Exercise session 4

1) When estimating wage equations, we expect that young, inexperienced workers will have relatively low wages and that with additional experience their wages will rise, but then begin to decline after middle age, as the worker nears retirement. This lifecycle pattern of wages can be captured by introducing experience and experience squared to explain the level of wages. If we also include years of education, we have the equation:

$$Wage = \beta_0 + \beta_1 * Educ + \beta_2 * Exper + \beta_3 Exper^2 + u$$

- a) What is the marginal effect of experience on wages?
- b) What sign do you expect for each of the coefficients? Why?
- c) Estimate the model using data *cps_small.gdt*. Do the estimated coefficients have expecting signs?
- d) Test the hypothesis that education has no effect on wages. What do you conclude?
- e) Test the hypothesis that education and experience have no effect on wages. What do you conclude?
- f) Include the dummy variable *black* in the regression. Interpret the coefficient and comment on its significance.
- g) Include the interaction term of *black* and *educ*. Interpret the coefficient and comment on its significance.
- h) Transform dependent variable in logarithmic form and estimate the equation. Interpret the coefficients.
- 2) Your aim is to estimate how the number of prenatal examinations and several other characteristics influence the birth weight of a baby. Your initial hypothesis is that more responsible pregnant women visit the doctor more often and this leads to healthier and thus also bigger babies.
 - a. In your first specification, you run the following model:

 $bwght = \beta_0 + \beta_1 npvis + \beta_2 npvis^2 + \beta_3 monpre + \beta_4 male + \varepsilon$,

where *bwght* is birth weight of the baby (in grams), *npvis* is the number of prenatal doctor's visits, *monpre* is the month on pregnancy in which the prenatal care began and *male* is a dummy, equal to one if the baby is a boy and zero if it is a girl. You obtain the following results from Stata¹:

¹ Stata is a statistical software, which can be used to for econometric purposes. The Stata output

is quite similar to the Gretl output you are familiar with. In particular, *Coef.* denotes the estimated coefficients, *Std.Err.* denotes the standard errors of these coefficients, *t* denotes the *t*-statistic of the test of significance of the coefficients, P > |t| denotes the corresponding *p*-value.

Source	SS	df	MS	Number of obs = 1726
				F(4, 1721) = 9.70
Model	12848047.5	4		Prob > F = 0.0000
RESIDUAL	570003184	1721	331204.639	R-SQUARED = 0.0220
				Adj R-squared = 0.0198
Total	582851231	1725	337884.772	Root MSE = 575.5

bwght	Coef.	Std. Err.	t	P> t	[95% Conf.	INTERVAL]
npvis	53.50974	11.41313	4.69	0.000	31.12468	75.8948
npvissq	-1.173175	.3591552	-3.27	0.001	-1.877601	4687481
monpre	30.47033	12.40794	2.46	0.014	6.134091	54.80657
MALE	76.69243	27.76083	2.76	0.006	22.24391	131.141
_cons	2853.196	101.3073	28.16	0.000	2654.498	3051.895

- i. Is there strong evidence that npvissq (stands for $npvis^2$) should be included in the model?
- ii. How do you interpret the negative coefficient of *npvissq*?
- iii. Holding *npvis* and *monpre* fixed, test the hypothesis that newborn boys weight by 100 grams more than newborn girls (at 95% confidence level).
- b.A friend of yours, student of medicine, reminds you of the fact that the age of the parents (especially of the mother) might be a decisive factor for the health and for the weight of the baby. Therefore, in your second specification, you decide to include in your model also the age of the mother (*mage*) and of the father (*fage*). The results of your estimation are now the following:

Source	SS	df		MS	:	Number of obs	
Model Residual	16270165.8 563258231	6 1713	2711 32881	694.3 3.912		R-squared	= 0.0000 = 0.0281
Total	579528396	1719	33713	1.121			= 0.0247 = 573.42
bwght	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
npvis npvissq monpre MALE	52.43859 -1.138545 34.35661 74.45482	11.4 .358 12.6 27.7	5648 9477	4.60 -3.18 2.71 2.68	0.000 0.002 0.007 0.007	30.06826 -1.841816 9.457725 20.02252	74.80891 4352743 59.2555 128.8871

MAGE	. 5285275	4.218069	0.13	0.900	-7.744582	8.801637
FAGE	8.697342	3.465973	2.51	0.012	1.899357	15.49533
_cons	2592.813	139.6173	18.57	0.000	2318.974	2866.651

- i. Comment on the significance of the coefficients on *mage* and *fage* separately: are they in line with your friend's claim?
- ii. Test the hypothesis that *mage* and *fage* are jointly significant (at 95% confidence level). Is the result in line with your friend's claim?
- iii. How can you reconcile you findings from the two previous questions?
- c.In your third specification, you decide to drop fage and you get the following results:

Source	SS	df	MS	1	Number of obs F(5, 1720) =	
Model Residual	14451685.6 568399545		90337.13 0464.852		Prob > F R-squared	= 0.0000 = 0.0248
Total	582851231	1725 33	7884.772		j <u>-</u>	= 0.0220 = 574.86
bwght	Coef.	Std. Er	r. t	P> t	[95% Conf.	INTERVAL]
npvis npvissq monpre MALE MAGE _cons	52.27885 -1.142647 35.25912 79.38175 -6.91257 2648.851	11.4140 .359021 12.5832 27.7566 3.13797 137.277	4 -3.18 8 2.80 7 2.86 2 -2.20	0.000 0.001 0.005 0.004 0.028 0.000	29.89196 -1.846811 10.57898 24.94136 -13.06721 2379.602	74.66575 4384821 59.93927 133.8221 757928 2918.1

Comment on the significance of the coefficient on *mage*, compared to the results from part (b). Is your finding in line with your reasoning in part (b)? Does it confirm your friend's claim?

d.Having regained trust in your friend, you consult your results once more with him. Together, you come up with an interesting question: whether smoking during pregnancy can affect the weight of the baby. Fortunately, you have at your disposition the variable *cigs*, standing for the average number of cigarettes each woman in your sample smokes per day during the pregnancy, and so you can include it in your model. However, your friend warns you that women who smoke during pregnancy are in general less responsible than those who do not smoke, and that these women also tend to visit the doctor less often. (In other words, the more the women smokes, the less prenatal doctor's visits she has). This is an important fact that you have to take into consideration while interpreting your final results, which are:

Source	SS	df	MS	Number of obs = 1622
				F(6, 1615) = 7.49
Model	14560828.9	6	2426804.81	Prob > F = 0.0000
RESIDUAL	523281374	1615	324013.235	R-squared = 0.0271
				Adj R-squared = 0.0235
Total	537842203	1621	331796.547	Root MSE = 569.22

bwght	Coef.	Std. Err.	t	P> t	[95% Conf	. INTERVAL]
npvis	42.43442	11.59582	3.66	0.000	19.68999	65.17885
npvissq	8948737	.3624432	-2.47	0.014	-1.605782	1839653
monpre	31.77658	12.78156	2.49	0.013	6.706395	56.84676
MALE	82.39438	28.34937	2.91	0.004	26.78897	137.9998
MAGE	-6.980738	3.227181	-2.16	0.031	-13.31064	6508356
cigs	-10.209	3.398309	-3.00	0.003	-16.87456	-3.54344
cons	2748.856	141.868	19.38	0.000	2470.591	3027.12

- i. Interpret the coefficient on *cigs*.
- ii. What evidence do you find that *cigs* really should be included in the model? List at least two arguments.
- iii. Compare the coefficient on *npvis* with the one you obtained in part(c). Do you think there was a bias? If yes, explain where it came from and interpret its sign.