Linear programming-introduction

Ing.J.Skorkovský, CSc, Department of Business Management FACULTY OF ECONOMICS AND ADMINISTRATION Masaryk University Brno Czech Republic

USE of Linear Programming approach

- Slitting and Levelling of material (coils, bars, sheets)-Cutting material, trimming,...
- Blending blending, diet, feeding rations for animals, ..
- Transport problems material flow from stock to the destination and route planning shortest route
- Assignment of resources with limited capacities CCR
- **Sources**: Operation Management, Quality and Competitiveness in a global environment, Russel and Taylor (can be found easily in ESF library)

See next slide for explanantion of CCR

CCR –additional information

- There are **3 categories** of resources from the point of view of capacity:
- Bottleneck
- CCR Capacity Constraint Resource (closed to bottlenek)
- Non-CCR

Bottleneck – demand on the machine **is higher than the available capacity**. Works 24x7, the whole year around.

Set-up Production time

CCR (Capacity Constraint Resource) – according to the available time tha you allow it to work, it becomes a trouble maker. The load bigger than 70%. The idle time is so little and unstable that in no time it can turn to Bottleneck.

Non-CCR - idle capacity includes some protective capacity.

Formulation of the simple model

Product	Description	Work /hour	Material/pcs	Return/pcs	30 A I
Dish	x1	1	4	40	
Mug	x2	2	3	50	Sec.

Which combination of products will have the greatest return at the limits of maximum production capacity type = **40** hours and moreover, the amount of material that is limited to **120** kg of clay?

Note: A similar task in terms of flow was solved in the P&Q example (see Product Mixture I. File in study material), where the limitation resource was machine B and with a maximum capacity of 2400 minutes

Description x1 and x2 stands for variables. Material means e.g. 4 kg for one piece (product) – in our example Dish

Basic structures and used terminology

• We minimize our **target function** in the form of:

Z = c1*x1+c2*x2+....+cn*xn with respect to the matrix of restrictive conditions: (in our case c1=40 and c2=50 which means return/pc) -> see Return for both products

Target function Z=C*X

A11*x1 + A12*x2+ ...+ A1n*xn (<>=) B1 A22*x1 + A22*x2+ ...+ A2n*xn (<>=) B2

- Solved problem can be described as a set of linear equations A*x=B
- The solving of such a linear equation system, e.g. by use of GAUSS-JORDAN algorithm is not required if we will use **Excel Solver Add-on (application)**.
- xij : decision variable = level of operation activity specified by this variable
- **Bi** : restrictive conditions , allowed deviations from the norm (in time and material)
- cj : coefficient of the target function (in our case returns, meaning return 40 and 50)
- Aij : restrictive coefficients: work and material for one unit (pcs) of the product

Example I (introduction to the problem – practical demonstration)

Maximal production capacity = 40 hours and Maximal quantity of material (clay)=120 kg (B1 and B2 in our mathematical expression) - This is our constraint in this model

Specifications of task restrictions by use of 2x2 matrix:

1*x1 + 2*x2 =40 (work-no more than 40 hours) 4*x1 + 3*x2 =120 (material=kg of clay in our case)->x1=(40-2x2)+3x2=120....

Manual solving : -> x1=24 a x2=8 and after substitution od variables (24 pcs of Dish and 8 pcs of Mug) in target function we will get

(optimal Return meets the point B – see next slide)

Graphical solution

I apologize for the inappropriate graphic expression....

Use of Solver (Czech EXCEL) with some basic translations

Use o solver (see actual Excel formulas on one of the next slides)

Target function Z = x1*c1 + x2*c2 = 40*x1+50*x2

4 * x1 + 3 * x2 = 120 - capacity restrictions= max quantity of material = B1 1 * x1 + 2 * x2 = 40 - capacity restrictions by max work capacity=B2

Solver start

The Excel file that is used for our example is stored both in the study materials and in MS TEAMS

When using Solver in Excel, just open this file Name of the file : LP_EXCEL_SOLVER USE_20221124

Use of Solver (Czech- not for MHP_AOPR)

	Α	В	С	D		E	F	G
1								
2								
3			Miska	Hrnek	Tot	tal	Kapacita	
4		Proměnné x1,X2	0	0				
5		Přínos	40	50		0		
6						Γ		
7		Materiál	4	3		0	120	
8		Práce	1	2	1	0	40	
9					1			

 $Z = x1^{*}c1 + x2^{*}c2 = 40^{*}x1 + 30^{*}x2$

E7=C7*C4+D7*D4=4*x1+3*x2=120 E8=C8*C4+D8*D4=x1+2*x2=40

Parametry Řešitele						×	
Úče <u>l</u> ová funkce: Hledat:	SESS	⊖ <u>H</u> odn	ota:				
\$C\$4:\$D\$4				Miska	Hrnek	Total	Kapacita
Omez <u>uj</u> ící podmínky:	_		Proměnné x1,X2	24	8	Total	Kapacita
\$E\$7 <= \$F\$7			Přínos	40	50	1360	
\$E\$8 <= \$F\$8							
			Materiál	4	3	120	120
			Materiál Práce	4	3	120 40	120 40

Využití Řešitele (Czech -use of Solver)

Microsoft Excel 15.0 Citlivostní sestava List: [Simplex_1_Misky_Hrnky_Chairs_Tables_20170228.xlsx]List1 Sestava vytvořena: 9. 3. 2017 16:19:56

Proměnné

		Konečná	Redukovaná	Účelová funkce	Povolený	Povolený
Levá strana omezující podmínky	Název	Hodnota	náklady	koeficient	nárůst	pokles
\$C\$4	Proměnné x1,X2 Miska	24	0	40	26,66666667	15
\$D\$4	Proměnné x1,X2 Hrnek	8	0	50	30	20

Omezující podmínky

		Konečná	Stínová	Pravá strana	Povolený	Povolený
Levá strana omezující podmínky	Název	Hodnota	cena	omezující podmínky	nárůst	pokles
\$E\$7	Materiál Total	120	(5 120	40	60
\$E\$8	Práce Total	40	10	5 40	40	10

Use of Solver (MPH_AOPR)

Výsledky Řešitele	Výsledky Řešitele	23
Řešitel nalezl řešení, které splňuje všechny omezující podmínky a podmínky optimálnosti. Sestavy O Ughovat řešení Řešitele Útlivostní	Řešitel nalezl řešení, které splňuje všechny omezující podmínky a podmínky optimálnosti.	Se <u>s</u> tavy
O Obnovit původní hodnoty	 U<u>c</u>hovat řešení Řešitele Obnovit původní <u>h</u>odnoty 	Výsledková Citlivostní Limitní
Sestavy Vytvoří zadaný typ sestavy. Jednotlivé sestavy budou vloženy na samostatné listy v sešitu.	Zpět <u>d</u> o dialogového okna Parametry Řešitele	✓ Stručné sestavy
istyvsestu.	OK Storno	Uloži <u>t</u> scénář
4		· · · · · · · · · · · · · · · · · · ·

25
Storno

Microsoft Excel 14.0 Citlivostní sestava List: [LP_EXCEL_SOLVER USE_20171101.xlsx]List1 Sestava vytvořena: 2.11.2017 8:49:10

Proměnné buňky

Buňka	Název		Snížené Gradient
\$D\$6	Varaibles X1, X2 Dish	24	0
\$E\$6	Varaibles X1, X2 Mug	8	0

Omezující podmínky

New	Excel List	

		Konečná	Lagrangeŭv
Buňka	Název	Hodnota	multiplikátor
\$F\$10	Material Total	120	6
\$F\$11	Work Total	40	16

Změna úlohy- jiné výnosy jiná omezení typu práce na dvou strojích a jejich kapacitní omezení (Change of parameters- not necessary for MPH_AOPR !!!!!)

					Parametry Řešitele				
	Miska	Hrnek	Total	Kapacita					
oměnné x1,x2	0	0			Úče <u>l</u> ová funkce:	SES13			
ínos	40	50	0		Hledat: Max	◯ Mi <u>n</u>	◯ <u>H</u> odnota:	0	
					I Wiax	U MIII	O <u>H</u> odnota:	-	
roj 1	7	5	0	200	Proměnné modelu:				
roj 1	5	5	0	400	\$C\$12:\$D\$12				
					Omez <u>uj</u> ící podmínky:				
					SE\$15 <= SF\$15				
	·								Prida
					SE\$15 <= SF\$16				
			1						Změni
			T-4-1						Změn
	Miska	Hrnek	Total	Kapacita					Změn
Proměnné x1,x2	Miska 0	Hrnek 40	Total	Kapacita					Př <u>i</u> dat Změni <u>O</u> dstran
Proměnné x1,x2 Přínos			Total 2000	Kapacita					Změn
	0	40		Kapacita					Změn
	0	40		Kapacita					Změn

