BKM_DATS: Databázové systémy 9. Query Processing and Relational Algebra

Vlastislav Dohnal

Query Processing

ロ Overview
\square Evaluation of Expressions

- Measures of Query Cost

■ Evaluation algorithms
\square Sorting
\square Join Operation

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

Basic Steps in Query Processing (Cont.)

- Parsing and translation
\square Translate the SQL query into its internal form.
\square This is then translated into relational algebra.
\square Parser checks syntax, verifies relations
- Optimization
\square Generate a query-evaluation plan and choose algorithms for evaluating individual operations
- Evaluation
\square The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.

Basic Steps in Query Processing (Cont.)

- Example of query:
\square List salary of all instructors that earn less than $\$ 75,000$.
- SQL query
\square SELECT salary FROM instructor WHERE salary < 75000
- Conversion to rel. algebra
$\square \prod_{\text {salary }}\left(\sigma_{\text {salary }}>5000(\right.$ instructor) $)$

Basic Steps: Optimization

- A relational-algebra expression may have many equivalent expressions:
$\square \prod_{\text {salary }}\left(\sigma_{\text {salary<75000 }}(\right.$ instructor $)$)
$\square \quad \sigma_{\text {salary }<75000}\left(\prod_{\text {salary }}\right.$ (instructor))
- For a relational-algebra expression, an expression tree is created

Basic Steps: Optimization (Cont.)

- Each relational algebra operation can be evaluated using one of several different algorithms
\square Correspondingly, a relational-algebra expression can be evaluated in many ways.
\square Annotated expression specifying detailed evaluation strategy is called an execution-plan or evaluation-plan.
\square E.g., to find instructors with salary < 75000
- use an index on salary, or
- perform complete relation scan and discard instructors with salary ≥ 75000

Basic Steps: Optimization (Cont.)

- Example of an evaluation-plan

Basic Steps: Optimization (Cont.)

- Query Optimization
\square Amongst all equivalent evaluation plans choose the one with lowest cost.
\square Cost is estimated using statistical information from the database catalog
- E.g., number of tuples in each relation, size of tuples, etc.
\square There is a huge number of possible evaluation plans
\square Optimization uses some heuristics

1. Perform selection early
reduce the number of tuples (by using an index, e.g.)
2. Perform projection early
\square reduce the number of attributes
3. Perform most restrictive operations early

- such as join and selection.

Evaluation of Expressions

- Alternatives for evaluating an entire expression tree
\square Materialization
- Evaluate one operation at a time, starting at the lowest-level.
- Use intermediate results materialized into temporary relations to evaluate next-level operations.
\square Pipelining
- pass on tuples to parent operations even as an operation is being executed

Evaluation of Expressions (Cont.)

- Materialized evaluation
\square Compute $\sigma_{\text {buiding }}=$ Watson'(department)) and store it
\square Then read from stored intermediate result and compute its join with instructor, store it
\square Finally read it and compute the projection on name and output it.
- This step can be conveniently evaluated using pipelining on join result.

Measures of Query Cost

— Cost is generally measured as total elapsed time for answering query
\square Many factors contribute to time cost

- disk accesses, CPU, or even network communication
\square Typically disk access is the predominant cost and is also relatively easy to estimate. Measured by taking into account
\square Number of seeks * average-seek-cost
\square Number of blocks read * average-block-read-cost
\square Number of blocks written * average-block-write-cost
- Cost to write a block is greater than cost to read a block

Data is read back after being written to ensure that the write was successful

Measures of Query Cost (Cont.)

- For simplicity we just use the number of block transfers from disk and the number of seeks as the cost measures
$\square t_{T}$ - time to transfer one block
$\square t_{S}$ - time for one seek
\square Cost for b block transfers plus S seeks

$$
b^{*} t_{T}+S^{*} t_{S}
$$

\square We ignore CPU costs for simplicity
\square Real systems do take CPU cost into account

- We do not include cost to writing output to disk in our cost formulae

Measures of Query Cost (Cont.)

— Several algorithms can reduce disk I/O by using extra buffer space
\square Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
\square We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
\square Required data may be buffer resident already, avoiding disk I/O
\square But hard to take into account for cost estimation

Relational Algebra

\square Procedural language
\square Six basic operations
\square Select: σ

- Project: П
\square Union: \cup
- Set difference: -
\square Cartesian product: \times
\square Rename: ρ
\square Principle:
\square An operation takes one or two relations as input and produce a new relation as a result.
- So, another operation can be applied to this result.
\square Note: SQL is a declarative language.

Select and Project Operations: Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge D>5}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

$\square \prod_{\mathrm{A}, \mathrm{C}}(r)$

A	C
α	1
α	5
β	12
β	23

Select Operation

\square Select operation is defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \wedge p(t)\}
$$

where p is a formula in propositional calculus:

$$
\left.\begin{array}{ll}
\text { formula := } & \text { term } \\
& \text { formula <conj> formula } \\
& \neg \text { formula } \\
& (\text { formula })
\end{array}\right] \begin{array}{ll}
\text { term }:= & \text { expr <cmp> expr } \\
\text { expr }:= & \text { attribute_name } \\
& \text { constant }
\end{array}
$$

— Project operation is defined as: $\prod_{A_{1}, \ldots, A_{k}}(r)$

$$
=\left\{t \mid \exists q \in r: t\left[A_{1}\right]=q\left[A_{1}\right] \wedge \cdots \wedge t\left[A_{k}\right]=q\left[A_{k}\right]\right\}
$$

where A_{i} are attribute names and r is a relation name.

Union, Set Difference, Intersect Operations

(Relations r, s:

A	B
α	1
α	2
β	1

$\square \quad \mathrm{r} \cup \mathrm{s}$

A	B
α	1
α	2
β	1
β	3

प $r-s$

A	B
α	1
β	1

$\square \quad r \cap s$

Cartesian product and Operation Composition

■ Can build complex expressions using multiple operations
\square Example: $\sigma_{A=C}(r \times s)$
\square Relations:

$r \times s:$| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| α | 1 | α | 10 | a |
| α | 1 | β | 10 | a |
| α | 1 | β | 20 | b |
| α | 1 | γ | 10 | b |
| β | 2 | α | 10 | a |
| β | 2 | β | 10 | a |
| β | 2 | β | 20 | b |
| β | 2 | γ | 10 | b |

$\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| α | 1 | α | 10 | a |
| β | 2 | β | 10 | a |
| β | 2 | β | 20 | b |

Example Queries

\square Relations
\square customer (customer name, customer_street, customer_city)
\square loan (loan number, branch_name, amount)
\square borrower (customer name, loan number)

■ Find the names of all customers who have a loan at the Perryridge branch.
$\square \prod_{\text {customer_name }}\left(\sigma_{\text {loan.loan_number }}=\right.$ borrower.loan_number $($ $\left(\sigma_{\text {branch_name }}=\right.$ 'Perryridge' $($ loan $\left.)\right) \times$ borrower $\left.)\right)$
\square Alternatively, as:

- $\prod_{\text {customer_name }}$ ($\sigma_{\text {branch_name }}=$ 'Perryridge' $($ $\sigma_{\text {borrower.loan_number }=\text { loan.loan_number }}($ borrower \times loan $\left.)\right)$)

Natural-Join Operation: Example

- Relations r, s :

r| A | B | C | D |
| :---: | :---: | :---: | :---: |
| α | 1 | α | a |
| β | 2 | γ | a |
| γ | 4 | β | b |
| α | 1 | γ | a |
| δ | 2 | β | b |

s| B | D | E |
| :---: | :---: | :---: |
| 1 | a | α |
| 3 | a | β |
| 1 | a | γ |
| 2 | b | δ |
| 3 | b | \in |

$\square \quad \mathrm{r} \bowtie \mathrm{s}$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

■ $r \bowtie s$ is defined as:

$$
\prod_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B=s . B \wedge r . D=s . D}(r \times s)\right)
$$

Bank Example Queries

- Relations:
\square loan (loan number, branch_name, amount)
\square depositor (customer name, account number)
\square borrower (customer name, loan number)
- Find the names of all customers who have a loan and an account at the bank.
$\square \prod_{\text {customer_name }}$ (borrower) $\cap \prod_{\text {customer_name }}$ (depositor)
\square Find the names of all customers who have a loan at the Perryridge branch.
$\square \prod_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\right.$ 'Perryridge' $($ loan \bowtie borrower $\left.)\right)$
- Find all customers who have a loan at the bank and return his/her name, loan number and the loan amount.
$\square \quad \Pi_{\text {customer_name, loan_number, amount }}$ (borrower \bowtie loan)

Aggregate Operation: Example

- Relation account

branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

$G_{\text {sum(balance) }}$ (account)
branch_name G sum(balance) (account)

sum
3500

branch_name	sum
Perryridge	1300
Brighton	1500
Redwood	700

Left Outer Join: Example
 loan

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

borrower

Customer_name	loan_number
Jones	$\mathrm{L}-170$
Smith	$\mathrm{L}-230$
Hayes	$\mathrm{L}-155$

- Left Outer Join loan $\searrow \checkmark$ borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

- Right Outer Join loan $\bowtie \triangleleft$ borrower

Ioan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

- Full Outer Join loan \mathbb{I} b borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Query Processing Operators

- Selection or projection
\square Table scan vs Index scan
■ Sorting for ORDER BY or table joins
\square In-memory \rightarrow quick sort, ...
\square On-disk \rightarrow external merge sort
- Joining tables
\square Nested-loop join
\square Merge-join
\square Hash-join

Selection Operation

- File scan (table / sequential scan) - no index structure is necessary
\square Scan each file block and test all records to see whether they satisfy the selection condition.
\square Cost estimate $=b_{r}$ block transfers +1 seek
- b_{r} denotes number of blocks containing records from relation r
\square If selection is on a key attribute, can stop on finding matching record
- cost $=\left(b_{r} / 2\right)$ block transfers +1 seek
\square Linear search can be applied regardless of
- selection condition or
- ordering of records in the file, or
- availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
\square except when there is an index available,
\square and binary search requires more seeks than index search

Selections Using Indices

- Index scan - search algorithms that use an index
\square selection condition must be on search-key of index
— Now, assume the sequential file is ordered by this key:
\square Algorithm for primary index \& equality on primary key
\square Retrieve a single record that satisfies the corresponding equality condition
- Cost $=\left(h_{i}+1\right)$ * $\left(t_{S}+t_{T}\right)$

व h_{i} - height of index i (for hashing $h_{i}=1$)
$0+1$ - for reading the actual record
\square Algorithm for primary index \& equality on non-primary key
\square Retrieve multiple records.
\square Records will be on consecutive blocks

- Let $b=$ number of blocks containing all n matching records
- Cost $=h_{i}{ }^{*}\left(t_{S}+t_{T}\right)+t_{S}+t_{T}{ }^{*} b$

Selections Using Indices

- Algorithm for secondary index \& equality on non-primary key
\square Sequential file is not ordered by this search key!
\square Retrieve a single record if the search-key is a candidate key
- Cost $=\left(h_{i}+1\right){ }^{*}\left(t_{S}+t_{T}\right)$
\square Retrieve multiple records if search-key is not a candidate key
- Each of n matching records may be on a different block.
- Cost $=\left(h_{i}+n\right)^{*}\left(t_{S}+t_{T}\right)$
- Can be very expensive!

Sorting Relations

\square We may build an index on the relation, and then use the index to read the relation in the sorted order.
\square May lead to one disk block access for each tuple.

- Use a sorting algorithm
\square For relations that fit in memory, techniques like quick-sort can be used.
\square For relations that don't fit in memory, external sort-merge is a good choice.

External Sort-Merge

Let M denote memory size (in pages/blocks):

1. Create sorted runs. Let i be 0 initially.

Repeatedly do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run R_{i}; increment i.

Let the final value of i be N
2. Merge the runs. (next slide)

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge).

We assume (for now) that $N<M$.

1. Use N blocks of memory to buffer input runs, and 1 block to buffer output.
2. Read the first block of each run into its buffer page
3. repeat
4. Select the first record (in sort order) among all buffer pages
5. Write the record to the output buffer.

- If the output buffer is full write it to disk.

3. Delete the record from its input buffer page.

- If the buffer page becomes empty then read the next block (if any) of the run into the buffer.

4. until all input buffer pages are empty.

External Sort-Merge (Cont.)

— If $N \geq M$, several merge passes are required.
\square In each pass, continuous groups of $M-1$ runs are merged.
\square A pass reduces the number of runs by a factor of $M-1$, and creates runs longer by the same factor.

- E.g. If $\mathrm{M}=11$, and there are 90 runs, one pass reduces the number of runs to 9 , each 10 times the size of the initial runs
\square Repeated passes are performed till all runs have been merged into one.

Example: External Sorting Using Sort-Merge

Example: External Sorting Using Sort-Merge (2)

External Sort-Merge (Cont.)

- Cost analysis:
\square Total number of merge passes required: $\left\lceil\log _{M-1}\left(b_{r} / M\right)\right\rceil$.
\square Block transfers for initial run creation as well as in each pass is $2 b_{r}$
- for final pass, we don't count write cost
- we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
- Thus total number of block transfers for external sorting:

$$
b_{r}\left(2\left\lceil\log _{M-1}\left(b_{r} / M\right)\right\rceil+1\right)
$$

\square Seeks: next slide

External Sort-Merge (Cont.)

- Cost in seeks
\square During run generation: one seek to read each run and one seek to write each run
- $2\left\lceil b_{r} / M\right\rceil$
\square During the merge phase
- Buffer size: b_{b} (read/write b_{b} blocks at a time)
- cannot be larger than ($M-1$) / "number of runs"
- Need $2\left\lceil b_{r} / b_{b}\right\rceil$ seeks for each merge pass
except the final one which does not require a write
- Total number of seeks:
- $2\left\lceil b_{r} / M\right\rceil+\left\lceil b_{r} / b_{b}\right\rceil\left(2\left\lceil\log _{M-1}\left(b_{r} / M\right)\right\rceil-1\right)$

Join Operation

- Several different algorithms to implement joins
\square Nested-loop join
\square Block nested-loop join
- Improved nested-loop join by reading records in blocks
\square Indexed nested-loop join
- Improved by using an index to look up equal records
\square Merge-join
- Hash-join
- Choice based on cost estimate
\square For each of the variants a cost estimation can be stated.

Nested-Loop Join

\square To compute the join $r \bowtie s$
\square for each tuple t_{r} in r do begin for each tuple t_{s} in s do begin
test pair $\left(t_{r}, t_{s}\right)$ to see
if they satisfy the equality on shared attributes if they do, add $t_{r} \cdot t_{s}$ to the result. end
end
$\square r$ is called the outer relation and s the inner relation of the join.
\square Requires no indices and can be used with any kind of join condition.
\square Expensive since it examines every pair of tuples in the two relations.
\square Cost $=n_{r}{ }^{*}\left(t_{S}+t_{T}\right){ }^{*}\left(n_{s}{ }^{*}\left(t_{S}+t_{T}\right)\right)$

- where $n_{r}=$ number of tuples in r

Nested-Loop Join (Cont.)

- In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$
\begin{array}{ll}
n_{r} * b_{s}+b_{r} & \text { block transfers, plus } \\
n_{r}+b_{r} & \text { seeks }
\end{array}
$$

\square Example on student and takes

- student (the smaller one) as the outer relation:
- $5000 * 400+100=2,000,100$ block transfers,
- $5000+100=5,100$ seeks

$$
\begin{aligned}
& \mathrm{n}_{\text {student }}=5,000 \\
& \mathrm{~b}_{\text {student }}=100 \\
& \mathrm{n}_{\text {takes }}=10,000 \\
& \mathrm{~b}_{\text {takes }}=400
\end{aligned}
$$

- takes (the larger one) as the outer relation
- $10000 * 100+400=1,000,400$ block transfers and 10,400 seeks
- If the smaller relation fits entirely in memory, use that as the inner relation.
\square Reduces cost to $b_{r}+b_{s}$ block transfers and 2 seeks
\square Example: student fits entirely in memory
a the cost estimate is 500 block transfers.
- Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

- Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.
for each block B_{r} of r do begin for each block B_{s} of \boldsymbol{s} do begin for each tuple t_{r} in B_{r} do begin for each tuple t_{s} in B_{s} do begin

Check if $\left(t_{r}, t_{s}\right)$ satisfy the join condition if they do, add $t_{r} \cdot t_{s}$ to the result. end end end
end

- Cost: $b_{r}{ }^{*}\left(1+b_{s}\right)$ blocks; $b_{r}{ }^{*}(1+1)$ seeks
\square For student (outer) and takes (inner):
口 $100+100$ * $400=40,100$ block transfers
- $100+100$ seeks

$$
\begin{aligned}
& \mathrm{n}_{\text {student }}=5,000 \\
& \mathrm{~b}_{\text {student }}=100 \\
& \mathrm{n}_{\text {takes }}=10,000 \\
& \mathrm{~b}_{\text {takes }}=400
\end{aligned}
$$

Merge-Join

1. Sort both relations on their join attributes
\square If not already sorted.
2. Merge the sorted relations to join them
\square Join step is similar to the merge stage of the sort-merge algorithm.
\square Main difference is handling of duplicate values in join attribute

- Every pair with same value on join attribute must be matched

$\xrightarrow{\mathrm{pr}}$	$a 1 \quad a 2$	
	a	3
	b	1
	d	8
	d	13
	f	7
	m	5
	q	6
		r

$\xrightarrow{ } \stackrel{y y}{c}$| $a 1$ |
| :---: |
| $p s$ |
| |
| a A
 b G
 c L
 d N
 m B |

Hash-Join

- A hash function h is used to partition tuples of both relations
\square JoinAttrs are the common attributes of r and s used in $r \bowtie s$
- h maps JoinAttrs values to $\{0,1, \ldots, n\}$
$\square r_{0}, r_{1}, \ldots, r_{n}$ denote buckets of r
- Each tuple $t_{r} \in r$ is put in bucket r_{i}
- where $i=h\left(t_{r}\right.$ [JoinAttrs]).
$\square s_{0}, s_{1}, \ldots, s_{n}$ denotes buckets of s
- Each tuple $t_{S} \in s$ is put in bucket s_{i},
- where $i=h\left(t_{S}\right.$ [JoinAttrs]).

Hash-Join (Cont.)

buckets r_{i} of r buckets s_{i} of s

Hash-Join (Cont.)

\square Tuples in r_{i} need only to be compared with tuples in s_{i}
\square Need not be compared with s tuples in any other bucket, since:
\square a tuple of r and a tuple of s that satisfy the join condition will have the same value for the join attributes.
\square If that value is hashed to some value i, the tuple of r has to be in r_{i} and the tuple of s in s_{i}.

- Cost of hash join is $3\left(b_{r}+b_{s}\right)$ block transfers
$\square 3^{*}(100+400)$ for student \bowtie takes

$$
\begin{aligned}
& n_{\text {student }}=5,000 \\
& b_{\text {student }}=100 \\
& n_{\text {takes }}=10,000 \\
& b_{\text {takes }}=400 \\
& \hline
\end{aligned}
$$

