BKM_DATS: Databázové systémy8. Relational DB Design

Vlastislav Dohnal

Relational Database Design

- Features of Good Relational Design
- □ Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Functional Dependency Theory
- □ Algorithms for Functional Dependencies

Combine Schemas?

Suppose we combine instructor(ID, name, salary, dept_name) and department(dept_name, building, budget) into inst_dept

No connection to a relationship set inst_dept !

Result is possible repetition of information

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

What About Smaller Schemas?

- □ Suppose we had started with
 - inst_dept (ID, name, salary, dept_name, building, budget)
 - How would we know to split up (decompose) it into instructor and department?
- Write a rule "if there were a schema (*dept_name, building, budget*), then *dept_name* would be a candidate key"
 - Denote as a **functional dependency**:

dept_name \rightarrow building, budget

- In *inst_dept*, because *dept_name* is not a candidate key, the building and budget of a department may have to be repeated.
 - □ This indicates the need to decompose *inst_dept*

What About Smaller Schemas? (cont.)

- inst_dept (ID, name, salary, dept_name, building, budget)
- □ Not all decompositions are good.
 - □ Suppose we decompose *employee(ID, name, street, city, salary)* into
 - instructor(ID, name, salary) and department(dept_name, building, budget)

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Do we lose information?
 - □ We cannot reconstruct the original *employee* relation.
 - This is a lossy decomposition.

A Lossy Decomposition

	ID	name	street	city		sal	ary			
	: 57766 98776 :	Kim Kim	Main North	Perryrid Hamptor	-	750 670				
			employee							
II	D n	ame			n	ame	stre	eet	city	salary
	: 57766 Kim 98776 Kim :				(im (im	Ma Noi		Perryridge Hampton	75000 67000	
			★ natural	l join 🗡						
	ID	name	street	city		sala	iry			
	: 57766 57766 98776 98776 :	Kim Kim Kim Kim	Main North Main North	Perryridg Hamptor Perryridg Hamptor	i ze	750 670 750 670	00			

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2023

Example of Lossless Decomposition

Lossless decomposition

Decomposition of

$$R = (A, B, C)$$
 into $R_1 = (A, B)$ $R_2 = (B, C)$ $A \ B \ C$ $A \ B$ $B \ C$ $\alpha \ 1 \ A$ $A \ B$ $B \ C$ $\alpha \ 1 \ A$ $A \ B$ $A \ B$ r $\Pi_{A,B}(r)$ $\Pi_{B,C}(r)$

$$r = \prod_{A,B} (r) \bowtie \prod_{B,C} (r)$$

$$\begin{array}{c|c} A & B & C \\ \hline \alpha & 1 & A \\ \beta & 2 & B \end{array}$$

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2023

Goal: Devise a Theory for the Following

- \Box Decide whether a particular relation *R* is in a "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations { R_1 , R_2 , ..., R_n } such that
 - □ each relation is in good form
 - □ the decomposition is a lossless decomposition
- Our theory is based on:
 - □ functional dependencies

Functional Dependencies

- □ Constraints on the set of legal relations.
- Require that the value for a particular set of attributes determines the value for another set of attributes uniquely.
 - □ E.g., employee_id determines employee name and address.
- □ A functional dependency is a generalization of the notion of a *key*.

Functional Dependencies (Cont.)

- □ Let *R* be a relation schema $\alpha \subseteq R$ and $\beta \subseteq R$ are non-empty
- □ The functional dependency

 $\alpha \rightarrow \beta$

holds on *R* if and only if for any legal relation r(R), whenever any two tuples t_1 and t_2 of *r* agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

 \square Read $\alpha \rightarrow \beta$ as " β depends on α "

Example:

 \Box Consider r(A,B) with the following instance of r.

On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Use of Functional Dependencies

- We use functional dependencies to:
 - <u>test</u> relations to see if they are legal under a given set of functional dependencies.
 - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.
 - specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.
- Note
 - A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of *instructor(<u>ID</u>, name, salary)* may, by chance, satisfy

 $name \rightarrow ID.$

Use of Functional Dependencies (Cont.)

- \Box K is a super key for a relation schema R if and only if $K \rightarrow R$
- \Box K is a candidate key for R if and only if
 - $\Box K \to R, \text{ and }$
 - I for no $\alpha \subset K$, $\alpha \to R$
- □ Meaning: there is only one value for each value of K.
- Functional dependencies allow us to express constraints that cannot be expressed using super keys.
 - Consider the schema: inst_dept (<u>ID</u>, name, salary, dept_name, building, budget)
 - We expect these functional dependencies to hold:

 $dept_name \rightarrow building$ $ID \rightarrow building$ $ID \rightarrow dept_name$

There is only one building for each department.

but would not expect the following to hold:

 $dept_name \rightarrow salary$

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2023

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation
 - Example:
 - \square ID, name \rightarrow ID
 - \Box name \rightarrow name
- $\Box \quad \text{In general, } \alpha \to \beta \text{ is trivial if } \beta \subseteq \alpha$

Example

- Design a university system for managing departments, their instructors, offered courses and enrolled students.
 - □ departments have name, building, address,
 - instructors have ID, name and affiliation with the home department and courses they teach,
 - □ courses have ID, title, number of credits,
 - □ student have ID, name, enrolled semester,
 - students sign up to courses and have their grading and date of passing.
- □ Is this schema OK? What are the functional dependencies?
 - sys(dept_name, building, dept_address, instr_id, instr_name, instr_dept, course_id, course_title, credits, stud_id, stud_name, stud_sem, grading, passed_on)

Example

dept _na me	building	dept_add ress	instr_i d	instr_n ame	inst r_de pt	course _id	course_title	cr ed its	stud_id	stud_na me	stud_se m	gradi ng	passe d_on
ESF	Lipová	Lipová 41a, Brno	2952	Dohnal	FI	BKM_ DATS	Databázové systémy	6	402874	Niki Lauda	1/2020	D	2021- 12-14
FI	Botanick á	Botanická 68a, Brno	2952	Dohnal	FI	PB168	DB a IS	4	581623	Max Verstape n	2/2021	В	2022- 01-10
ESF	Lipová	Lipová 41a, Brno	2952	Dohnal	FI	BKM_ DATS	Databázové systémy	6	340265	Keke Rosberg	1/2020	А	2021- 12-19

- \Box dept_name \rightarrow building, dept_address
- \Box instr_id \rightarrow instr_name, instr_dept
- \Box stud_id \rightarrow stud_name, stud_sem
- \Box course_id \rightarrow course_title, credits
- \Box course_id \rightarrow instr_id
- \Box stud_id, course_id \rightarrow grading, passed_on

Closure of a Set of Functional Dependencies

- □ Given a set *F* of functional dependencies, there are certain other functional dependencies that are <u>logically implied</u> by *F*.
 - Example

If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$

- □ The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
 - □ We denote the *closure* of F by F^+ .
 - \Box *F*⁺ is a superset of *F*.

Closure of a Set of Functional Dependencies

We can find F^{+,} the closure of F, by repeatedly applying Armstrong's Axioms:

I if $\beta \subseteq \alpha$, then $\alpha \to \beta$	(reflexivity)
$\Box \text{ if } \alpha \rightarrow \beta \text{, then } \gamma \alpha \rightarrow \gamma \beta$	(augmentation)
I if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$	(transitivity)

- These rules are
 - sound (generate only functional dependencies that actually hold), and
 - □ **complete** (generate all functional dependencies that hold).

Example

$$\begin{array}{ll} \square & R = (A, B, C, G, H, I) \\ & F = \{ A \rightarrow B \\ & A \rightarrow C \\ & CG \rightarrow H \\ & CG \rightarrow I \\ & B \rightarrow H \} \end{array}$$

- □ some members of F^+
 - $\Box A \to H$

□ by transitivity from $A \rightarrow B$ and $B \rightarrow H$

 $\Box AG \to I$

□ by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$

- $\Box \quad CG \to HI$
 - □ by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Closure of Attribute Sets

- Given a set of attributes α , define the *closure* of α under *F* as a set of attributes that are functionally determined by α under *F*
 - $\hfill\square$ Denoted by $\alpha^{\scriptscriptstyle +}$
- □ Algorithm to compute α^+ , the closure of α under *F*

```
\begin{array}{l} \textit{result} \coloneqq \alpha; \\ \textbf{while} (changes to \textit{result}) \textbf{do} \\ \textbf{for each } \beta \rightarrow \gamma \textbf{ in } F \textbf{do} \\ \textbf{begin} \\ \textbf{if } \beta \subseteq \textit{result} \textbf{ then } \textit{result} \coloneqq \textit{result} \cup \gamma \\ \textbf{end} \end{array}
```

Example of Attribute Set Closure

I)

$$\begin{array}{ll} \square & R = (A, B, C, G, H, \\ \square & F = \{A \rightarrow B \\ & A \rightarrow C \\ & CG \rightarrow H \\ & CG \rightarrow I \\ & B \rightarrow H \} \end{array}$$

- □ (*AG*)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 - 4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- □ Testing for super key:
 - □ To test if α is a super key, we compute $\alpha^{+,}$ and check if α^{+} contains all attributes of *R*.
- Testing functional dependencies
 - □ To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in *F*⁺), just check if $\beta \subseteq \alpha^+$.
 - Definition That is, we compute α^+ by using attribute closure, and then check if it contains β.

□ It is a simple and cheap test, and very useful.

Computing closure of F (F⁺)

□ For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \rightarrow S$.

Example of Test for Candidate Key

$$\begin{array}{ll} \square & R = (A, B, C, G, H, I) \\ \square & F = \{A \rightarrow B \\ & A \rightarrow C \\ & CG \rightarrow H \\ & CG \rightarrow I \\ & B \rightarrow H \} \end{array}$$

- □ Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R? \Leftrightarrow Is (AG)^+ \supseteq R$?

 $\Box (AG)^{+} = ABCGHI$

- 2. Is any subset of AG a super key?
 - 1. Does $A \rightarrow R$? \Leftrightarrow Is (A)⁺ \supseteq R ?
 - 2. Does $G \rightarrow R$? \Leftrightarrow Is $(G)^+ \supseteq R$?

Design Goals

□ Goal for a relational database design is:

- □ BCNF, and
- □ Lossless, and
- Dependency preservation.
- □ If we cannot achieve this, we accept one of
 - Lack of dependency preservation
 - Redundancy due to the use of 3NF
- Interestingly, SQL does not provide a direct way of specifying functional dependencies other than super-keys.
 - Can specify functional dependencies using assertions, but they are expensive to test and currently not supported by any widely used databases!
- Even if we had a dependency preserving decomposition, using SQL, we would not be able to efficiently test a functional dependency whose left-hand side is not a key.

Lossless Decomposition

□ For the case of $R = (R_1, R_2)$, we require that for all possible relations *r* on schema *R*

 $r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$

□ A decomposition of *R* into R_1 and R_2 is lossless if at least one of the following dependencies is in *F*⁺:

$$\Box R_1 \cap R_2 \to R_1$$

 $\Box R_1 \cap R_2 \to R_2$

- The above functional dependencies are a sufficient condition for lossless decomposition.
- The dependencies are a necessary condition only if all constraints are functional dependencies.

Dependency Preservation

- Let F_i be the set of dependencies F^+ that include only attributes in R_i .
 - A decomposition is dependency preserving, if

 $(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$

 If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Example

- $\square R = (A, B, C)$ $F = \{A \rightarrow B$ $B \rightarrow C\}$ Key = {A}
- □ *R* is not in BCNF
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - \square R_1 and R_2 in BCNF
 - Lossless decomposition
 - Dependency preserving
- □ Alternative decomposition $R_1 = (A, B), R_2 = (A, C)$
 - Lossless decomposition?

 $R_1 \cap R_2 = \{A\} \text{ and } A \to AB$

Dependency preserving?

We cannot check $B \rightarrow C$ without computing $R_1 \bowtie R_2$

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2023

First Normal Form

- Domain is **atomic** if its elements are indivisible units
 - Examples of non-atomic domains:
 - Set of names, composite attributes
 - Identification numbers like CS101 that can be broken up into parts (department code and course id)
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - Example
 - Set of accounts stored with each customer, and set of owners stored with each account
- We assume all relations are in first normal form

First Normal Form (Cont.)

- Atomicity is a property of how the elements of the domain are used.
 - Example
 - Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
 - Doing so is a bad idea:
 - leads to encoding of information in application program rather than in the database.

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F⁺ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

 $\Box \quad \alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)

- $\Box \alpha$ is a super key for *R* (i.e., $\alpha \rightarrow R$)
- Example schema *not* in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

□ because dept_name \rightarrow building, budget holds on instr_dept, but dept_name is not a super key.

Decomposing a Schema into BCNF

- □ Suppose we have a schema *R*
- □ A non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF, so we decompose *R* into:
 - $\square R_1 = (\alpha \cup \beta)$
 - $\square R_2 = (R (\beta \alpha))$
- \Box In our example, *dept_name* \rightarrow *building, budget*
 - $\Box \alpha = dept_name$
 - $\square \beta = building, budget$

instr_dept (ID, name, salary, dept_name, building, budget)

and *inst_dept* is replaced by

 \square $R_1 = (\alpha \cup \beta) = (dept_name, building, budget)$

 $\square R_2 = (R - (\beta - \alpha)) = (ID, name, salary, dept_name)$

BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- □ A decomposition is *dependency preserving*
 - If it is sufficient to <u>test only dependencies on each individual</u> <u>relation</u> of the decomposition in order <u>to ensure that all</u> functional dependencies <u>hold</u>.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as *third normal form*.

Third Normal Form

□ A relation schema *R* is in **third normal form (3NF)** if for all:

 $\alpha \rightarrow \beta$ in **F**⁺ where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

 $\Box \quad \alpha \to \beta \text{ is trivial (i.e., } \beta \in \alpha)$

- $\square \alpha$ is a super key for *R*
- □ Each attribute A in $\beta \alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)
- □ If a relation is in BCNF, it is in 3NF
 - Since in BCNF one of the first two conditions above must hold.
- Third condition is the minimal relaxation of BCNF to ensure dependency preservation.

BCNF and Dependency Preservation

- It is not always possible to get a BCNF decomposition that is dependency preserving.
- □ Relation dept_study_advisor (s_ID, a_ID, dept_name) $F = \{ s_ID, dept_name \rightarrow a_ID, a_ID \rightarrow dept_name \}$ Two candidate keys = s_ID, dept_name and s_ID, a_ID
- dept_study_advisor is not in BCNF
- □ Any decomposition of *dept_study_advisor* will fail to preserve

s_ID, dept_name \rightarrow a_ID

This implies that testing for s_ID , $dept_name \rightarrow a_ID$ requires a join.

3NF Example

□ Relation *dept_study_advisor*.

- □ dept_study_advisor (s_ID, a_ID, dept_name) $F = \{s_ID, dept_name \rightarrow a_ID, a_ID \rightarrow dept_name\}$
- Two candidate keys: s_ID, dept_name, a_ID, s_ID

dept_study_advisor is in 3NF

 \Box s_ID, dept_name \rightarrow a_ID

- s_ID, dept_name is a superkey
- \Box a_ID \rightarrow dept_name
 - a_ID is not a superkey
 - dept_name is contained in a candidate key

Redundancy in 3NF

- There is some redundancy in this schema
- □ Example of problems due to redundancy in 3NF
 - dept_study_advisor (s_ID, a_ID, dept_name)
 - $F = \{s_ID, dept_name \rightarrow a_ID, dept_name _A a_ID, dept_A a_ID, de$

 $a_ID \rightarrow dept_name$

s_ID	a_ID	dept_name
Adam	Jane	FI
Bob	Jane	FI
Joe	Jane	FI
null	Karol	ESF

□ repetition of information (e.g., the relationship *Jane, FI*)

□ e.g., (*a_ID, dept_name*)

- need to use *null* values (e.g., to represent the relationship *Karol, ESF* where there is no corresponding value for *s_ID*).
 - e.g., a relation (a_ID, dept_name) must exist if there is no other separate relation mapping instructors to departments

Second Normal Form

- □ A functional dependency $\alpha \rightarrow \beta$ is called **a partial dependency**
 - I if there is a subset γ of α , i.e., $\gamma \subset \alpha$, such that $\gamma \rightarrow \beta$.
- \Box We say that β is **partially dependent** on α .
- □ A relation R is in **second normal form** (2NF) if it is in 1NF and each attribute A in R meets one of the following:

□ A appears in a candidate key;

□ A <u>is not</u> partially dependent on <u>any</u> candidate key.

 i.e., A is dependent on a complete candidate key, but it may be a transitive dependence.

Every 3NF is in 2NF.