Kepner-Tregoe Methodology

Skorkovský Department of business economy

KT was Developed by Charles H. Kepner and Benjamin B. Tregoe

The formulation of a problem is far more essential than its solution, which may be merely a matter of mathematical or experimental skill"

- Albert Einstein

Apollo 13 – Houston, Houston, do you read me ? We have a big problem....!

The Apollo 13 team is famous for bringing back the astronauts stranded in space by solving difficult and complex problems. The teams solving the problems has used the **Kepner-Tregoe** (KT) methodology!

Appolo 13 – description (problem and solution)

https://spectrum.ieee.org/tech-history/space-age/apollo-13-we-have-a-solution

https://prezi.com/ ohigi4xzcxt/tier-v-problems-and-solutions-on-apollo-13/

Appolo 13 – description (problem and solution)

What is it K-T methodology ?

Kepner - Tregoe is used for decision making (finding best possible choice)

It is a structured methodology for evaluating , gathering & prioritizing information.

It is a detailed and complex method applicable in many areas, which is much broader than just **idea selection**.

It is also called a root cause analysis and decision-making method.

It is a step-by-step approach for systematically solving problems, making decisions, and analyzing potential risks.

6

- 1. Assessment (appraisal) priorities assigned to current situation
- 2. Existing Problem analysis to find the root problem (cause)
- 3. **Decision analysis** to select a way to react (remedy action)
- 4. Future (other related) problem analysis e.g. risk analysis

Alternative means how to solve problem and what kind of pay-off you will get

Access situation - situation appraisal

- Identify concerns (problems) by listing them (detection stage)
- Separate the level of concern (importance, magnitude, and level of influence) related to listed problems.
- Set the priority level =importance to measure the seriousness of impacts (influence), urgency and growth potential
- Decide what action to take next (step by step approach)
- Plan for who is involved, what they will be doing, where they will be involved, when it happened and the extent of involvement (magnitude)

Used terminology

- Importance=magnitude=level of influence
- Priority levels (<u>https://asana.com/resources/priority-matrix</u>)
- Step-by-step approach
- Questions:
 - Who
 - What
 - Where
 - When
 - Extent

Importance

- Is it important ?
- Who is concerned ?
- Which core process does it restrict ?
- Is it possible to find a temporary solution to work it around (not solve) the problem ?

Step-by-Step Approach 8-step

• 8-Step Problem Solving Process (one possibility)

- 1. Step 1: Define the Problem. What is the problem? ...
- 2. Step 2: Clarify the Problem. ...
- 3. Step 3: Define the Goals. ...
- 4. Step 4: Identify Root Cause of the Problem. ...
- 5. Step 5: Develop Action Plan. ...
- 6. Step 6: Execute Action Plan. ...
- 7. Step 7: Evaluate the Results. ...
- 8. Step 8: Continuously Improve
- Similar to Deming cycle (see OM intro)

Step-by-Step Approach 5 Whys-method I.

Here is a set of the first five questions, followed by the next question to find the root cause

Step-by-Step Approach 5 Whys-method II.

Graphical representation of the process

At the end of this KT presentation is a link to the presentation you will view as homework

Questions and the fabulous world of the vampires

To keep this very unusual economic comparisons in your mind

WHO WHAT WHEN WHERE EXTENT

Reverse blood transfusion

The mysterious castle of Prince Dracula in the Romanian Carpathians

The Vampire of Nosferatu arrives in Hamburg on an old Romanian sailing ship

A vampire always attacks under cover of night

More potential victims of a greedy vampire

Making decision (A choice between two or more alternatives)

- Identify what is being decided (quality, used Operation Management methods)
- Establish and classify objectives (main ones, minor ones,..) goals
- Separate the objectives into **must** (*must to have*) and **want** (*nice to have*) categories (we have to assign importance factors from 1-10, where 10 is the most important **want** objective) and assign criterion rating (weights)
- Generate the alternatives we can do it that way or we can take another way as well
- Evaluate the alternatives by scoring the wants against the main (must)objective see next slides
- Review adverse (harmful) consequences of your corrective steps (risk evaluation, risk assessment, risk mitigation)
- Make the best possible choice what to do
 The million dollars question

Concise overview of the previous text

- Must-to-have
- Nice-to-have

One of the key issues in the implementation of ERP systems

- Importance factor = score (10-1) = satisfaction score
 - 10 = the highest importance
 - 1 = the lowest importance
- Risks

- Importance factor could be also e.g. 100-1

Some statement of **underestimation** of Information Technology

- I think there is a world market for maybe five computers (IBM chairman statement from the year 1943)
- There is no reason anyone would want a computer in his or her home (President of Digital Equipment 1977)
- I can assure you that data processing is a fad (craze), that won't last out the year (Editor Prentice-Hall 1957)
- Document management is nice-to-have, not must-to-have (Director of the company still burdened in manual business process)

Criteria rating

"Must" Criteria		C	ar 1	Ca	ar 2	Car	3	Car 4
Cost under \$9,000 Available within or	ne week		Ves Ves ar 1	Y Y Ca	Yes Yes ar 2	Ye Ye Car	is (Yes No
"Want" Criteria	Importance*	Criterion rating	Weighted score	Criterion rating	Weighted score	Criterion rating	Weighted score	
Good gas mileage	7	5	7 × 5 = 35	6	7 × 6 = 42	8	7 × 8 = 56	
Sporty	8	5	$8 \times 5 = 40$	7	$8 \times 7 = 56$	4	8 × 4 = 32	
Color (blue)	3	10	3 × 10 = 30	0	3×0=0	0	3×0=0	
AM/FM stereo	5	7	$5 \times 7 = 35$	8	$5 \times 8 = 40$	3	5 × 3 = 15	
Good condition	10	5	$10 \times 5 = 50$	6	$10 \times 6 = 60$	8	$10 \times 8 = 80$	
Low mileage	6	6	$6 \times 6 = 36$	4	$6 \times 4 = 24$	5	6 × 5 = 30	
Relatively new	7	3	7 × 3 = 21	5	7 × 5 = 35	5	7 × 5 = 35	
TOTAL WEIGHTED S	SCORE (WS)		247		257		248	

See similar example on the next slide

Importance can be understood as a Satisfaction score,

meaning desirable but not essential.

Criteria rating is related to want criteria and every car property

Which car to buy ?

MUSTS		A	1	6	3	(0		2
Power Brakes		G	0	G	0	G	0	G	0
Power Steering		G	0	G	0	GO		GO	
AM/FM Stereo		G	0	G	0	NO	GO	GO	
Automatic		G	0	G	0	NO	GO	G	0
Under \$15,000		G	0	G	0	G	0	G	0
WANTS	Weight	Score	WxS	Score	WxS	Score	WxS	Score	WxS
AirCon	10	10	100	0	0	\geq	\sim	10	100
Cassette	7	6	42	10	70	\geq	\sim	10	70
Antilock Brakes	19	0	0	10	90	>>	\sim	0	0
Air Bag	8	5	40	10	80	$>\!\!<$	$>\!$	5	40
Rear Demist	6	10	60	0	0	$>\!$	$>\!\!<$	0	0
Engine Size	6	8	48	6	36	\geq	\sim	10	60
Central Lock	5	5	25	10	50	$>\!$	\geq	5	25
Metal Paint	4	0	0	10	40	$>\!$	\geq	10	40
Warranty	8	10	80	7	56	\geq	$>\!$	3	24
Resale Value	7	7	49	7	49	\geq	\times	4	28
	TOTALS		444	(471				387
			1						
		С	riteric	on ratir	וg				
ince score, r	meani	ng							

Importance score, meaning desirable but not essential

Another similar problem to be solved

Step 1 Problem: Pick a replacement vehicle for the motor pool fleet

The definition of the problem dictates the requirements. As the vehicle is for a motor pool, the requirements will differ from those for a family car, for example.

Step 2 Requirements:

- 1. Vehicle shall be made in U.S.A.
- 2. Vehicle shall seat at least four adults, but no more than six adults
- 3. Vehicle shall cost no more than \$28,000
- 4. Vehicle shall be **new and the current model year**

Max 28000 USD

Min

Max

New car (current model)

Step 3 and Step 4

Step 3 Goals:

- · Maximize passenger comfort
- · Maximize passenger safety
- \cdot Maximize fuel-efficiency
- \cdot Maximize reliability of the car
- \cdot Minimize investment cost

Step 4 Alternatives:

There are many alternatives but the requirements eliminate the consideration of a number of them:

Requirement 1 eliminates the products not manufactured in the USA Requirement 2 eliminates vans, buses, and sports cars (Ferrari no !!!!) Requirement 3 eliminates high-end luxury cars Requirement 4 eliminates used vehicles

Step 5 Criteria:

"Maximize comfort" will be based on the combined rear seat leg and shoulder room. (Note: front seat passenger leg and shoulder room was found to be too nearly the same to discriminate among the alternatives.) **5**

"Maximize safety" will be based on the total number of stars awarded by the National Highway Traffic Safety Administration for head-on and side impact. **10**

"Maximize fuel efficiency" will be based on the EPA fuel consumption for city driving. **7**

"Maximize reliability" will be based on the reliability rating given each vehicle by a consumer product testing company. 9

"Minimize Cost" will be based on the purchase price. 10

Weighted criteria vector C(5,10,7,9,10) are values assigned by decision makers !!!!

Kepner-Tregoe table

(for 4 cars : Arrow, Baton, Carefree and Dash)

Criteria/	Criteria		Arrow		Alter-	Tot	al Score
Want objectives	Weight				native		
					Score		
Comfort	5	86 in. rear seat	leg and should	der room, seats 5	6		30
Safety	10	14 stars			5		50
Fuel efficiency	7	21 mpg			9		63
Reliability	9	80			9		81
Cost	10	\$26,000			5		50
				Total			274
			Baton				
Comfort	5	88 in. rear seat	leg and should	der room, seats 6	9		45
Safety	10	17 stars			8		80
Fuel efficiency	7	19 mpg			8		56
Reliability	9	70			7		63
Cost	10	\$21,000			8		80
				Total			324
			Carefree				
Comfort	5	80 in. rear seat	leg and should	der room, seats 5	4		20
Safety	10	15 stars			6		60
Fuel efficiency	7	22 mpg			10		70
Reliability	9	65			5		45
Cost	10	\$17,000			10		100
				Total			295
			Dash				
Comfort	5	89 in rear seat l	leg and should	er room, seats 6	10		50
Safety	10	19 stars			10		100
Fuel efficiency	7	21 mpg			9		63
Reliability	9	85			10		90
Cost	10	\$24,000			6		60
				Total			363

Last step – Validation (check)

Last Step Validate Solution:

The totals of the weighted scores show that the **Dash** most nearly meets the wants/goals (or put another way, has the most "benefits"). Dash meets all the requirements and solves the problem !!!

Uncover and handle problems

(problem analysis) – see step-by –step approach

- State the problem (definition and description of the problem)
- Specify the problem by asking what is and what is not, who is and who is not...
- Develop possible causes of the problem (similar to CRT or Ishikawa FBD approaches) - > (problem detection)
- Test and verify possible causes
- Determine the most probable cause (root cause)
- Verify any assumptions
- Try the best possible solution and monitor what will be a situation after applied correctives step

Decomposition, priorities and causes

Example of problem manifestation (decrease of performance)

Final effect of the **Change** = **PROBLEM** (e.g. server crashed, hard disk with database crashed)

Then we have to ask: Who, What, Where, When, How and to what Extent -Size (how much, how many)?

Deviation analysis - questions related to WHAT

- What has the deviation? What does not have the deviation?
- What is the specific deviation? What is not the deviation?
- What similar object(s) could have the deviation, but does not?
- What other deviations could be reasonably observed, but are not?

are similar in content, so we do not include them here for sake of simlicity

Server crashed !!!! (home study !!!)

- Server crashed (this is a very poor and not clear problem definition)
- The e-mail system crashed after the 3rd shift support engineer applied hot-fix XYZ to Exchange Server 123 (better definition of the problem)
- **Comment :** WHO is not mentioned here but could be : Different staff (3 shift) see table

		IS	COULD BE but IS NOT			FFERENCES	CHANGES
WHAT		System failure	Similar systems/situations not failed		?		?
WHERE		Failure location	Other locations that did not fail		?		?
WHEN		Failure time	Other times where failure did not occur		?		?
EXTENT		Other failed systems	Other systems without failure		?		?
		IS	COULD BE but IS NOT	DIFFERENCES		CHANG	ES
WHAT	Exchanged of hot-fix	ge Server 123 crashed upon application < XYZ	Other Exchange Servers getting hot- fix XYZ	Different staff (3rd shift) applied this hot-fix	Nev	v patch procedure fi	rom vendor
WHERE	3rd floor contract	production room without vendor/ or support	Anywhere else with vendor/ contractor support	Normally done by vendor	Nev app	v procedure, first tin lies hot-fixes	ne 3rd shift
WHEN	Last nig	ht, 1:35am	nt, 1:35am Any other time or location None noted				
EXTENT	Any Ex	change Server on 3rd floor	Other servers				

History (and best practice) says that the root cause of the problem is probably due to some **recent change**. **WHAT, WHERE, WHEN and EXTENT will be shown on next slides**

Test the Most Probable Cause (home study !!!)

Clarifying problem Analysis (example)

Potential root cause:	True if:	Probable root cause?
Exchange Server 123 has something wrong with it	Only Exchange Server 123 has this problem	Maybe
Procedure incorrect	Same procedure crashes another server	Probably
Technician error	Problem did not always reoccur	Probably not

We have to ask (where Qi =QUESTION i) :

Question	IS	IS NOT
What (identify)	Q1	Q2
Where (locate)	Q3	Q4
When (timing)	Q5	Q6
Extent (magnitude)	Q7	Q8

Problem Analysis - What

Is

- What specific object(s) has the deviation?
- What is the specific deviation?

Example for Is :

- 1. What specific **object IS** related to the defect? Inventory Valuation Objects in **database A**
- 2. What specifically is the defect (deviation)? Inventory Adjustment does not work
- 1-> see setup of the database and see differences
- 2->see algorithm used for calculation and parameter used. You can see , that in production calculation related algorithm is not functional

Is Not

- What similar object(s) could have the deviation, but does not? (It did not happen)
- What other deviations could be reasonably observed, but are not? (It did not happen)

Example for Is Not :

- 1. What specific **object IS NOT** related to the defect? Inventory Valuation Objects in **database B**
- What specifically is not the defect (deviation)?
 Adjustment is working good setup in database B
- 1 -> Setup has another parameter **ON**
- 2-> Algorithm is also used for production where not error occurs

See two MS Dynamics NAV setup screens (related to the problem specified recently)

Inventory Setup		Inventory Setup
General Location Dimensions Numbering		General Location Dimensions Numbering
Automatic Cost Posting .		Automatic Cost Posting . 🔽
Expected Cost Posting		Expected Cost Posting
Automatic Cost Adjust Never 💽 —		Automatic Cost Adjust
Average Cost Calc. Type Item 💌		Average Cost Calc. Type Item 💌
Average Cost Period Day		Average Cost Period Day
Copy Comments Order 🔽		Copy Comments Order 🔽
Copy Comments Order 🔽		Copy Comments Order 🔽
Outbound Whse. Han		Outbound Whse. Han
Inbound Whse. Handli		Inbound Whse. Handli
	Help	Help

Apology- we go back to strange individual habits of vampires

To keep this very unusual economic comparisons in mind

Back to vampires: Problem Analysis - What

Is

 What specific object(s) has the deviation?

 What is the specific deviation? - bites on the neck

Example for Is :

1. Nice young girl's neck and strange look of anemic person

Is Not

 What similar object(s) could have the deviation, but does not? (It did not happen)

What could the specific deviation? but does not? (It did not happen) – bites, anemia

Example of Is Not :

- 1. Girl with garlic in her hands
- 2. No bites
- 3. Healthy

Another example for What IS and What IS NOT as well as Where IS and Where IS NOT

IS girl Sarah visited Dracula lower castle without a bunch of garlic, but **IS NOT** not the one (Emily) having a bunch of garlic and visiting Špilberk castle in Brno

Dracula Castle

Transylvanian Alps in Romania (castle of Count Dracula)

(Where IS)

Sarah (What I<mark>S</mark>) Špilberk Brno (Where IS NOT)

Problem Analysis - Where

Is

- Where is the object when the deviation is observed? (geographically)
- Where is the deviation on the object?

Example for IS:

1. The old castle in the mountains (Romania)

Where IS: Romanian Carpathian mountains where it is very easy to meet many vampires there

Is Not

- Where else could the object be when the deviation is observed, but is not?
- Where else could the deviation be located on the object, but is not?

Example for **IS NOT:**

1. Brno Špilberk Castle

Where IS NOT possible to meet vampires

(only lovers and children and seniors)

Let's Look At Some Problems!

Systematic Problem Solving and Decision making Overview

Problem Definition Process

Decision Making Process

Planning the Next Steps

- Problem Analysis
 - Do we have a deviation?
 - Is the cause unknown?
 - Is it important to know the cause to take effective action?
- If the answer is YES to ALL three listed problems above, than you have a big problem, Huston!

Problem analysis table template

(Home study ->the most important issue)

		IS	IS NOT	Distinction	Cause
What	Identify:	What is problem?	What is not problem?	What difference between is and is not?	What is possible cause?
Where	Locate:	Where is problem found?	Where is problem not found?	What difference in locations?	What cause?
When	Timing:	When does problem occur?	When does problem not occur?	What difference in timing?	What cause?
		When was it first observed?	When was it last observed?	What difference between 1 st , last?	What cause?
Extent	Magnitude:	How far does problem extend?	How localized is problem?	What is the distinction?	What cause?
		How many units are affected?	How many not affected?	What is the distinction?	What cause?
		How much of any one unit is affected?	How much of any one unit is not affected?	What is the distinction?	What cause?

Problem description (example)

On a new model of airplane, flight attendants develop rash on arms, hands, face (only those places). It only occurs on flights over water.

Usually disappears after 24 hours. No problems on old planes over those routes.

Does not affect all attendants on these flights, but same number of attendants get it on each flight. Those who get rash have no other ill effects.

No measurable chemicals, etc., in cabin air.

Rash arm ->

Problem analysis real table

	IS	IS NOT	DISTINCTION
WHAT:	Rash	Other illness	External contact
WHEN:	New planes used	Old planes used	Different materials
WHERE:	Flights over water	Flights over land	Different crew procedures
EXTENT:	Face, hands, arms	Other parts	Something contacting face, hands and arms
	Only some attendants	All attendants	Crew duties

Distinction=Difference

Comment: specification is very simplified-> all aircraft use life jackets regardless Of the type of fly (over water or over land)

Results

Only a part of the cabin crew shows how a life jacket is worn over their heads. In new airplanes, the life jackets were treated with powder chemicals that cause a rash on contact with the skin.

Moreover, the deployment of life jackets is not presented on-air routes outside the oceans and seas.

WORLD CUP & QUALITY MANAGEMENT

SAMUEL K. M. HO

Keywords: Quality Management, World Cup, problem solving

Abstract: In the semi-final World Cup 1990, England lost to West Germany in the penalty knockout. The Italian team had similar experience when they lost to Brazil in the World Cup final 1994. History repeats itself -- in WC'98, England lost to Argentina and Italy lost to France by the same mistakes. In an attempt to audit the defeats, the author developed the S-H Method of managerial auditing and used the World Cup match examples to illustrate the significance of the S-H Method in auditing managerial processes.

Author: prof. Samuel K.M Ho, School of Business, Hong Kong Baptist University, Hong Kong

- Rule #1: In a successful penalty-shoot, the ball ends up in the goal away from the goal-keeper's reach. The most likely positions are those along the inside edges of the goal-posts, the higher the better, provided that the ball does not go over the bar. The football player must target these points.
- Rule #2: The shooter should assume that there is nobody at all in the field, and concentrate on shooting the ball into the positions defined as the best.

ENGLAND			WEST GERMANY		
Goal	Player	Result & Analysis	Goal	Player	Result
E1	Lineker	In	W1	Brehme	In
E2	Beardsley	In	W2	Matthaeus	In
E3	Platt	In despite being touched by the goal-	W3	Riedle	In
		keeper			
E4	Pearce	Ball caught by the goal-keeper (violating	W4	Thon	In
		Rule #1)			
E5	Waddle	Ball flew above the goal (violating Rule		WON	
		#2)			

Table 1 Score Table of Penalty-shoot Knock-out -- World Cup Semi-final 1990: England vs. West Germany

Figure 3

Approximate Positions of Penalty-shoot Goals -- World Cup Semi-final 1990: England (E) vs. West Germany (W) (Underlined balls indicate missing shoots)

Example of analysis (only as an interesting example)

Table III

Problem-solving worksheet applied to analyse World Cup match problem

	is the problem?	Is as expected?	The point of change		
What	Weak penalty shooting	Performance during the match	Difference in penalty shoot-out tactics		
Who	Two out of the five England players	German players	The way some players struck the ball		
When	After 120 minutes of football	During the match	Penalty shoot-out took place after a long and tiring match		
Where	At the points easily reached by the goal- keeper Above the bar	At the positions near the posts, inside the goal (E2 and E3)	Ball easily caught by the goalkeeper or ended up outside the goal		
How significant	Two failures out of five attempts	The German team did not miss out of four attempts	Very significant		
Possible causes	 Some players not fol Certain players are if Some players are af and have forgotten at Lack of proper training 	Some players not following rule 1 Certain players are incapable of shooting the ball at the right spot Some players are affected psychologically by the presence of the goalkeeper and have forgotten about rule 2 Lack of proper training based on rules 1 and 2			

- WHAT -- Lack of proper training led to the weak penalty-shooting, mostly due to players not adhering to Rule #1 (see).
- WHO -- A significant number of players were making the mistake as a result of insufficient training.
- WHEN -- When players are tired, the physical condition may affect their decision making. This is why training is important.
- WHERE -- More stringent training on correct shooting (Rule #1).
- HOW SIGNIFICANT -- The importance of the match makes the problem very significant. Therefore training must be thorough.

Example of K-T problem analysis

	ls	Is Not	Differences	Changes
What	Remote access running slowly	Local access	Use of WAN	
Where	In Germany	In other countries	Different WAN	
			links and routers	
When	All the time	At particular		Firmware on German
		times or days.		routers had a security
	Since 20-Jan	Before 20-Jan		patch on 20-Jan
Extent	All transactions	More than twice		
	take about	normal time.		
	twice normal time	Complete failure.		

https://www.youtube.com/watch?v=dUtoOUWnJY0

https://www.youtube.com/watch?v=TEc FZhRoro

https://www.youtube.com/watch?v=S5fQrE0-kGg

In the Ishikawa presentation, I briefly mentioned the 5 Whys methodology. Here is an excellent example of how to analyze a selected process using this method.

(103) Problem Solving Techniques: 5-Why-Method, Flowchart, Mind-Map -YouTube

Thanks for Your attention

