BKM_DATS: Databázové systémy 6. Entity-Relationship Model

Vlastislav Dohnal

Entity-Relationship Model

- □ Modeling
- E-R Diagram
 - Entity Sets and Relationships
 - Weak Entity Sets
 - Extended E-R Features
 - Design of the Bank Database
- UML

Entitně-relační model

Konceptuální model používaný při vývoji IS

Během analýzy požadavků

Modeluje informace ukládané v DB

Snadný pro porozumění

Zákazník mu "rozumí"

DFD – půjčka v bance

Modeling

- □ A *database* can be modeled as:
 - □ a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.

□ Example: specific person, company, event, plant

- Entities have attributes
 - □ Example: person has a *name* and *address*
- An entity set is a set of entities of the same type that share the same properties.
 - □ Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan

jd		ame	street city
customer-	customer-	customer-	customer
321-12-3123	Jones	Main	Harrison
019-28-3746	Smith	North	Rye
677-89-9011	Hayes	Main	Harrison
555-55-5555	Jackson	Dupont	Woodside
244-66-8800	Curry	North	Rye
963-96-3963	Williams	Nassau	Princeton
335-57-7991	Adams	Spring	Pittsfield

customer

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Relationship Sets

□ A **relationship** is an association among several entities

Example:

HayesborrowerA-102customer entityrelationship setloan entity

□ A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from corresponding entity sets

 $\mathsf{R} = \{ (e_1, e_2, \dots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n \}$

where $(e_1, e_2, ..., e_n)$ is a relationship

□ Example:

(Hayes, A-102) \in borrower

Relationship Set borrower

321-12-3123	Jones	Main	Harrison		L-17 1000
019-28-3746	Smith	North	Rye		L-23 2000
677-89-9011	Hayes	Main	Harrison		L-15 1500
555-55-5555	Jackson	Dupont	Woodside		L-14 1500
244-66-8800	Curry	North	Rye	+/-	L-19 500
963-96-3963	Williams	Nassau	Princeton		L-11 900
335-57-7991	Adams	Spring	Pittsfield		L-16 1300

customer

loan

Relationship Sets (Cont.)

- □ An **attribute** can also be property of a relationship set.
- □ For instance, the *depositor* relationship set between entity sets *customer* and *account* may have the attribute *access_date*

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- □ Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

elements in the other set

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

	321-12-3123	Jones	Main	Harrison
Attributes	019-28-3746	Smith	North	Rye

□ An entity is represented by a set of attributes

descriptive properties possessed by all members of an entity set.
 Example:

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

- □ **Name** each attribute has its name unique within an entity
- Domain the set of permitted values for each attribute
- □ Attribute type
 - □ *Simple* attribute single value
 - □ Composite attribute single value but structured
 - □ *Multi-valued* attribute multiple values, can repeat
 - Example: phone_numbers
 - Derived attribute
 - Can be computed from other entity's attributes
 - Example: age, given date_of_birth

Composite Attributes

E-R Diagram With Composite, Multivalued, and Derived Attributes

Relationship Sets with Attributes

Mapping Cardinality Constraints

- We express cardinality constraints by drawing either
 - \Box a directed line (\rightarrow), signifying "one," or
 - an undirected line (—), signifying "many," between the relationship set and the entity set.
- □ One-to-one relationship:
 - A customer is associated with at most one loan via the relationship borrower
 - □ A loan is associated with *at most one* customer via *borrower*

One-To-Many Relationship

In the one-to-many relationship a loan is associated with at most one customer via *borrower*, a customer is associated with several (including zero) loans via *borrower*

Many-To-One Relationships

In a many-to-one relationship, a loan is associated with several (including zero) customers via *borrower*, a customer is associated with at most one loan via *borrower*

Many-To-Many Relationship

- A customer is associated with several (possibly zero) loans via borrower
- A loan is associated with several (possibly zero) customers via borrower

Keys

□ Key = a subset of attributes of "special" interest

- Search key
- "Database / identification / unique" key
- □ Referencing an entity
- "Database key" (primary key constraint)
 - Defined for unique identification of each entity and/or relationship
- □ A **super key** of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- □ A **candidate key** of an entity set is a minimal super key
 - customer_id is a candidate key of customer
 - □ *account_number* is a candidate key of *account*
- □ Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - □ (*customer_id, account_number*) is the super key of *depositor*
 - NOTE: this means a pair of entities can have at most one relationship in a particular relationship set.
 - Example: if we wish to track all access_dates to each account by each customer, we cannot assume a relationship for each access. We may use a multivalued attribute.
- Must consider the mapping cardinality of the relationship set when deciding what the candidate keys are
- Need to consider semantics of relationship set in selecting the *primary* key in case of more than one candidate key

E-R Diagram with a Ternary Relationship

Cardinality Constraints on Ternary Relationship

- We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality constraint
 - E.g., an arrow from *works_on* to *job* indicates an employee works at a branch on at most one job.
- □ If there is more than one arrow, there are two ways of defining the meaning.
 - □ E.g., a ternary relationship *R* between *A*, *B* and *C* with arrows to *B* and *C* could mean
 - 1. each A entity is associated with a unique entity from B and C or
 - 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is associated with a unique B
 - □ Each alternative has been used in different formalisms
 - □ To avoid confusion, we <u>outlaw</u> more than one arrow

Roles

- Entity sets of a relationship need not be distinct
- □ The labels "manager" and "worker" are called **roles**; they specify how employee entities interact via the *works_for* relationship set.
- Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles.
- Role labels are optional, and are used to clarify semantics of the relationship

Participation of an Entity Set in a Relationship Set

- □ Total participation (indicated by double line)
 - every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., participation of loan in borrower is total
 - every loan must have a customer associated to it via borrower
- Partial participation (default)
 - some entities may not participate in any relationship in the relationship set
 - Example: participation of customer in borrower is partial

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Existence Dependencies

- □ If the existence of entity *x* depends on the existence of entity *y*, then *x* is said to be *existence dependent* on *y*.
 - □ *y* is a *dominant entity* (in example below, *loan*)
 - □ *x* is a *subordinate entity* (in example below, *payment*)

□ If a *loan* entity is deleted, then all its associated *payment* entities must also be deleted.

Weak Entity Sets (Cont.)

- □ We depict a weak entity set by double rectangles.
- □ We underline the discriminator of a weak entity set with a dashed line.
- payment_number discriminator of the payment entity set
 - □ So, it can represent the order of individual payments of a loan.
- Primary key for payment is (loan_number, payment_number)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

More Weak Entity Set Examples

- In a university, a course is a regular entity set and a course_offering can be modeled as a weak entity set.
 - The discriminator of course_offering is semester (including year) and section_number (if there is more than one section)

- If we modeled *course_offering* as a regular entity, we would add *course_id* as an attribute.
 - □ Then the relationship to *course* would be also implicit in the *course_offering.course_id* attribute.

Design Issues

□ Use of entity sets vs. attributes

Choice mainly depends on the structure of the enterprise being modeled, and on the semantics associated with the attribute in question.

□ Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an action that occurs between entities

□ Binary versus n-ary relationship sets

Although it is possible to replace any nonbinary (*n*-ary, for n > 2) relationship set by a number of distinct binary relationship sets, an *n*-ary relationship set shows more clearly that several entities participate in a single relationship.

Placement of relationship attributes

Binary Vs. Non-Binary Relationships

- Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g. A ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by two binary relationships, *father* and *mother*
 - Using two binary relationships allows partial information (e.g. only mother being know)
 - But there are some relationships that are naturally non-binary

Example: works_on

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Extended E-R Features: Specialization

A top-down design process

- We designate subgroupings within an entity set that are distinctive from other entities in the set.
- □ These subgroupings become lower-level entity sets
 - can have attributes or participate in relationships
 - □ but do not apply to the higher-level entity set.
- Depicted by a *triangle* component labeled ISA
 - □ E.g., *customer* "is a" *person*.

□ Inheritance

- a lower-level entity set inherits all the *attributes* and
- relationship *participation* of the higher-level entity set to which it is linked.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Aggregation

- Consider the ternary relationship *works_on*, which we saw earlier
- Suppose we want to record managers for some tasks performed by an employee at a branch

Aggregation (Cont.)

- Relationship sets works_on and manages represent overlapping information
 - Every manages relationship corresponds to a works_on relationship
 - However, some works_on relationships may not correspond to any manages relationships
 - □ So, we can't discard the *works_on* relationship
- □ Eliminate this redundancy via *aggregation*
 - □ Treat a relationship as an abstract entity
 - □ Allows relationships between relationships
 - Abstraction of relationship into new entity
- □ Without introducing redundancy, the following diagram represents:
 - □ An employee works on a particular job at a particular branch
 - An employee, branch, job combination may have an associated manager

E-R Diagram With Aggregation

E-R Design Decisions

- □ Already discussed:
 - □ The use of an attribute or entity set to represent an object.
 - Whether a real-world concept is best expressed by an entity set or a relationship set.
 - The use of a ternary relationship versus a set of binary relationships.
- □ The use of a regular (strong) or weak entity set.
- □ The use of specialization/generalization
 - contributes to modularity in the design.
- □ The use of aggregation
 - can treat the aggregate entity sets as a single unit without concern for the details of its internal structure.

E-R Diagram for a Banking Enterprise

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Summary of Symbols Used in E-R Notation

Chen E-R Notation

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

Alternative E-R Notations

OTHER RELATIONSHIP CARDINALITY NOTATION

Notation	Zero or One Relation-ship	One and Only One	Zero or Many Relation-ship	One or Many Relation-ship
Crow's Foot Notation	-0+0	-+0		\neg
Arrow Notation		• □		
Bachman Notation		•		
ADW	-0+0			+
Oracle Case				$\neg \neg$

https://www.softwareideas.net/erd-relation-arrows

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

UML

- UML: Unified Modeling Language
- UML has many components to graphically model different aspects of an entire software system
- Supported techniques
 - data modeling (entity relationship diagrams)
 - business modeling (workflows)
 - object modeling
 - □ component modeling
- UML Class Diagrams correspond to E-R Diagram
 - □ but there are several differences.

Summary of UML Class Diagram Notation

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

* Note the reversal notation of numeric relationship cardinality constraints in UML

* Generalization can use merged or separate arrows independent of disjoint/overlapping