
LECTURE 5 

1 / 49 

Introduction to Econometrics 

 
Nonlinear specifications and dummy  

variables 

November 24, 2023 

 



TESTING MULTIPLE HYPOTHESES REVISITED 
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e Suppose we have a model 

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi 

e Suppose we want to test multiple linear hypotheses in this  
model 

e For example, we want to see if the following restrictions on  
coefficients hold jointly: 

β1  + β2 = 1 and β3  = 0 

e We cannot use a t-test in this case (t-test can be used only  
for one hypothesis at a time) 

e We will use an F-test 



RESTRICTED VS. UNRESTRICTED MODEL 
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e We can reformulate the model by plugging the restrictions  
as if they were true (model under H0) 

e We call this model restricted model as opposed to the 
unrestricted model 

e The unrestricted model is 

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi 

e Restricted model can be derived to have the following  
form: 

 
y∗i = β0 + β1x∗

i       + εi , 

where   y∗i = yi − xi2    and   x∗i = xi1 − xi2 



IDEA OF THE F-TEST 
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e If the restrictions are true, then the restricted model fits the  
data in the same way as the unrestricted model 

residuals are nearly the same 

 
e If the restrictions are false, then the restricted model fits the  

data poorly 

residuals from the restricted model are much larger than  
those from the unrestricted model 

 
e The idea is thus to compare the residuals from the two  

models 



IDEA OF THE F-TEST 
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e How to compare residuals in the two models? 

 Calculate the sum of squared residuals in the two models 

 Test if the difference between the two sums is equal to zero  
(statistically) 

 H0: the difference is zero (residuals in the two models are  
the same, restrictions hold) 

 HA: the difference is positive (residuals in the restricted  
model are bigger, restrictions do not hold) 

 
e Sum of squared residuals 



F-TEST 
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e The test statistic is defined as 

F = 
(SSRr − SSRur)/q  

SSRur/(n − k − 1) 
∼ F q,n−k−1 , 

. . . sum of squared residuals from the restricted model 

. . . sum of squared residuals from the unrestricted model 

where: 
SSRr 

SSRur  

q . . . number of restrictions 

n . . . number of observations 

k . . . number of estimated coefficients 



GOODNESS OF FIT MEASURE 
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e We know that education and experience have a significant  
influence on wages 

 
e But how important are they in determining wages? 

 
e How much of difference in wages between people is  

explained by differences in education and in experience? 

 
e How well variation in the independent variable(s) explains  

variation in the dependent variable? 

 
e This are the questions answered by the goodness of fit  

measure - R2 



TOTAL AND EXPLAINED VARIATION 

e Total variation in the dependent variable: 

 

 

e Predicted value of the dependent variable = part that is  
explained by independent variables: 

(case of regression line - for simplicity of notation) 

e Explained variation in the dependent variable: 
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GOODNESS OF FIT - R2 

e Denote: 
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e Define the measure of the goodness of fit: 

R2 = 
SSE 

= 
Explained variation in y  

SST Total variation in y 



GOODNESS OF FIT - R2 
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e  In all models: 0 ≤ R2 ≤ 1 

e R2 tells us what percentage of the total variation in the  
dependent variable is explained by the variation in the  
independent variable(s) 

R2 = 0.3 means that the independent variables can explain  
30% of the variation in the dependent variable 

 
e Higher R2 means better fit of the regression model (not  

necessarily a better model!) 



DECOMPOSING THE VARIANCE 

e For models with intercept, R2 can be rewritten using the  
decomposition of variance. 

e Variance decomposition: 

11 / 49 



VARIANCE DECOMPOSITION AND R2 
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e Variance decomposition: SST = SSE + SSR 

 
e Intuition: total variation can be divided between the  

explained variation and the unexplained variation 

residual ei (unexplained part) 

e We can rewrite R2: 

2 R = = 
SSE SST − SSR  

SST SST 
= 1 − 

SSR  

SST 



ADJUSTED R2 
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e The sum of squared residuals (SSR) decreases when  
additional explanatory variables are introduced in the  
model, whereas total sum of squares (SST) remains the  
same 

2 SSR 
SST 

R   = 1 − increases if we add explanatory variables 

 Models with more variables automatically have better fit. 

e To deal with this problem, we define the adjusted R2: 

R2 
adj = 1 − 

   SSR  
 n−k−1 

SST 
n−1 

.
≤ R2 

(k is the number of coefficients) 

e This measure introduces a “punishment” for including more  
explanatory variables 



FOUR IMPORTANT SPECIFICATION CRITERIA 
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Does a variable belong to the equation? 

 
1. Theory: Is the variable’s place in the equation  

unambiguous and theoretically sound? Does intuition tells  
you it should be included? 

 
2. t-test: Is the variable’s estimated coefficient significant in  

the expected direction? 

 
3. R2: Does the overall fit of the equation improve (enough)  

when the variable is added to the equation? 

 
4. Bias: Do other variables’ coefficients change significantly  

when the variable is added to the equation? 



FOUR IMPORTANT SPECIFICATION CRITERIA 
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e If all conditions hold, the variable belongs in the equation 

 
 

e If none of them holds, the variable is irrelevant and can be  
safely excluded 

 
 
e If the criteria give contradictory answers, most importance  

should be attributed to theoretical justification 

Therefore, if theory (intuition) says that variable belongs to  
the equation, we include it (even though its coefficients  
might be insignificant!). 



NONLINEAR SPECIFICATION 
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e We will discuss different specifications nonlinear in  
dependent and independent variables and their  
interpretation 

 
 
e We will define the notion of a dummy variable and we will  

show its different uses in linear regression models 



NONLINEAR SPECIFICATION 
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e There is not always a linear relationship between  
dependent variable and explanatory variables 

The use of OLS requires that the equation be linear in  
coefficients 

However, there is a wide variety of functional forms that  are 
linear in coefficients while being nonlinear in variables! 

 
e We have to choose carefully the functional form of the  

relationship between the dependent variable and each  
explanatory variable 

The choice of a functional form should be based on the  
underlying economic theory and/or intuition 

Do we expect a curve instead of a straight line? Does the  
effect of a variable peak at some point and then start to  
decline? 



LINEAR FORM 

y = β0 + β1x1 + β2x2 + ε 

e Assumes that the effect of the explanatory variable on the  
dependent variable is constant: 

∂y 

∂xk  
= βk k = 1, 2 

e Interpretation: if xk increases by 1 unit (in which xk is  
measured), then y will change by βk units (in which y is  
measured) 

 
e Linear form is used as default functional form until strong  

evidence that it is inappropriate is found 
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LOG-LOG FORM 

ln y = β0 + β1 ln x1 + β2 ln x2 + ε 

e Assumes that the elasticity of the dependent variable with  
respect to the explanatory variable is constant: 

∂ ln y ∂y/y 

∂ ln xk 
= 

∂xk/xk 
= βk 
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k = 1, 2 

e Interpretation: if xk increases by 1 percent, then y will  
change by βk percents 

 
e Before using a double-log model, make sure that there are  

no negative or zero observations in the data set 



EXAMPLE 
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e Estimating the production function of Indian sugar  
industry: 

 ̂ln Q = 2.70 + 0 .  
(0.14)        (0.17)  
.59 ln L + 0.33 ln K 

Q . . . output  L
 . . . labor  K 

. . . capital employed 

Interpretation: if we increase the amount of labor by 1%, the  
production of sugar will increase by 0.59%, ceteris paribus. 

Ceteris paribus is a Latin phrase meaning ’other things  
being equal’. 



LOG-LINEAR FORMS 
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e Linear-log form: 

y = β0 + β1 ln x1 + β2 ln x2 + ε 

Interpretation: if xk increases by 1 percent, then y will  
change by (βk/100) units (k = 1, 2) 

 
e Log-linear form: 

ln y = β0 + β1x1 + β2x2 + ε 

Interpretation: if xk increases by 1 unit, then y will change  
by (βk ∗ 100) percent (k = 1, 2) 



EXAMPLES OF LOG LINEAR FORMS 
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e Estimating demand for chicken meat: 

Y . . . annual chicken consumption (kg.) 
PC . . . price of chicken 
PB . . . price of beef 
YD . . . annual disposable income 

 
e Interpretation: An increase in the annual disposable income by  

1% increases chicken consumption by 0.12 kg per year, ceteris  
paribus. 



EXAMPLES OF LOG LINEAR FORMS 
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e Estimating the influence of education and experience on  
wages: 

wage  
educ  
exper 

. . . annual wage (USD) 

. . . years of education 

. . . years of experience 

e Interpretation: An increase in education by one year increases  
annual wage by 9.8%, ceteris paribus. An increase in experience  
by one year increases annual wage by 1%, ceteris paribus. 



POLYNOMIAL FORM 

1 y = β0 + β1x1 + β2x2 + ε 

e To determine the effect of x1 on y, we need to calculate the  
derivative: 

∂y 
∂x1 

= β1 + 2 · β2 · x1 

e Clearly, the effect of x1 on y is not constant, but changes  
with the level of x1 
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e We might also have higher order polynomials, e.g.: 

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε 
1 1 1 



EXAMPLE OF POLYNOMIAL FORM 

e The impact of the number of hours of studying on the  
grade from Introductory Econometrics: 

 

 
e To determine the effect of hours on grade, calculate the  

derivative: 
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Decreasing returns to hours of studying: more hours  
implies higher grade, but the positive effect of additional  
hour of studying decreases with more hours 



CHOICE OF CORRECT FUNCTIONAL FORM 
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e The functional form has to be correctly specified in order  
to avoid biased and inconsistent estimates 

Remember that one of the OLS assumptions is that the  
model is correctly specified 

 
e Ideally: the specification is given by underlying theory of  

the equation 

 
e In reality: underlying theory does not give precise  

functional form 

 
e In most cases, either linear form is adequate, or common  

sense will point out an easy choice from among the  
alternatives 



CHOICE OF CORRECT FUNCTIONAL FORM 
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e Nonlinearity of explanatory variables 

often approximated by polynomial form 

missing higher powers of a variable can be detected as  
omitted variables (see next lecture) 

 
e Nonlinearity of dependent variable 

harder to detect based on statistical fit of the regression 

R2 is incomparable across models where the y is  
transformed 

dependent variables are often transformed to log-form in  
order to make their distribution closer to the normal  
distribution 



DUMMY VARIABLES 
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e Dummy variable - takes on the values of 0 or 1, depending  
on a qualitative attribute 

 
e Examples of dummy variables: 



INTERCEPT DUMMY 
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e Dummy variable included in a regression alone (not  
interacted with other variables) is an intercept dummy 

e It changes the intercept for the subset of data defined by a  
dummy variable condition: 

yi = β0 + β1Di + β2xi + εi 

where 

e We have 

yi =  (β0 + β1) + β2xi + εi    if Di = 1 

yi = β0 + β2xi + εi    if Di = 0 



INTERCEPT DUMMY 

X 
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Y
 

β0+β1 

 

β0 

Di=1 

Slope = β2 

 

Di=0 

Slope = β2 



EXAMPLE 
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e Estimating the determinants of wages: 

 

 
e Interpretation of the dummy variable M: men earn on  

average $2.156 per hour more than women, ceteris paribus 



SLOPE DUMMY 
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e If a dummy variable is interacted with another variable (x),  
it is a slope dummy. 

e It changes the relationship between x and y for a subset of  
data defined by a dummy variable condition: 

e We      have 

yi =  β0 + (β1 + β2)xi + εi    if Di = 1 

yi =  β0 + β1xi + εi   if Di = 0 



SLOPE DUMMY 

X 
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Y
 

β0 

Di=0 

Slope = β1+β2 

 

Di=1 

 
Slope = β1 



EXAMPLE 
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e Estimating the determinants of wages: 

 

 
e Interpretation: men gain on average 17 cents per hour  

more than women for each additional year of education,  
ceteris paribus 



SLOPE AND INTERCEPT DUMMIES 
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e Allow both for different slope and intercept for two  
subsets of data distinguished by a qualitative condition: 

 
yi = β0 + β1Di + β2xi + β3(xi · Di) + εi 

where 

i D = 

.  
1 if the i-th observation meets a particular condition 
0 otherwise 

e We have 

yi =  (β0 + β1) + (β2 + β3)xi + εi    if Di = 1 

yi = β0 + β2xi + εi   if Di = 0 



SLOPE AND INTERCEPT DUMMIES 

X 
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Y
 

Di=0 

Slope = β2+β3 

 
Di=1 

Slope = β2 

β0+β1 

β0 



DUMMY VARIABLES - MULTIPLE CATEGORIES 
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e What if a variable defines three or more qualitative  
attributes? 

e Example: level of education - elementary school, high  
school, and college 

e Define and use a set of dummy variables: 

e Should we include also a third dummy in the regression,  
which is equal to 1 for people with elementary education? 

No, unless we exclude the intercept! 

Using full set of dummies leads to perfect multicollinearity  
(dummy variable trap) 



SUMMARY 

38 / 49 

e We discussed different nonlinear specifications of a  
regression equation and their interpretation 

 
e We defined the concept of a dummy variable and we  

showed its use 

 
e Further readings: 

Studenmund, Chapter 7 
Wooldridge, Chapters 6 & 7 


