Example 1

- Calculate the value of an annual 4\% coupon paying bond with five years to maturity and and a market discount rate of 6%.

$$
\begin{aligned}
P V & =\frac{4}{(1.06)^{1}}+\frac{4}{(1.06)^{2}}+\frac{4}{(1.06)^{3}}+\frac{4}{(1.06)^{4}}+\frac{104}{(1.06)^{5}} \\
& =3.774+3.560+3.358+3.168+77.715=\mathbf{9 1 . 5 7 5}
\end{aligned}
$$

The bond price is $\mathbf{9 1 . 5 7 5}$ per 100 of par value.

Example 2

- Calculate the value of an annual 8\% semiannual coupon paying bond with five years to maturity and and a market discount rate of 6\%.

$$
\begin{aligned}
\mathrm{PV}= & \frac{4}{(1.03)^{1}}+\frac{4}{(1.03)^{2}}+\frac{4}{(1.03)^{3}}+\frac{4}{(1.03)^{4}}+\frac{4}{(1.03)^{5}}++\frac{4}{(1.03)^{6}}+\frac{4}{(1.03)^{7}}+\frac{4}{(1.03)^{8}}+ \\
& \frac{4}{(1.03)^{9}}+\frac{104}{(1.03)^{10}}=108.530
\end{aligned}
$$

The bond price is $\mathbf{1 0 8 . 5 3 0}$ per 100 of par value.

Example 3

- Suppose that a four-year, 5% annual coupon paying bond is priced at 105 per 100 of par value. What is the yield?
- The yield-to-maturity is the solution for the rate, r, in this equation:

$$
105=\frac{5}{(1+r)^{1}}+\frac{5}{(1+r)^{2}}+\frac{5}{(1+r)^{3}}+\frac{105}{(1+r)^{4}}
$$

- where $\mathrm{r}=0.03634$, or 3.634%.

The bond is traded at a premium because its coupon rate is greater than the yield required by investors.

