

Chapter 33

Production

Exchange Economies (revisited)

- No production, only endowments, so no description of how resources are converted to consumables.
- General equilibrium: all markets clear simultaneously.
- 1st and 2nd Fundamental Theorems of Welfare Economics.

Now Add Production ...

Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ...

Now Add Production ...

Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ... That's not easy!

Robinson Crusoe's Economy

- ♦ One agent, RC.
- Endowed with a fixed quantity of one resource -- 24 hours.
- Use time for labor (production) or leisure (consumption).
- Labor time = L. Leisure time = 24 L.
 What will RC choose?

Robinson Crusoe's Technology

 Technology: Labor produces output (coconuts) according to a concave production function.

Robinson Crusoe's Technology

Robinson Crusoe's Preferences

RC's preferences:

- coconut is a good
- –leisure is a good

Robinson Crusoe's Preferences

Robinson Crusoe's Preferences

Robinson Crusoe's Choice

Robinson Crusoe's Choice

Robinson Crusoe's Choice

Robinson Crusoe as a Firm

- Now suppose RC is both a utilitymaximizing consumer and a profitmaximizing firm.
- Use coconuts as the numeraire good; i.e. price of a coconut = \$1.
- ♦ RC's wage rate is *w*.
- ♦ Coconut output level is C.

Robinson Crusoe as a Firm

- RC's firm's profit is π = C wL.
 π = C wL ⇔ C = π + wL, the equation of an isoprofit line.
 Slope = + w.
- Intercept = π .

Isoprofit Lines

Utility-Maximization

- Now consider RC as a consumer endowed with \$π* who can work for \$w per hour.
- What is RC's most preferred consumption bundle?
- Budget constraint is $C = \pi^* + wL$.

Utility-Maximization

Utility-Maximization

Coconuts

Budget constraint; slope = W $C = \pi^* + WL$. Given w, RC's quantity supplied of labor is L^* and output quantity demanded is C^* .

Labor (hours)

Utility-Maximization & Profit-Maximization

Profit-maximization:

- $-w = MP_L$
- –quantity of output supplied = C*
- –quantity of labor demanded = L^*

Utility-Maximization & Profit-Maximization

Profit-maximization:

- $-w = MP_L$
- –quantity of output supplied = C*
- –quantity of labor demanded = L*
- Utility-maximization:
 - -w = MRS
 - –quantity of output demanded = C*
 - –quantity of labor supplied = L*

Utility-Maximization & Profit-Maximization

• Profit-maximization: Coconut and labor $-w = MP_L$ markets both clear.

- –quantity of output supplied = C*
- –quantity of labor demanded = L*
- Utility-maximization:
 - -w = MRS
 - –quantity of output demanded = C*
 - –quantity of labor supplied = L*

Pareto Efficiency

• Must have MRS = MP_L .

Pareto Efficiency

First Fundamental Theorem of Welfare Economics

- A competitive market equilibrium is Pareto efficient if
 - consumers' preferences are convex
 - –there are no externalities in consumption or production.

Second Fundamental Theorem of Welfare Economics

- Any Pareto efficient economic state can be achieved as a competitive market equilibrium if
 - consumers' preferences are convex
 - -firms' technologies are convex
 - -there are no externalities in consumption or production.

Do the Welfare Theorems hold if firms have non-convex technologies?

- Do the Welfare Theorems hold if firms have non-convex technologies?
- The 1st Theorem does not rely upon firms' technologies being convex.

- Do the Welfare Theorems hold if firms have non-convex technologies?
- The 2nd Theorem does require that firms' technologies be convex.

- Resource and technological limitations restrict what an economy can produce.
- The set of all feasible output bundles is the economy's production possibility set.
- The set's outer boundary is the production possibility frontier.

Production Possibilities Coconuts Production possibility frontier (ppf) Fish

Production Possibilities Coconuts Production possibility frontier (ppf) Production possibility set Fish

Production Possibilities Coconuts Feasible but inefficient Fish

Coconuts

Ppf's slope is the marginal rate of product transformation. Increasingly negative MRPT

 \Rightarrow increasing opportunity cost to specialization.

Fish

 If there are no production externalities then a ppf will be concave w.r.t. the origin.

Why?

- If there are no production externalities then a ppf will be concave w.r.t. the origin.
- Why?
- Because efficient production requires exploitation of comparative advantages.

Comparative Advantage

- Two agents, RC and Man Friday (MF).
- RC can produce at most 20 coconuts or 30 fish.
- MF can produce at most 50 coconuts or 25 fish.

Comparative Advantage

Economy

More producers with different opp. costs "smooth out" the ppf.

- The ppf contains many technically efficient output bundles.
- Which are Pareto efficient for consumers?

Coconuts

Coordinating Production & Consumption Coconuts F'_{MF} Instead produce (F'', C'').

- ♦ MRS ≠ MRPT ⇒ inefficient coordination of production and consumption.
- Hence, MRS = MRPT is necessary for a Pareto optimal economic state.

- RC and MF jointly run a firm producing coconuts and fish.
- RC and MF are also consumers who can sell labor.
- Price of coconut = p_c .
- Price of fish = p_F .
- **\diamond RC's wage rate = w_{RC}.**
- MF's wage rate = w_{MF} .

- ♦ L_{RC}, L_{MF} are amounts of labor purchased from RC and MF.
- Firm's profit-maximization problem is choose C, F, L_{RC} and L_{MF} to max $\pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$.

 $\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$ Isoprofit line equation is $\operatorname{constant} \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$

 $\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$ Isoprofit line equation is $\operatorname{constant} \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$ which rearranges to

$$C = \frac{\pi + w_{RC}L_{RC} + w_{MF}L_{MF}}{p_C} - \frac{p_F}{p_C}F.$$

 $\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$ Isoprofit line equation is $\operatorname{constant} \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$ which rearranges to

Coconuts

Coconuts

Decentralized Coordination of Production & Consumption

Coconuts

Decentralized Coordination of Production & Consumption

 So competitive markets, profitmaximization, and utility maximization all together cause

$$MRPT = -\frac{p_F}{p_C} = MRS,$$

the condition necessary for a Pareto optimal economic state.

Decentralized Coordination of Production & Consumption

Coconuts

