
BKM_DATS: Databázové systémy

12. Securing

Database

Vlastislav Dohnal

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 2

Credits

◼ Materials are based on presentations:

Courses CS245, CS345, CS345

◼ Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer

Widom

◼ Stanford University, California

 Course CS145 following the book

◼ Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom:

Database Systems: The Complete Book

 Book

◼ Andrew J. Brust, Stephen Forte:

Mistrovství v programování SQL Serveru 2005

 MSDN library by Microsoft

 Hasura.io

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 3

Contents

◼ DB security

Access control in DB

Stored procedures

Attack on DB

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 4

Access Control – Authorization

◼ Analogy to file systems

Objects

◼ File, directory, …

Subject

◼ Typically: owner, group, others (all users)

Access Right

◼ Defined on an object O for a subject S

◼ Typically: read, write, execute

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 5

Privileges
◼ Database systems

 Typically, finer granularity than the typical file system

 Varies for objects

◼ Tables, views, sequences, schema, database, procedures, …

 Views

◼ an important tool for access control

 Subjects are typically user and group

◼ Often referred as authorization id or role

◼ Subject “others“ is denoted as PUBLIC

 Granting access for PUBLIC means allowing access to anyone.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022

6

Privileges

◼ For relations/tables:

SELECT

◼ query the table’s content (i.e. print rows)

◼ Sometimes can be limited to selects attributes

 INSERT

◼ Sometimes can be limited to selects attributes

DELETE

UPDATE

◼ Sometimes can be limited to selects attributes

REFERENCES

◼ creating foreign keys referencing this table

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 7

We add beers that
do not appear in
Beers; leaving
manufacturer NULL.

Privileges

◼ Example

 INSERT INTO Beers(name)

SELECT beer FROM Sells

WHERE NOT EXISTS

(SELECT * FROM Beers

WHERE name = beer);

Requirements for privileges:

◼ INSERT on the table Beers

◼ SELECT on Sells and Beers

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 8

Privileges

◼ Views as Access Control

Relation

◼ Employee(id, name, address, salary)

Want to make salary confidential:

◼ CREATE VIEW EmpAddress AS

SELECT id, name, address

FROM Employee;

◼ Privileges:

 Revoke SELECT from table Employee

 Grant SELECT on EmpAddress

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 9

Privileges

◼ Granting privileges

GRANT <list of privileges>

ON <relation or object>

TO <list of authorization ID’s>;

◼ You may also grant “grant privilege”

By appending clause “WITH GRANT OPTION“

◼ GRANT SELECT

ON TABLE EmpAddress

TO karel

WITH GRANT OPTION

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 10

Privileges

◼ Example (to be run as owner of sells)

GRANT SELECT, UPDATE(price)

ON sells TO sally;

◼ User sally can

Read (select) from table sells

Update values in attribute price

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 11

Privileges

◼ Example (to be run as owner of sells)

GRANT UPDATE ON sells TO sally

WITH GRANT OPTION;

◼ User sally can

Update values of any attribute in sells

Grant access to other users

◼ Only UPDATE can be granted, but can be limited

to some attributes.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 12

Privileges

◼ Revoking statement

REVOKE <list of privileges>

ON <relation or object>

FROM <list of authorization ID’s>;

◼ Listed users can no longer use the

priviledges.

But they may still have the privilege

→ because they obtained it independently

from elsewhere.

◼ Or they are members of a group or

PUBLIC is applied

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 13

Privileges
◼ Revoking privileges

Appending to REVOKE statement:
◼ CASCADE – Now, any grants made by a revokee are

also not in force, no matter how far the privilege was
passed

◼ RESTRICT (implicit) –

 If the privilege has been passed to others, the REVOKE
fails as a warning

 So something else must be done to “chase the privilege
down.”

REVOKE GRANT OPTION FOR …
◼ Removes the “grant option” only.

◼ Omitting this leads to removing the privilege and also
the grant option!

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 14

Privileges – Diagram
◼ Diagram depict privileges granted by a

grantor to a grantee

Each object has its diagram

Node is specified by
◼ Role (user / group)

◼ Granted privilege

◼ Flag of ownership or granting option

Edge from X to Y
◼ X has granted the privilege to Y

root,all,** karel,INSERT,* jana,INSERT, *

jana, INSERT** ownership, * grant option

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 15

Privileges – Diagram
◼ „root,all “ denotes

user root has privilege all.

◼ Privilege „all“ on table means

= insert, update, delete, select, references

◼ Grant option “*“

The privilege can by granted by the user

◼ Option “**“

Object owner (root node of each diagram)

◼ Object owner

All is granted by default

Can pass the privileges to other users

Creating user accounts
◼ Add a new

account

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 16

CREATE ROLE name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER

| CREATEDB | NOCREATEDB

| CREATEROLE | NOCREATEROLE

| INHERIT | NOINHERIT

| LOGIN | NOLOGIN

| CONNECTION LIMIT connlimit

| [ENCRYPTED] PASSWORD 'password'

| VALID UNTIL 'timestamp'

| IN ROLE role_name [, ...]

| IN GROUP role_name [, ...]

| ROLE role_name [, ...]

| ADMIN role_name [, ...]

| USER role_name [, ...]

| SYSID uid

Connections to DB server
◼ config_file (postgresql.conf)

max_connections

ssl

◼ hba_file (pg_hba.conf)

Configures client authentication

◼ source address, database, username

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 17

local database user auth-method [auth-options]

host database user address auth-method [auth-options]

Connections to DB server
◼ hba_file example

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 18

Database administrative login by Unix domain socket
local all postgres peer

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all peer
IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication postgres peer
#host replication postgres 127.0.0.1/32 md5

host all all 147.251.50.0/24 password
host lectures PB154 0.0.0.0/0 password
host all PB154 0.0.0.0/0 reject
host all all 84.242.71.236/32 trust

Client connecting to DB
◼ Need to specify where to connect

 postgresql://username:password@host:port/dbname[?paramspec]

 E.g., postgresql://karel:pwd@db.fi.muni.cz:5432/pgdb

◼ Parameters

Format: …/dbname?name=value&name2=v2

ssl, user, password, options

E.g., options=-c search_path=test,public

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 19

Implementation of clients
◼ JDBC / ODBC

General interface for connecting & executing

queries

◼ Functions in programming languages

Similar to JDBC

◼ Frameworks

Spring.io

Hasura.io

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 20

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 21

Contents

◼ DB security

Access control in DB

Stored procedures

Attack on DB

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 22

Stored Procedures

◼ User-defined program implementing an

activity

E.g., factorial computation, distance between

GPS coords, inserting rows to multiple tables, …

◼ PostgreSQL

CREATE FUNCTION name ([parameters,…])

[RETURNS type]

…code…

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 23

Stored Procedures

◼ Example:

Compute average salary without revealing the

individual salaries

◼ Table Employee(id, name, address, salary)

PostgreSQL:

◼ CREATE FUNCTION avgsal() RETURNS real

AS ‘SELECT avg(salary) FROM employee’

LANGUAGE SQL;

User executes the procedure (function):

◼ SELECT avgsal();

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 24

Stored Procedures

◼ Example (cont.):

Salaries are not secured

To secure we need to

◼ REVOKE SELECT ON Employee FROM …

◼ GRANT EXECUTE ON FUNCTION avgsal() TO …

By running “SELECT avgsal();” the procedure

is executed with privileges of current user.

→ it needs SELECT on Employee!

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 25

Stored Procedures

◼ Context of execution

Can be set during procedure creation

Types:

◼ INVOKER – run in the context of user that calls the

function (typically current user)

◼ DEFINER– run in the context of the owner of

function

◼ „particular user“ – run in the context of the

selected user

◼ …

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 26

Stored Procedures

◼ Execution context

PostgreSQL

◼ SECURITY INVOKER

◼ SECURITY DEFINER

◼ Solution: set the context to owner

CREATE FUNCTION …. LANGUAGE SQL

SECURITY DEFINER;

◼ Assumption: owner has the SELECT privilege to

Employee

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 27

Contents

◼ DB security

Access control in DB

Stored procedures

Attack on DB

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 28

Attacks to DB system

◼ Network connection

DB port open to anyone → use firewall

Unsecured connection

◼ Apply SSL

◼ Logging in

Weak password

Limit users to logging in

◼ Allow selected user accounts, IP addresses and

databases

Using one generic (admin) DB account

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 29

Attacks to DB system

◼ SQL injection

Attack by sending SQL commands in place of

valid data in forms.

Typically related to using only one DB

account

◼ which is admin)-:

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 30

SQL injection – example
◼ App presents a form to enter string to update

customer’s note in DB:

 Internally the app use the following DB statement:
UPDATE customer SET note=‘$note’

WHERE id=current_user;

◼ Malicious user enters to the form:
Vader’; DROP TABLE customer; --

◼ After variable expansion we get string:
UPDATE customer

SET note=’Vader’; DROP TABLE customer; --’

WHERE id=current_user;

All in one line!

SQL Injection: Countermeasures

◼ Use specific user account

Avoid using admin account

◼ Check input values

 Input length, escape characters,…

◼ Functions in programming language

mysql_real_escape_string(), add_slashes()

$dbh->quote($string)

◼ Functions in DB

quote_literal(str)
◼ returns a string str suitably quoted to be used as a

string literal in an SQL statement

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 31

SQL Injection: Countermeasures

◼ Prepared statements

Parsed statements prepared in DB

◼ i.e., compiled templates ready for use

Values are then substituted

◼ Parameters do not need to be quoted then

May be used repetitively

Example:

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 32

$st = $dbh->prepare("SELECT * FROM emp WHERE name LIKE ?");

$st->execute(array("%$_GET[name]%“));

SQL Injection: Countermeasures

◼ Prepared statements at server-side

The same concept, but stored in DB

Typically in procedural languages in DB

PostgreSQL
◼ PREPARE emp_row(text) AS SELECT * FROM emp

WHERE name LIKE $1;
EXECUTE emp_row(‘%John%’);

◼ Query is planned in advance

Planning time can be amortized

But: the plan is generic!
◼ i.e., without any optimization induced by knowing the

parameter

Lasts only for the duration of the current db session
BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 33

Prepared Statements: Performance

◼ Prepared execution yields better

performance when the query is executed

more than once:

No compilation

No access to

catalog.

◼ Experiment performed on Oracle8iEE on

Windows 2000.
BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 34

0

0,2

0,4

0,6

0 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c
)

No. of repetitions

direct

prepared

Attacking Views
◼ Views protect data rows…

 if permissions are correctly set

 E.g., student(studentid, firstname, lastname, fieldofstudy)
◼ CREATE OR REPLACE VIEW studentssme AS SELECT * FROM student

WHERE fieldofstudy = 'N-SSME‘;

 But, creating a “cheap” function
◼ CREATE OR REPLACE FUNCTION test(name text, study text)

RETURNS boolean AS $$
begin
raise notice 'Name: %, Study: %', name, study;
return true;

end;
$$ LANGUAGE plpgsql VOLATILE COST 0.00001;

 The query leaks other students in a side channel…
◼ SELECT * FROM studentssme WHERE test(lastname, fieldofstudy)

 NOTICE: Name: Nový, Study: N-AplInf
NOTICE: Name: Dlouhý, Study: N-Inf
NOTICE: Name: Svoboda, Study: N-AplInf
NOTICE: Name: Starý, Study: N-SSME
NOTICE: Name: Lukáš, Study: N-SSME
…

◼ Countermeasures:
 ban creating new DB objects

 use security_barrier in Pg.conf or in create view

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 35

Lecture Takeaways
◼ Securing DB

Avoid using admin account for general use

Limit connections using IP addresses

Create triggers to automate some actions

Use stored functions for complicated updates

Check any input value before using it in SQL

query

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 36

