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Financial Investment

Introduction to portfolio theory

Lecturer: Axel A. Araneda, Ph.D.



3 Assets example

— Suposse (®) you have some money, and you want to invest it
taking a long position in a set of assets.

— By the sake of simplicity we consider that we are able to purchase
AAPL, CAT, KO.

— Otherwise, we can invest directly in both the market as a whole
(SP500) or just take a risk-free asset.
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3 Assets example

—For the risk-free asset, we have plenty certain about its
performance (namely, 3% per year).

—In the case of the risky assets (index, KO, CAT, AAPL), we don't
know how they will behave.

— However, on average, we can expect that the return of stocks is
higher than risk-free assets.
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The investment purpose

— Utility maximization.

— Maximize returns over investment.

— Prices are random: subject to uncerntainty.

— What about the risk exposure?
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Historical performance
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Historical performance
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What about risk-return relationship?
— Risk proxy: returns SD (variance).

— How much return | had and what was the risk for each asset in the
period 2015-today?
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Risk-return perfomance 2015-2023
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What about portfolio performance?

— Combination of KO, AAPL, and CAT.

— Divide the initial wealth to purchase some shares of the above
stocks.

— For example: investing the half of the wealth in AAPL, one-quarter
iIn KO, and the remaining quarter in CAT.

— In principle we have many combinations as we want.

— Restrictions: investing the whole wealth in long positions only.

— How we measure the risk for 2 or more assets: covariance.
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10 random portfolios
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1000 random portfolios
T T

0.35

0.25 T T T |
O Random portfolio
@® Individual Assets
Market portfolio ®AAPL
& Equally weighted
0.2 &
015 =
@ CAT
£
=
[
oc
01 =
0.05 - =]
B Risk-free
0 | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

Financial Investments: Introduction to portfolio theory

Volatility

m =
(QED Y el
O =
—



10° random portfolios
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Can we compute the efficient frontier?

— Optimization process.

— Maximize portfolio returns for a given level of portfolio risk

— Alternatively (dual problem): Minimize risk (square root of the
portfolio covariance) for a given level of return.

— We can use covariance directly instead of square-root of
covariance (monotonic function).

— We need to consider the restrictions of long-only portfolio problem:

— Weights must sum 1.
— Weight should non-negatives and the maximum allowed value is one.
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Mean-variance optimization

— Lets consider a portfolio of N-assets, with weights w={w,w,,...

— Each asset has a return R, and risk o, with i={1,...N}.
N

— The portfolio return is given by: Rp — Z wi R;
i=1
— The long-only restrictions are mathematically defined as:

N
Zw1:1, 0<w; <1
1=1
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Mean-variance optimization

— The risk of the portfolio is measured by the square-root of portfolio
return variance:

var (Rp) = » wivar(R;)+2) Y wywjcov(R;,Ry)
=1

i=1 j>i
N N N
= Z w?aiz + 2 Z Z W;W;0;0;Pij
i=1 i=1 j>i
— p;;- CGorrelation between asset i and ;.
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Measuring the investment (portfolio)
performance

Rp — Ry

Op

— Sharpe ratio: SRp =

— R/ Risk-free rate of interest.

— It measure the excess of return adjusted by risk.

— The portfolio over the efficient frontier with the highest Sharpe
ratio is the tangency portfolio.
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Portfolios from DJIA assets
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Efficient frontier
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Example: Computing Sharpe ratio (R=2%)

Port. 1 Port. 2 Port. 3 Port. 4

Return (anualized)  7.3% 8.7%  12.3%  32.8%
Risk (annual SD) 20.2% 25.4% 18.1% 29.5%
Sharpe ratio 0.26 0.26 0.57 1.04

— The portfolio 4 is ranked first in terms of SR. Even though is the riskier one, It
has the best reward per unit of risk.
— Port. 1 and 2 has similar SR. However, port. 1 has less risk exposure.
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