Exercise 7

Problem 1. To examine the quantity theory of money, Brumm (2005) ["Money Growth, Output Growth, and Inflation: A Reexamination of the Modern Quantity Theory's Linchpin Prediction," *Southern Economic Journal*, 71(3), 661–667] specifies the equation:

Inflation = $\beta_0 + \beta_1 * Money + \beta_2 * Output + u$

where *INFLAT* is the growth rate of the general price level, *MONEY* is the growth rate of the money supply, and *OUTPUT* is the growth rate of national output. According to theory we should observe that $\beta_0 = 0$, $\beta_1 = 1$, and $\beta_2 = -1$. The data used in this paper is contained in the file *brumm.gdt*. It consists of 1995 year data on 76 countries.

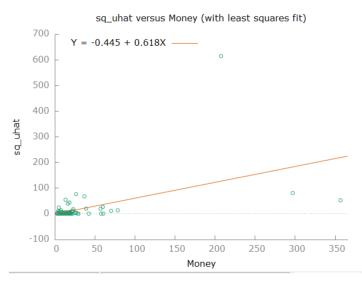
a) Estimate the model by OLS and interpret all the parameters.

ols Inflation const Money Output

Model 1: OLS, using observations 1-76 Dependent variable: Inflation									
	coeffic	ient	std.	error	t-ratio	p-value			
const	-0.234	1214	0.97	9925	-0.2390	0.8118			
Money	1.033	313	0.00	904221	114.3	4.65e-084	***		
Output	-1.662	201	0.25	0566	-6.633	4.95e-09	***		
Mean dependent var		25.35395		S.D. dependent var		58.94767			
Sum squared	resid	1356.	034	S.E. d	of regression	4.30996	6		
R-squared		0.994	797	Adjust	ed R-squared	0.99465	1		
F(2, 73)		6978.	325	P-valu	ie (F)	4.41e-84	1		
Log-likelihood		-217.3396		Akaike criterion		440.6792			
Schwarz cri	terion	447.6	714	Hannar	n-Quinn	443.473	6		

b) Test the joint hypothesis that $\beta_0 = 0$, $\beta_1 = 1$ and $\beta_2 = -1$. What do you conclude?

```
restrict
b[1] = 0
b[2] = 1
b[3] = -1
end restrict
Restriction set
 1: b[const] = 0
2: b[Money] = 1
 3: b[Output] = -1
Test statistic: F(3, 73) = 10.5158, with p-value = 7.88962e-006
Restricted estimates:
            coefficient std. error t-ratio p-value
                                      -----
  const
           0.000000 0.000000 NA
                                                 NA
  Money
              1.00000
                          0.000000
                                    NA
NA
                                                 NA
                       0.000000
             -1.00000
                                                 NA
  Output
  Standard error of the regression = 5.05503
```


We reject H0, therefore, restrictions do not hold

c) Examine the least squares residuals for the presence of heteroskedasticity related to the

variable Money.

series resid=\$uhat

gnuplot sq_resid Money

modtest -white (this tests all explanatory variables for heteroskedasticity

Manually:

genr mout=Money*Output

ols sq_resid const Money Output sq_Money sq_Output mout

c	coefficient		std. error		t-ratio	p-value	
const -	16,4206	20,	9162		-0,7851	0,4351	
Money	2,36862	0,	54064	19	4,381	4,06e-05	**
Output	-5,08322	10,	6932		-0,4754	0,6360	
sq Money	-0,0056995	60,	00156	5983	-3,631	0,0005	**
sq Output	0,254486	1,	13671	L	0,2239	0,8235	
mout	-0,0176535	0,	13693	37	-0,1289	0,8978	
Mean dependent	var 17,8	4255	s.D.	deper	dent var	71,65330	
Sum squared res	id 2389	67,9	S.E.	of re	gression	58,42797	
R-squared	0,37	9408	Adjus	sted F	-squared	0,335080	
F(5, 70)	8,55	9119	P-val	lue (F)		2,30e-06	
Log-likelihood	-413,	8667	Akai)	ce cri	terion	839,7333	
Schwarz criteri	on 853,	7177	Hanna	n-Qui	nn	845,3222	

LM= R²*n=0.3794*76=28.83

Critical value at 1% significance $\chi^2(5) = 15.086$

Therefore, we reject the hypothesis that there is no heteroskedasticity with respect to

the variable Money

d) Obtain robust standard errors for the model and compare them to the OLS standard errors. Does your conclusion change in part (b) after using robust standard errors?

ols Inflation const Money Output -robust

Model 3: OLS, using observations 1-76 Dependent variable: Inflation Heteroskedasticity-robust standard errors, variant HC1									
coef:	icient	std.	error	t-ratio	p-value				
const -0.2	34214	0.61	9615	-0.3780	0.7065				
Money 1.	3313	0.02	36942	43.60	5.08e-054	***			
Output -1.	6201	0.17	5914	-9.448	2.71e-014	***			
Mean dependent va	25.35	395	S.D. de	pendent va	r 58.947	67			
Sum squared resid	1356.	1356.034		S.E. of regression		n 4.309966			
R-squared	0.994	0.994797		Adjusted R-squared		0.994654			
F(2, 73)	956.8	956.8215		P-value(F)		4.26e-53			
Log-likelihood	-217.3	-217.3396		criterion	440.67	440.6792			
Schwarz criterion	447.6	714	Hannan-Quinn		443.47	443.4736			

Conclusion does not change - they are jointly not equal to the theoretical parameters

e) It is argued that *Output* may be endogenous. Four instrumental variables are proposed, *INITIAL* = initial level of real GDP, *SCHOOL* = a measure of the population's educational attainment, *INVEST* = average investment as a share of GDP, and *POPRATE* = average population growth rate. Using these instruments, obtain instrumental variables (2SLS) estimates of the inflation equation (do the two stage procedure).

First stage:

ols Output const initial poprate school invest Money

series Output_hat=\$yhat

Second stage:

ols Inflation const Money Output_hat

Alternatively, we can use Gretl command

tsls Inflation 0 Output Money ; 0 initial invest poprate school Money

OR

tsls Inflation const Output Money ; const initial invest poprate school Money

f) Are the instruments strong? Only invest predicts the Output significantly, other variables are weak instruments. The theoretical parameters are again jointly rejected.
 The impact of output on the inflation is now lower than before.

According to F test, instrument is weak because it falls below 10.27, where bias could have been roughly around 10% only but this is beyond the scope of our course

Weak instrument test First-stage F-statistic (4, 70) = 4,64206
Critical values for TSLS bias relative to OLS:
 bias 5% 10% 20% 30%
 value 16,85 10,27 6,71 5,34

Problem 2. Consider a simple model to estimate the effect of personal computer (PC) ownership on college grade point average for graduating seniors at a large public university: $GPA = \beta_0 + \beta_1 PC + u$

where PC is a binary variable indicating PC ownership.

(i) Why might PC ownership be correlated with u?

It has been fairly well established that socioeconomic status affects student performance. The error term *u* contains, among other things, family income, which has a positive effect on *GPA* and is also very likely to be correlated with PC ownership

(ii) Explain why PC is likely to be related to parents' annual income. Does this mean parental income is a good IV for PC? Why or why not?

Families with higher incomes can afford to buy computers for their children. Therefore, family income certainly satisfies the second requirement for an instrumental variable: it is correlated with the endogenous explanatory variable. But as we suggested in part (i), *faminc* has a positive affect on *GPA*, so the first requirement for a good IV fails for *faminc*. If we had *faminc* we would include it as an explanatory variable in the equation; if it is the only important omitted variable correlated with *PC*, we could then estimate the expanded equation by OLS.

(iii) Suppose that, four years ago, the university gave grants to buy computers to roughly one-half of the incoming students, and the students who received grants were randomly chosen. Carefully explain how you would use this information to construct an instrumental variable for PC.

This is a natural experiment that affects whether or not some students own computers. Some students who buy computers when given the grant would not have without the grant. (Students who did not receive the grants might still own computers.) Define a dummy variable, *grant*, equal to one if the student received a grant, and zero otherwise. Then, if *grant* was randomly assigned, it is uncorrelated with *u*. In particular, it is uncorrelated with family income and other socioeconomic factors in *u*. Further, *grant* should be correlated with *PC*: the probability of owning a PC should be significantly higher for student receiving grants. Incidentally, if the university gave grant priority to low-income students, *grant* would be negatively correlated with *u*, and IV would be inconsistent.