Linear programming-introduction

Ing.J.Skorkovský, CSc,
Department of Business Management
FACULTY OF ECONOMICS AND ADMINISTRATION
Masaryk University Brno
Czech Republic

USE of Linear Programming approach

- Slitting and Levelling of material (coils, bars, sheets)-Cutting material, trimming,...
- Blending - blending, diet, feeding rations for animals, ..
- Transport problems - material flow from stock to the destination and route planning - shortest route
- Assignment of resources with limited capacities - CCR
- Sources : Operation Management, Quality and Competitiveness in a global environment, Russel and Taylor (can be found easily in ESF library)

CCR -additional information

- There are 3 categories of resources from the point of view of capacity:
- Bottleneck
- CCR - Capacity Constraint Resource (closed to bottlenek)
- Non-CCR

Bottleneck - demand on the machine is higher than the available capacity. Works 24×7, the whole year around.

CCR (Capacity Constraint Resource) - according to the available time tha you allow it to work, it becomes a trouble maker. The load bigger than 70\%. The idle time is so little and unstable that in no time it can turn to Bottleneck.

Non-CCR - idle capacity includes some protective capacity.

Formulation of the simple model

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

Which combination of products will have the greatest return at the limits of maximum production capacity type $=40$ hours and moreover, the amount of material that is limited to $\mathbf{1 2 0} \mathbf{~ k g ~ o f ~ c l a y ? ~}$

Note: A similar task in terms of flow was solved in the P\&Q example (see Product Mixture I. File in study material), where the limitation resource was machine B and with a maximum capacity of 2400 minutes

Description x 1 and x 2 stands for variables.
Material means e.g. 4 kg for one piece (product) - in our example Dish

Basic structures and used terminology

- We minimize our target function in the form of:
$\mathrm{Z}=\mathrm{c} 1^{*} \times 1+c 2^{*} \mathrm{x} 2+\ldots . .+\mathrm{cn}{ }^{*} \mathrm{xn}$ with respect to the matrix of restrictive conditions:
(in our case c1=40 and c2=50 which means return/pc) -> see Return for both products

$$
\begin{array}{ll}
A 11^{*} x 1+A 122^{*} x 2+\ldots+A 1 n^{*} x n & (<>=) B 1 \\
A 22^{*} x 1+A 22^{*} x 2+\ldots+A 2 n^{*} x n & (<>=) B 2 \\
A m 1^{*} x 1+A m 2^{*} x 2+\ldots+A m n * x n & (<>=) B m
\end{array}
$$

- Solved problem can be described as a set of linear equations $A^{*} x=B$
- The solving of such a linear equation system, e.g. by use of GAUSS-JORDAN algorithm is not required if we will use Excel Solver Add-on (application).
- xij : decision variable = level of operation activity specified by this variable
- Bi : restrictive conditions, allowed deviations from the norm (in time and material)
- cj : coefficient of the target function (in our case returns, meaning return 40 and 50)
- Aij : restrictive coefficients: work and material for one unit (pcs) of the product

Example | (introduction to the problem - practical demonstration)

Product	Description	Work/hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

$\mathbf{Z}=\mathbf{c} \mathbf{1}^{*} \mathbf{x} \mathbf{1 + c} \mathbf{2}^{*} \mathbf{x} \mathbf{2 +}+\ldots . \mathbf{+ c n}^{*} \mathbf{x n}$ (classical equation from)
Target function: $\mathbf{Z}=40^{*} x 1^{\prime}+50^{*} x 2$, which we must maximize

Maximal production capacity $=40$ hours and Maximal quantity of material (clay) $=120 \mathrm{~kg}$ (B 1 and B 2 in our mathematical expression) - This is our constraint in this model

Specifications of task restrictions by use of 2×2 matrix:
$1^{*} x 1+2 * x 2=40$ (work-no more than 40 hours)
$4^{*} \times 1+3^{*} \times 2=120$ (material=kg of clay in our case)->x1=(40-2x2)+3x2=120....

Manual solving : -> x1=24 a x2=8 and after substitution od variables (24 pcs of Dish and 8 pcs of Mug)
in target function we will get

$$
Z=40 * 24+50 * 8=1360
$$

(optimal Return meets the point B - see next slide)

Graphical solution

Manual solving : -> x1=24 a x2=8 and after substitution od variables (24 pcs of Dish and 8 pcs of Mug) in target function we will get

I apologize for the inappropriate graphic expression....

Use of Solver (Czech EXCEL) wits some basictransations

USe O SOMVER (see actual Excel formulas on one of the next slides)

Target function $\mathbf{Z}=x 1^{*} c 1+x 2^{*} c 2=40^{*} x 1+50^{*} x 2$

4*x1 + 3*x2 =120 - capacity restrictions= max quantity of material =B1
$1^{*} \mathrm{x} 1+2$ *x2 = 40 -capacity restrictions by max work capacity=B2

Product	Description	Work /hour	Material/pcs	Return/pcs
Dish	x1	1	4	40
Mug	x2	2	3	50

Solver start

The Excel file that is used for our example is stored both in the study materials and in MS TEAMS

When using Solver in Excel, just open this file
Name of the file : LP_EXCEL_SOLVER USE_20221124

Use of Solver (Czech- not for MHP_AOPR)

$F 7==D 7^{*} D 6+E 7^{*} E 6$
 Use of solver (for MPH_AOPR)

\square

Využití Řešitele (Czech -use of Solver)

Microsoft Excel 15.0 Citlivostní sestava						
List: [Simplex_1_Misky_Hrnky_Chairs_Tables_20170228.x\|sx]List1 Sestava vytvořena: 9. 3. 2017 16:19:56						
Proměnné						
Levá strana omezující podmínky	Název	Konečná Hodnota	Redukovaná náklady	Účelová funkce koeficient	Povoleny nárůst	Povoleny pokles
\$C\$4	Proměnné $\times 1, \times 2$ Miska	24	0	40	26,66666667	15
\$D\$4	Proměnné $\mathrm{x} 1, \mathrm{X} 2$ Hrnek	8	0	50	30	20
Omezující podmínky						
Levá strana omezující podmínky	Název	Konečná Hodnota	Stínová cena	Pravá strana omezující podmínky	Povolený nárůst	Povolený pokles
\$E\$7	Materiál Total	120	6	120	40	60
\$E\$8	Práce Total	40	16	40	40	10

Use of Solver (MPH_AOPR)

Výsledky Řešitele $\quad \underbrace{\Sigma 3}$

Řešitel nalezl řešení, které splňuje všechny omezující podmínky a podmínky optimálnosti.	Sestavy
© Uçhovat řešeni Řešitele O Obnovit původní hodnoty	Výsledková Citlivostní Limitní
\square Zpět do dialogového okna Parametry Řešitele	Vtručné sestavy
OK Storno	Uložit scénář...

Uložit scénář

Microsoft Excel 14.0 Citlivostní sestava List: [LP_EXCEL_SOLVER USE_20171101.xIsx]List1 Sestava vytvor̃ena: 2.11.2017 8:49:10					
Promènné buñky					
Buñka	Název		Konečná Hodnota	Snížené Gradient	
\$D\$6	Varaibles $\times 1, \times 2$	Dish	24		o
\$E\$6	Varaibles $\times 1, \times 2$	Mug	8		o

New Excel List

Omezující podmínky

Buñka	Název	Konec̆ná Hodnota	Lagrangeuiv Moltiplikátor
$\$ F \$ 10$	Material Total	120	6
$\$ F \$ 11$	Work Total	40	16

 (Change of parameters- not necessary for MPH_AOPR !!!!!)

