Product mix and TOC

Ing.J.Skorkovský, CSc,
Department of Business Management
FACULTY OF ECONOMICS AND ADMINISTRATION
Masaryk University Brno
Czech Republic

P (50) **(50)** R (55) **S** (52) Machine A (5) Machine A (6) Machine A (5) Machine A (8) Machine B (10) Machine A (10) RM=5 RM=10 RM=10 RM=5 Bottleneck RM=5 Machine B (20) RM=5 **Bottleneck** RM=10 **Material Cost Unit Price** Product 50 50

Task control parameters

8 hours /day=480 min, Cost/hour/resource=10 USD To produce **P** or **Q** ->20 minutes of B (bottleneck) To produce R or S->30 minutes of B (bottleneck)

> Two workers are always needed to produce each of the four products

Profit

50-20-6=24

50-25-6,33=18,67

55-25-5,83=24,17

52-20-5,83=26,17

S	ome	ca	lcu	lati	ons
_	••••	-			•

Time in minutes calculated for all Machine centers: P->6+10+20, Q->8+10+20, R->5+10+20, S->5+10+20

36 minutes -> 36/60=0,6->0,6*10 USD =6 USD (Cost of work) -38 minutes -> 38/60=0,63->0,63*10 USD= 6,33 USD (Cost of work)-

Cost of work/minute in USD -> time includes both machines (A and B)

RM=Raw Material

20

25

25

20

55

52

R S

Price = Selling Price or in Dynamics Business Central Unit Price

Work (min USD)

36 min (6 USD)

38 min (6,33 USD)

35 min (5,83 USD)

35 min (5,83 USD)

Based on Prof. James R. Holt, Washington State University

Four different approaches how to solve the product mix

highest profit

highest machine efficiency

highest selling price

highest use of bottleneck

Classic approach – highest profit (accountant) – S product

- S (52)

 Cost of material
- NP=T-OE=52*16 pcs 20*16 pcs 2 workers*8 hours*10 USD/hour = 352 USD/day
- Where $\frac{16}{480/30} = 16 = \frac{480}{(20+10)}$
- 20+ 10 is capacity of machine B (bottleneck) to produce S

Machine B (10)

Calculations for bottleneck B only!

Machine B (20)

Product+	Price	Material	Work (min USD)	Profit				
P	50	20	36 min (6 USD)	50-20-6=24				
Q	50	25	38 min (6,33 USD)	50-25-6,33=18,67				
R	55	25	35 min (5,83 USD)	55-25-5.83=24.17				
S	52	20	35 min (5,83 USD)	52-20-5,83=26,17				
This table is used only for classic approach to choose product with highest profit (S)								

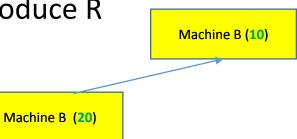
Cost of work/minute in USD calculation.

Calculated time of work includes both machines (A and B)

Marketing approach – highest selling price R

Product

R (55)


Highest Selling Price

Cost of material

- NP=T-OE =55*16 pcs 25*16 pcs 2 workers*8 hours*10 USD/hour = 320 USD/day
- Where $\frac{16}{16} = 480/30 = 16 = 480/(20 + 10)$
- 20+ 10 is capacity of machine **B** to produce R

Calculations for bottleneck B only Focused on the highest selling price

Production approach – highest machine efficiency Q

product

The idea is to produce as many products as possible

(50) Cost of material

- NP=T-OE=50*24 pcs 25*24 pcs 2 workers*8 hours*10 USD/hour = 440 USD/day
- Where 24= 480/ 20 (the quantity of the product)
- 20 is capacity of machine B to produce Q

Machine B (20)

Calculations for bottleneck B only
The intention is to produce as much as possible

TOC approach – highest use of bottleneck P

P (50)

Cost of material

- NP=T-OE =50*24 pcs 20*24 pcs 2 workers*8 hours*10 USD/hour = 560 USD/day
- Where 24= 480/ 20
- 20 is capacity of machine B to produce P product

Machine B (20)

Calculations for bottleneck B only
The intention is highest use of bottleneck
Material costs are lower for product P than for product Q.

Results

• TOC approach	Р	\$560	159%
 Production-Efficiency 	Q	\$440	125%
 Sales-Higher Sales Price 	R	\$320	90%
 Accounting approach 	S	\$352	100%

