Test 1

Financial Investments
Lecturer: Axel Araneda, PhD.
Masaryk University
2023

Solution

1. A trader has purchased on margin 1000 shares of a company at $\$ 30$ per share, paying a total purchase commision of $\$ 10$, with a leverage ratio of 1.25 and a call money rate of 10% annually. After 1 year, the trader recieves a dividend $1 \$$ per share and inmediatly after that goes takes a short position in asset at $\$ 40 /$ share Assuming that the sale and buy comissions are equal. What is the total rate of return for the investor after 1 year. How this result is compared for a non-margin purchase (without leverage)?

- $Q=1000, P_{0}=30, C_{b u y}=10, L=1.2, r=10 \%$.
- $D=1, P_{1}=40, C_{\text {sale }}=10$.

$$
L=\frac{1}{\text { Equity }} \longrightarrow \text { Equity }=0.8 \longrightarrow \text { Debt }=0.2
$$

- Total Initial investment: Equity $* P_{0} * Q+C_{b u y}=24000+10=24010$.
- End of period:
- Proceed on sales: $P_{1} * Q=40000$
- Loan payment $=$ Debt $* P_{0} * Q=6000$
- Margin interest paid: $r *$ Debt $* P_{0} * Q=600$
- Income from dividends: $D * Q=1000$
- Sale commission: $C_{\text {sale }}=10$
- Remaining equity: 40000-6000-600 $+1000-10=34390$
- Return of the investment

$$
R=\frac{34390-24010}{24010}=\frac{10380}{24010}=43.23 \%
$$

- Without leverage:
- Alternative 1: Same initial investment (24010).
* 10 on buy comission $\left(C_{b u y}=10\right)$ and $\$ 24000$ in the stock $(24000 / 30=800$ shares $)$.
* Proceed on sales: $P_{1} * 800=32000$.
* Income from dividends: $D * 800=800$
* $C_{\text {sale }}=10$.
* Return:

$$
R=\frac{32790-24010}{24010}=\frac{7980}{24010}=36.57 \%
$$

- Alternative 2: Purchase 1000 shares without debt
* 10 on buy comission $\left(C_{b u y}=10\right)$ and $\$ 30000$ in the stock
* Proceed on sales: $P_{1} * 1000=40000$.
* Income from dividends: $D * 1000=1000$
$* C_{\text {sale }}=10$.
* Return:

$$
R=\frac{40990-30010}{30010}=\frac{10980}{30010}=36.59 \%
$$

- In both cases, the return is lower. Then, the leverage enhances the rate of return.

2. An analyst gathers the folllowing information for a market-cap-weighted index comprised of assets MNO, QRS, and XYZ.

Security	Beginning of Period Price (¥)	End of Period Price (¥)	Dividends Per Share ($\mathbf{Y})$	Shares Outstanding
MNO	2,500	2,700	100	5,000
QRS	3,500	2,500	150	7,500
XYZ	1,500	1,600	100	10,000

(a) Compute the price return of the index.

- Alternative 1:
- Beginning of period (BOP):

$$
\begin{aligned}
I_{0} & =\frac{2500 \cdot 5000+3500 \cdot 7500+1500 \cdot 10000}{D} \\
& =\frac{12500000+26250000+15000000}{D} \\
& =\frac{53750000}{D}
\end{aligned}
$$

- End of period (EOP):

$$
\begin{aligned}
I_{1} & =\frac{2700 \cdot 5000+2500 \cdot 7500+1600 \cdot 10000}{D} \\
& =\frac{13500000+18750000+16000000}{D} \\
& =\frac{48250000}{D}
\end{aligned}
$$

- Price return of the index:

$$
R=\frac{I_{1}-I_{0}}{I_{0}}=\frac{\frac{48250000}{D}-\frac{53750000}{D}}{\frac{53750000}{D}}=\frac{48250000-53750000}{53750000}=-10.23 \%
$$

- Alternative 2
$-\mathrm{MC}_{1}=5000 * 2500=12500000$
$-\mathrm{MC}_{2}=7500 * 3500=26250000$
$-\mathrm{MC}_{3}=10000 * 1500=15000000$
- Total market capitalization:TMC $=\sum_{i} \mathrm{MC}_{i}=53750000$
- Weights: $w_{1}=\frac{12500000}{53750000}=0.2325 ; w_{2}=\frac{26250000}{53750000}=0.4883 ; w_{3}=\frac{15000000}{53750000}=0.2791$
- Individual returns:

$$
\begin{gathered}
R^{1}=\frac{2700-2500}{2500}=8 \% \\
R^{2}=\frac{2500-3500}{3500}=-28.57 \% \\
R^{3}=\frac{1600-1500}{1500}=6.67 \%
\end{gathered}
$$

- Price return of the index:

$$
R=w_{1} R^{1}+w_{2} R^{2}+w_{3} R^{3}=0.0186-0.1395+0.0186=-10.23 \%
$$

(b) Compute the total return of the index.

- The total return also includes the income/dividend gains along the period.
- Total dividend gains:

$$
\frac{\mathrm{Inc}_{1}}{D}=\frac{(5000 * 100)+(7500 * 150)+(10000 * 100)}{D}=\frac{2625000}{D}
$$

- Total return of the index:

$$
T R=\frac{I_{1}-I_{0}+\mathrm{Inc}_{1}}{I_{0}}=-5.35 \%
$$

- Alternatively:

$$
T R=w_{1}\left(R^{1}+100\right)+w_{2}\left(R^{2}+150\right)+w_{3}\left(R^{3}+100\right)=-5.35 \%
$$

(c) How the results change if we consider a price-weighted scheme.

- Price-weighted value of the index (BOP):

$$
I_{0}=\frac{2500+3500+1500}{D}=\frac{7500}{D}
$$

- Price-weighted value of the index (EOP):

$$
I_{1}=\frac{2700+2500+1600}{D}=\frac{6800}{D}
$$

- Return of the index (price-weighted):

$$
P R_{I}=\frac{I_{1}-I_{0}}{I_{0}}=-9.33 \%
$$

- Total dividend gains (price-weighted):

$$
\frac{\mathrm{Inc}_{1}}{D}=\frac{100+150+100}{D}=\frac{350}{D}
$$

- Total return of the index (price-weighted):

$$
T R_{I}=\frac{I_{1}-I_{0}+\mathrm{Inc}_{1}}{I_{0}}=-4.67 \%
$$

3. An investor who owns a bond with a 4% coupon rate that pays interest quarterly and matures in two years is considering its sale. If the required market discount rate is 12%, compute the present value of the bond per 100 of par value. Is this bond traded at premium, discount or par?

- Bond valuation: sum of the discounted cash flows.

$$
\begin{aligned}
P V= & \sum_{n=1}^{8} \frac{C / 4}{(1+r / 4)^{n}}+\frac{F V}{(1+r / 4)^{8}} \\
= & \frac{1}{1.03}+\frac{1}{(1.03)^{2}}+\frac{1}{(1.03)^{3}}+\frac{1}{(1.03)^{4}} \\
& +\frac{1}{(1.03)^{5}}+\frac{1}{(1.03)^{6}}+\frac{1}{(1.03)^{7}}+\frac{101}{(1.03)^{8}} \\
= & 85.96
\end{aligned}
$$

- The bond is traded at discount. $P V<F V . r>C$.

4. A bond with a 4% coupon and maturity on Sep 1, 2025, pays interest in the following calendar days: 1 Mar, 1 June, $1 \mathrm{Sep}, 1 \mathrm{Dec}$. If the market discount rate is 12%, What is the full and clean price of the bond today (Nov 1, 2023) per 100 of par value?

- Today: 01.11.23. 2 months (~ 60 days) after the last coupon payment.
- Coupon rate: 4% annual; i.e., 1% quarterly.
- Discount rate: 12% annual, i.e., 3% quarterly.
- Next payment dates: 1Dec23, 1Mar24, 1Jun24, 1Sep24, 1Dec24, 1Mar24, 1Jun24, and 1Sep24. 8 periods.
- The bond price V per 100 of par value on Sep 1, inmediatly after the coupon payment is given by (same equation as in exercise 4):

$$
\begin{aligned}
V_{1 \operatorname{Sep} 23}= & \sum_{n=1}^{8} \frac{1}{(1.03)^{n}}+\frac{100}{(1.03)^{8}} \\
= & \frac{1}{1.03}+\frac{1}{(1.03)^{2}}+\frac{1}{(1.03)^{3}}+\frac{1}{(1.03)^{4}} \\
& +\frac{1}{(1.03)^{5}}+\frac{1}{(1.03)^{6}}+\frac{1}{(1.03)^{7}}+\frac{101}{(1.03)^{8}} \\
= & 85.96
\end{aligned}
$$

- Then, the full price of the bond today is:

$$
\begin{aligned}
V_{1 \mathrm{Nov} 23} & =V_{1 \operatorname{Sep} 23}(1+0.03)^{\frac{2}{3}} \\
& =87.67
\end{aligned}
$$

- The accrued interest from the last coupon payment is:

$$
A I_{1 \mathrm{Nov} 23}=1 * \frac{2}{3}=0.67
$$

- Thus, the clean price for the bond:

$$
V_{1 \mathrm{Nov} 23}^{\mathrm{Clean}}=V_{1 \mathrm{Nov} 23}-A I=87.00
$$

5. A bond traded at 105 per 100 of par value has a maturity equal to 2 years and semiannual couponds of 5 percent. Find the yield to maturity.

- Bond valuation equation:

$$
105=\frac{2.5}{\left(1+\frac{r}{2}\right)}+\frac{2.5}{\left(1+\frac{r}{2}\right)^{2}}+\frac{2.5}{\left(1+\frac{r}{2}\right)^{3}}+\frac{102.5}{\left(1+\frac{r}{2}\right)^{4}}
$$

- To find r, we assigns values to r in a way that the partial sum of the right-hand side matches the left-hand side (105). Since the bond is traded at premium $(105>100)$ is clear that that the coupon rate (5%) is higuer than the discount rate. In particular we obtain:

$$
r \approx 2.42 \%
$$

