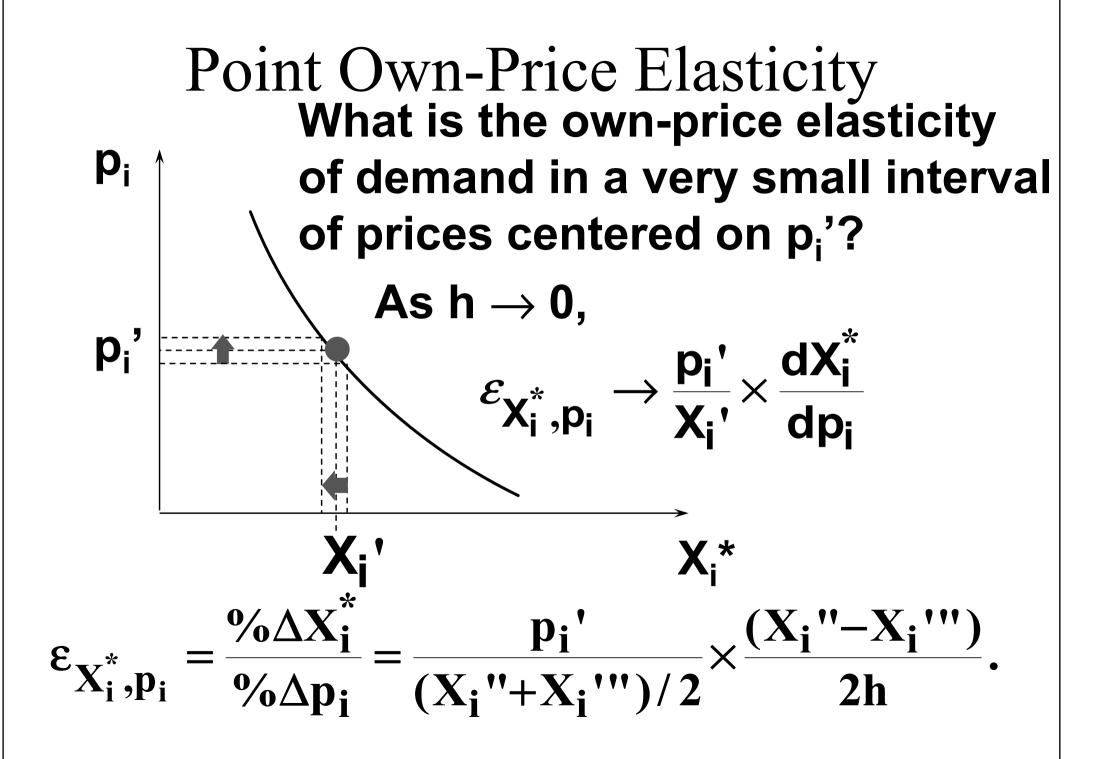
$$\begin{aligned} & \text{Arc Own-Price Elasticity} \\ & \mathscr{C}_{X_{i}^{*},p_{i}} = \frac{\sqrt[9]{0} \Delta X_{i}^{*}}{\sqrt[9]{0} \Delta p_{i}} \\ & \mathscr{C}_{X_{i}^{*},p_{i}} = \frac{\sqrt[9]{0} \Delta X_{i}^{*}}{\sqrt[9]{0} \Delta p_{i}} \\ & \mathbb{C}_{X_{i}^{*},p_{i}} = \frac{\sqrt[9]{0} \Delta X_{i}^{*}}{\sqrt[9]{0} \Delta p_{i}} = \frac{p_{i}'}{(X_{i}''+X_{i}''')/2} \times \frac{(X_{i}''-X_{i}''')}{(X_{i}''+X_{i}''')/2} \\ & \text{So} \\ & \varepsilon_{X_{i}^{*},p_{i}} = \frac{\sqrt[9]{0} \Delta X_{i}^{*}}{\sqrt[9]{0} \Delta p_{i}} = \frac{p_{i}'}{(X_{i}''+X_{i}''')/2} \times \frac{(X_{i}''-X_{i}''')}{2h}. \\ & \text{is the arc own-price elasticity of demand.} \end{aligned}$$

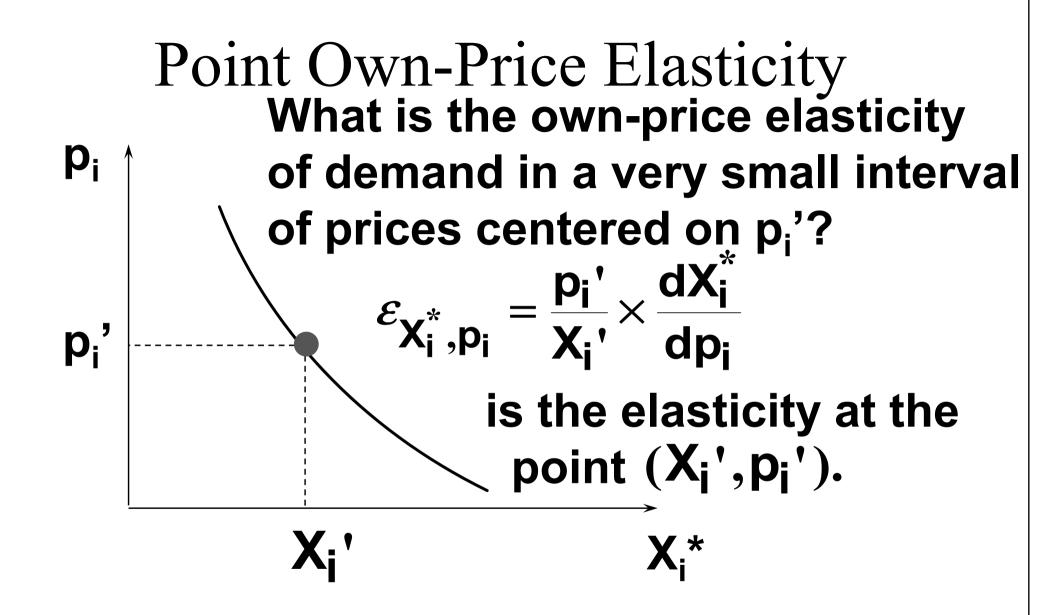








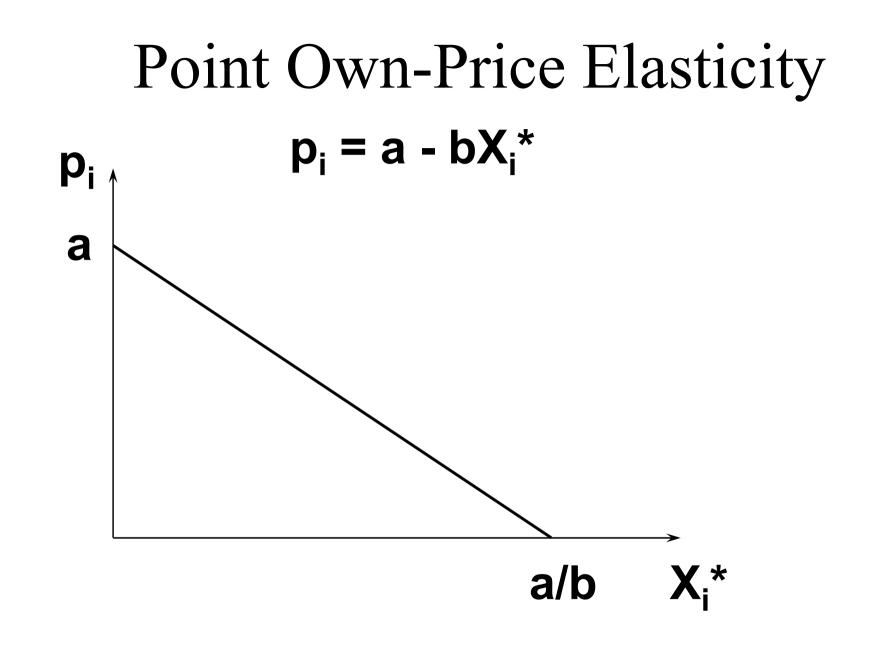


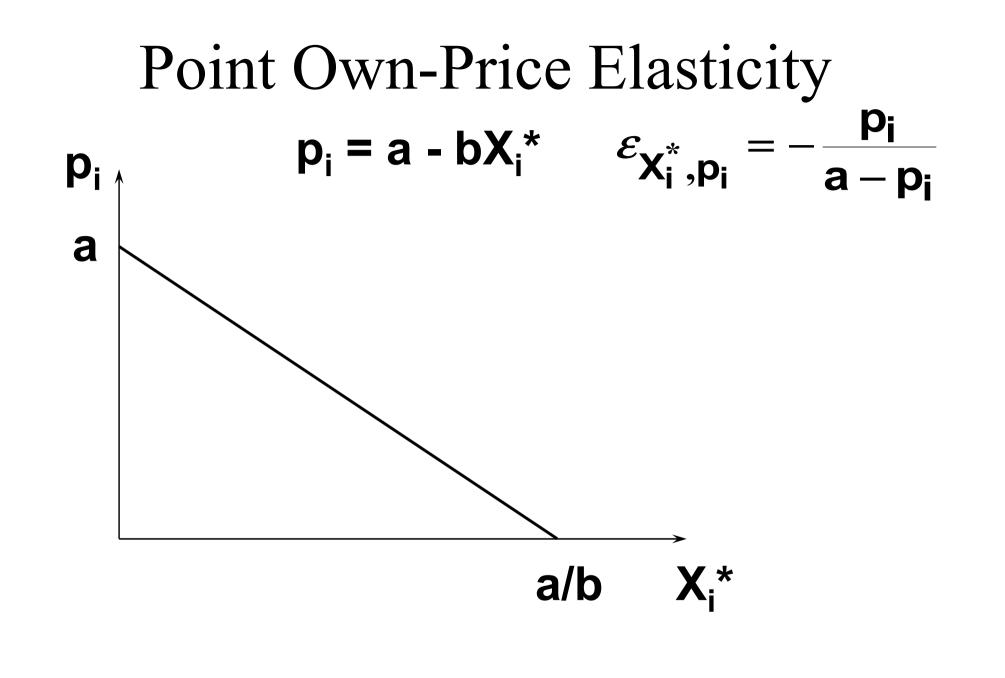


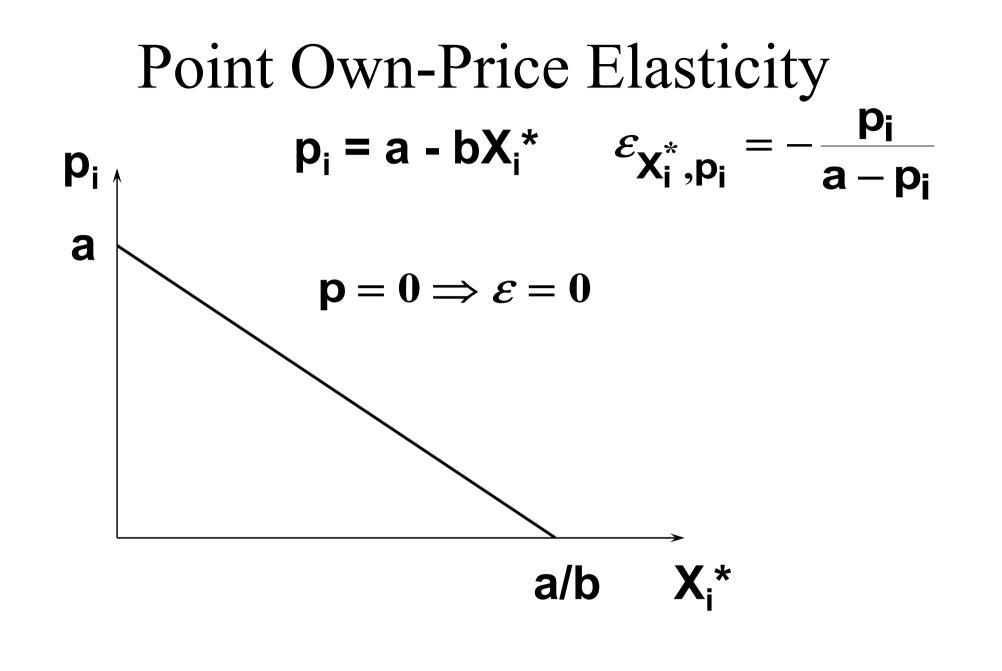
Point Own-Price Elasticity

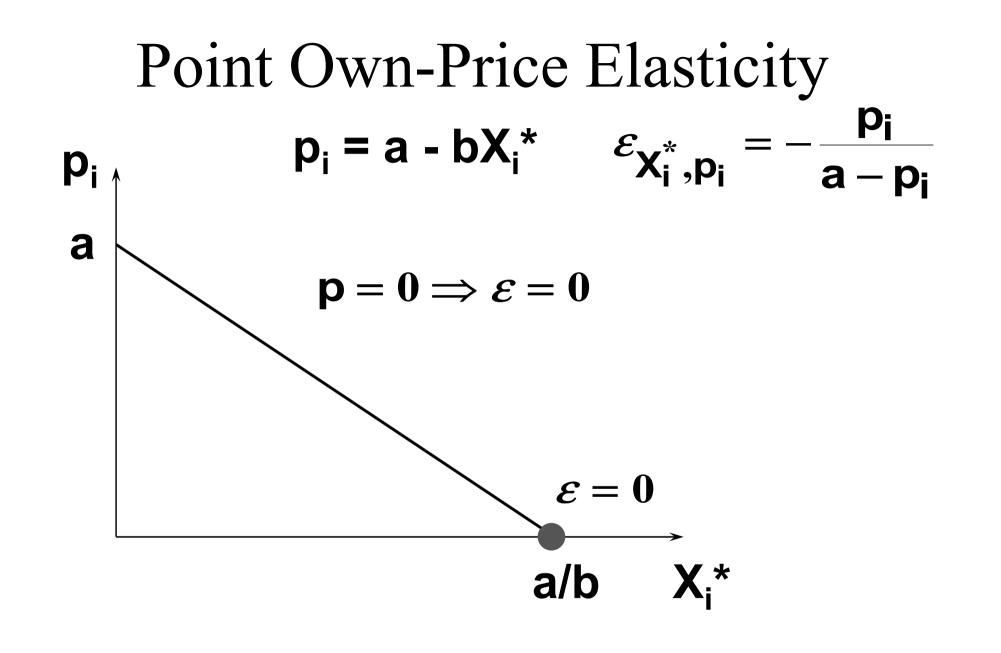
$$\mathcal{E}_{X_i^*,p_i} = \frac{p_i}{\chi_i^*} \times \frac{dX_i^*}{dp_i}$$

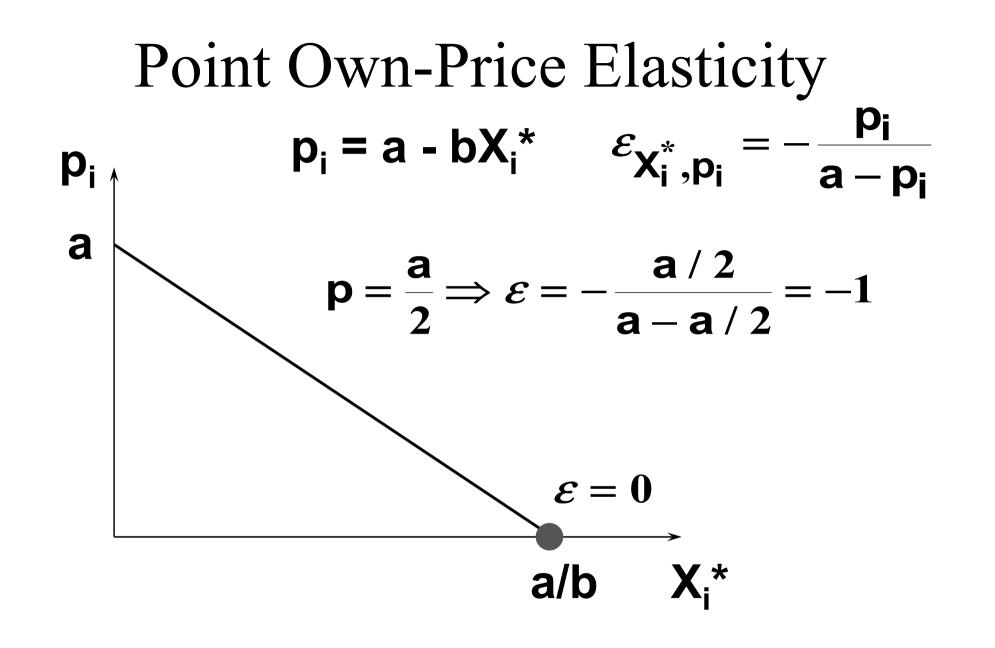
E.g. Suppose $p_i = a - bX_i$.
Then $X_i = (a-p_i)/b$ and
 $\frac{dX_i^*}{dp_i} = -\frac{1}{b}$. Therefore,
 $\mathcal{E}_{X_i^*,p_i} = \frac{p_i}{(a-p_i)/b} \times \left(-\frac{1}{b}\right) = -\frac{p_i}{a-p_i}$.

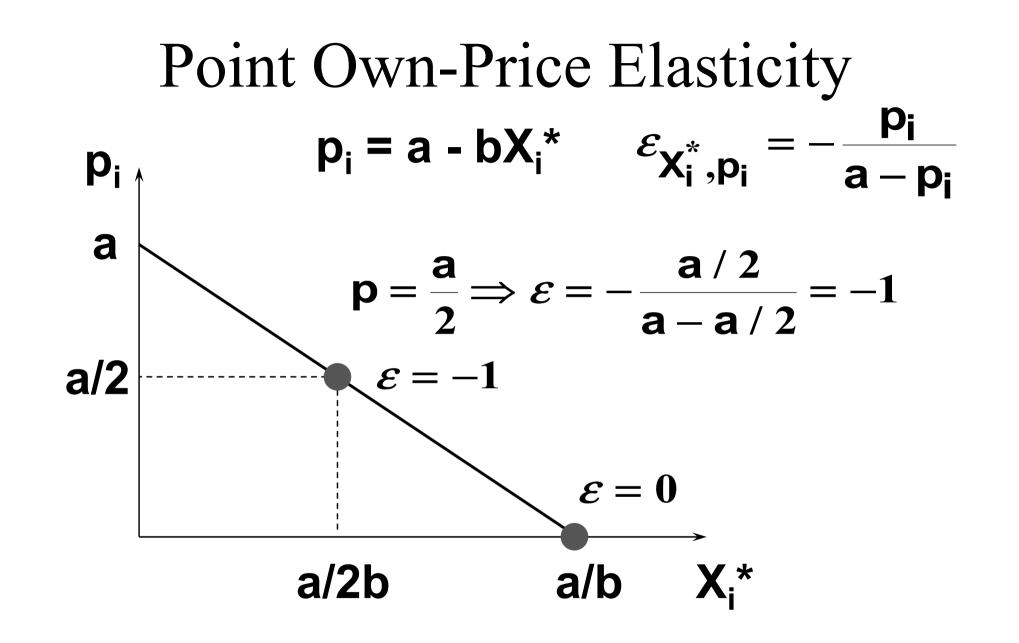


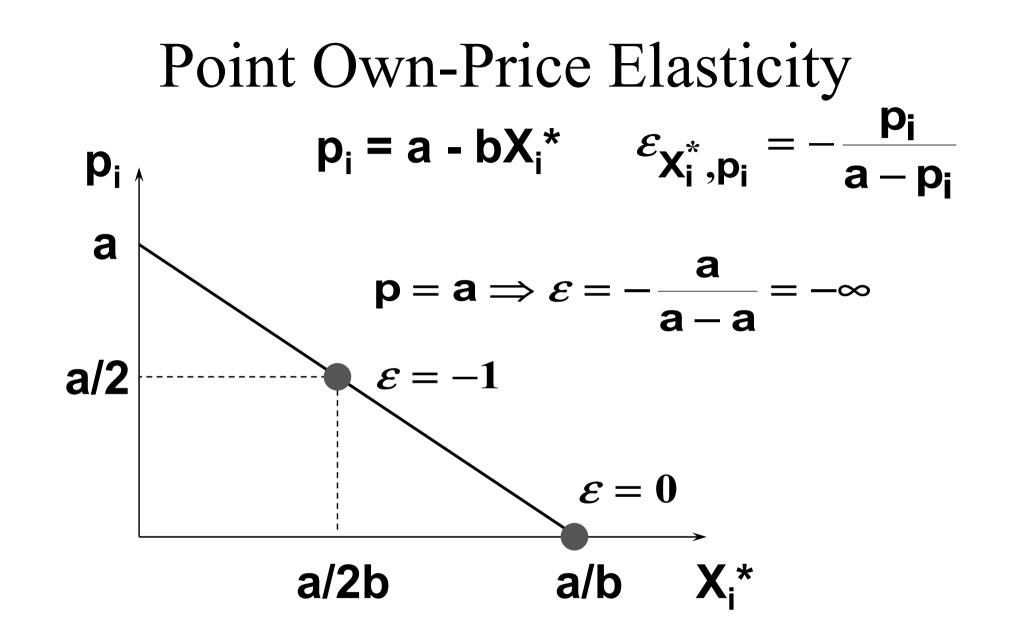


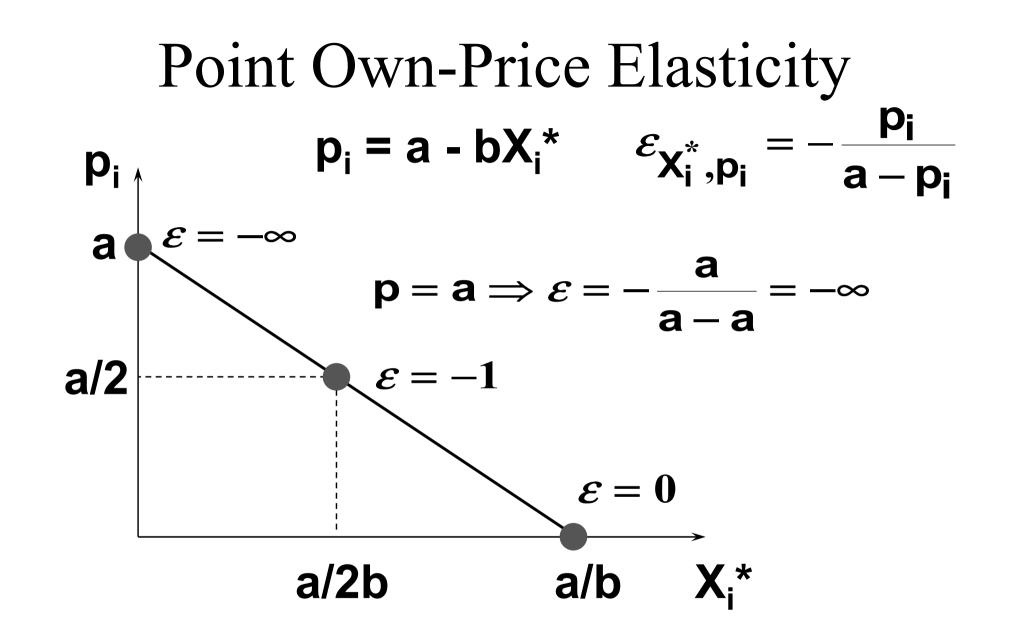


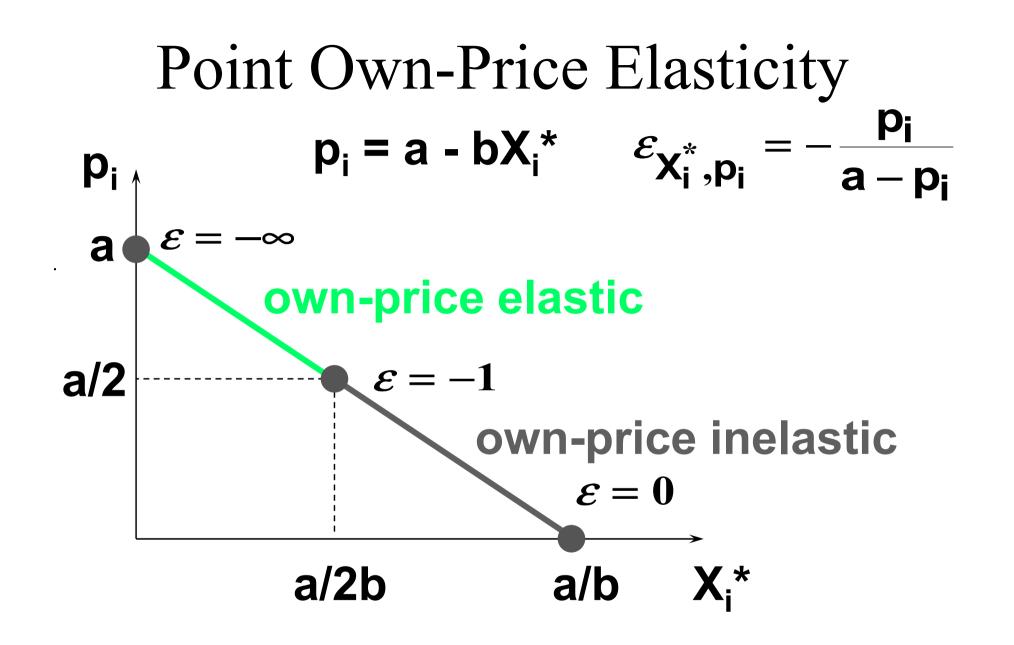


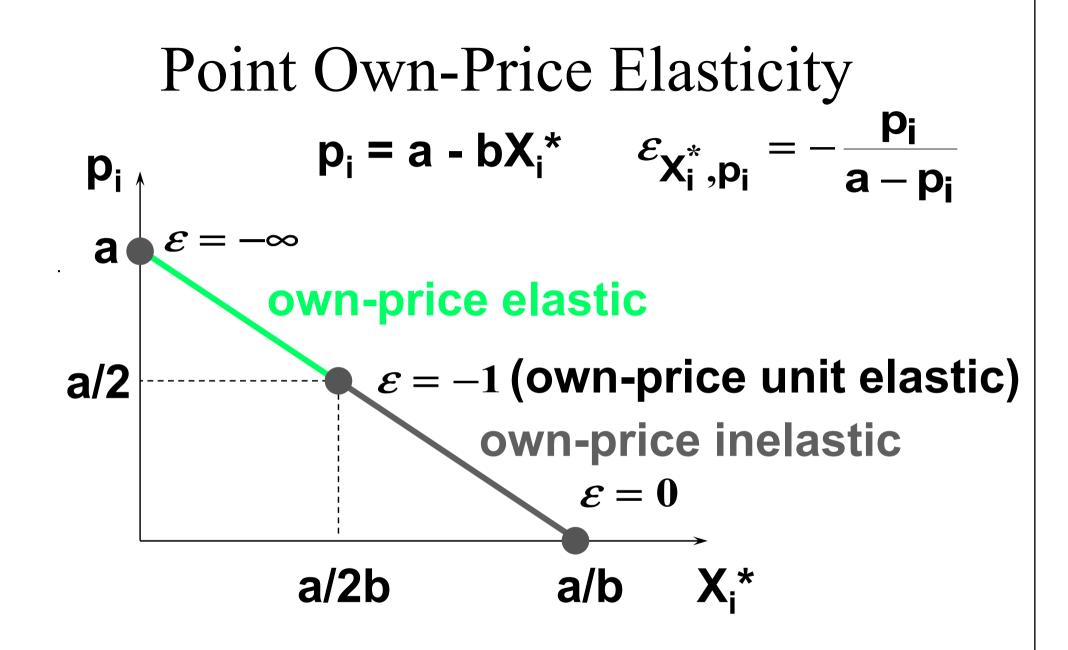






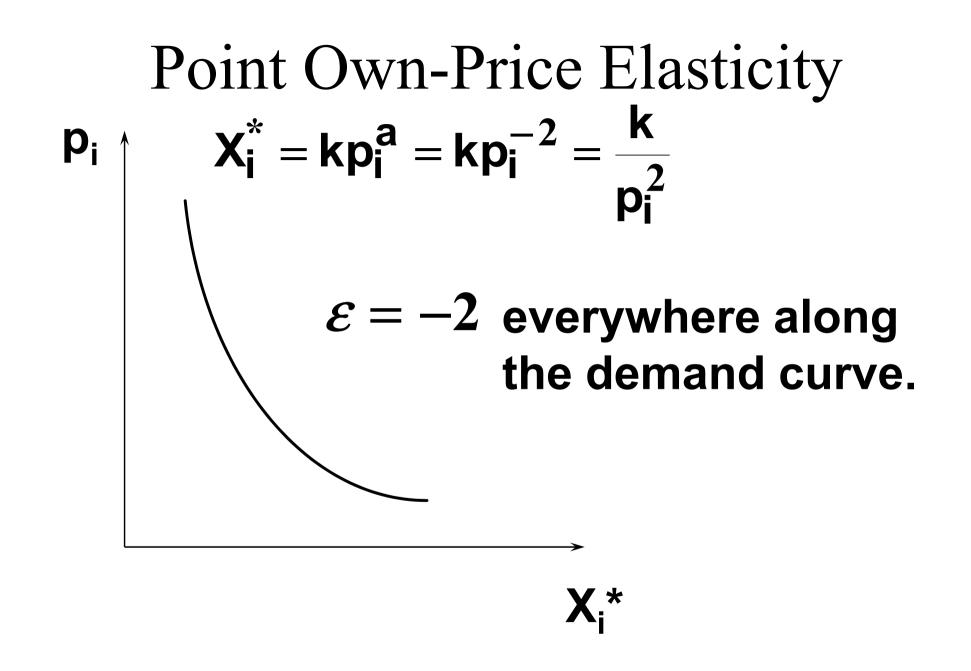






Point Own-Price Elasticity $\varepsilon_{X_{i}^{*},p_{i}} = \frac{p_{i}}{X_{i}^{*}} \times \frac{dX_{i}^{*}}{dp_{i}}$

E.g. $X_i^* = kp_i^a$. Then $\frac{dX_i^*}{dp_i} = ap_i^{a-1}$ so $\mathcal{E}_{X_i^*,p_i} = \frac{p_i}{kp_i^a} \times kap_i^{a-1} = a\frac{p_i^a}{p_i^a} = a$.



Revenue and Own-Price Elasticity of Demand

- If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
- Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

Revenue and Own-Price Elasticity of Demand

- If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.
- Hence own-price elastic demand causes sellers' revenues to fall as price rises.

So
$$\frac{dR}{dp} = X^*(p) + p \frac{dX^*}{dp}$$

So
$$\frac{dR}{dp} = X^*(p) + p\frac{dX^*}{dp}$$

= $X^*(p) \left[1 + \frac{p}{X^*(p)} \frac{dX^*}{dp} \right]$

So $\frac{dR}{dp} = X^*(p) + p\frac{dX^*}{dp}$ $= \mathbf{X}^{*}(\mathbf{p}) \left| 1 + \frac{\mathbf{p}}{\mathbf{X}^{*}(\mathbf{p})} \frac{\mathbf{dX}^{*}}{\mathbf{dp}} \right|$ $= \mathbf{X}^{*}(\mathbf{p})[1+\varepsilon].$

Revenue and Own-Price Elasticity of Demand $\frac{dR}{dp} = X^{*}(p)[1+\varepsilon]$

Revenue and Own-Price
Elasticity of Demand
$$\frac{dR}{dp} = X^{*}(p)[1 + \varepsilon]$$

so if $\varepsilon = -1$ then $\frac{dR}{dp} = 0$

and a change to price does not alter sellers' revenue.

Revenue and Own-Price
Elasticity of Demand
$$\frac{dR}{dp} = X^{*}(p)[1+\varepsilon]$$

but if $-1 < \varepsilon \le 0$ then $\frac{dR}{dp} > 0$

and a price increase raises sellers' revenue.

Revenue and Own-Price
Elasticity of Demand
$$\frac{dR}{dp} = X^{*}(p)[1 + \varepsilon]$$

And if $\varepsilon < -1$ then $\frac{dR}{dp} < 0$

and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand In summary:

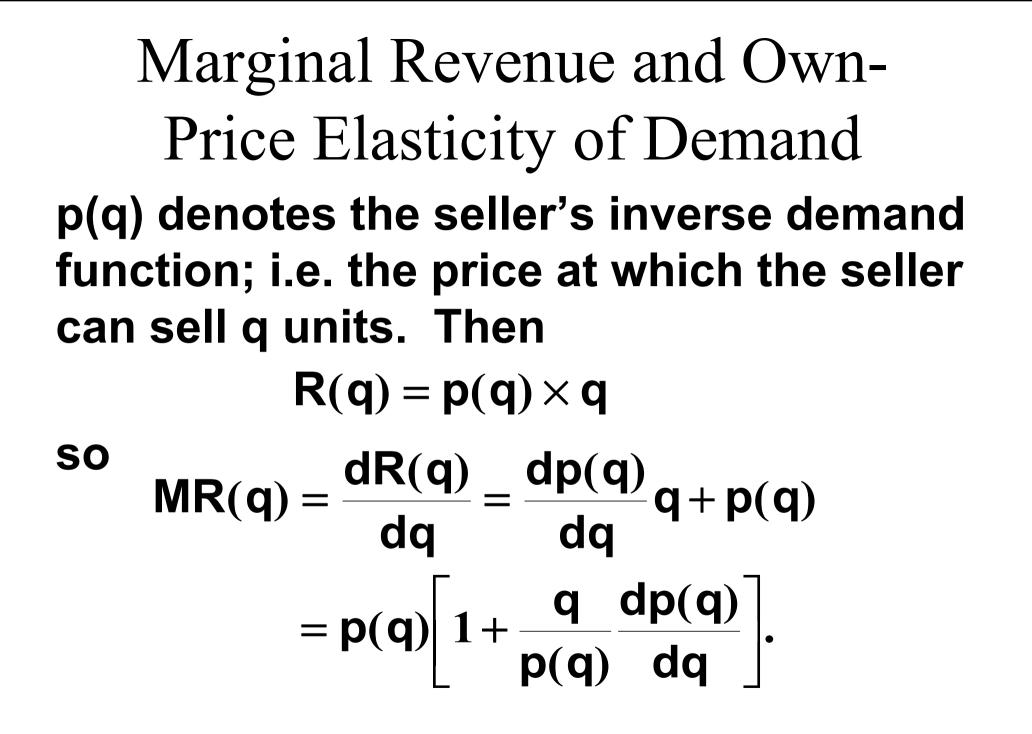
Own-price inelastic demand; $-1 < \varepsilon \leq 0$ price rise causes rise in sellers' revenue.

Own-price unit elastic demand; $\mathcal{E} = -1$ price rise causes no change in sellers' revenue.

Own-price elastic demand; $\mathcal{E} < -1$ price rise causes fall in sellers' revenue. Marginal Revenue and Own-Price Elasticity of Demand

A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

$$\mathsf{MR}(q) = \frac{\mathsf{dR}(q)}{\mathsf{d}q}.$$



Marginal Revenue and Own-Price Elasticity of Demand $MR(q) = p(q) \left[1 + \frac{q}{p(q)} \frac{dp(q)}{dq} \right].$

and
$$\mathcal{E} = \frac{dq}{dp} \times \frac{p}{q}$$

so $MR(q) = p(q) \left[1 + \frac{1}{\mathcal{E}} \right].$

Marginal Revenue and Own-Price Elasticity of Demand $MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right]$ says that the rate

at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; *i.e.*, upon the of the own-price elasticity of demand.

Marginal Revenue and Own-
Price Elasticity of Demand
MR(q) = p(q)
$$\left[1 + \frac{1}{\epsilon}\right]$$

If $\mathcal{E} = -1$ then MR(q) = 0.If $-1 < \mathcal{E} \le 0$ then MR(q) < 0.If $\mathcal{E} < -1$ then MR(q) > 0.

Marginal Revenue and Own-Price Elasticity of Demand If $\varepsilon = -1$ then MR(q) = 0. Selling one more unit does not change the seller's revenue.

If $-1 < \varepsilon \le 0$ then MR(q) < 0. Selling one more unit reduces the seller's revenue.

If $\varepsilon < -1$ then MR(q) > 0. Selling one more unit raises the seller's revenue.

Marginal Revenue and Own-Price Elasticity of Demand An example with linear inverse demand. p(q) = a - bq.

Then R(q) = p(q)q = (a - bq)qand MR(q) = a - 2bq.

