
BKM_DATS: Databázové systémy

10. Indexing and Hashing

Vlastislav Dohnal

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 2

Indexing and Hashing

Basic Concepts

Ordered Indices

B+-Tree Index

Static Hashing

Dynamic Hashing

Comparison of Ordered Indexing and Hashing

Index Definition in SQL

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 3

Basic Concepts

Indexing mechanisms used to speed up access to desired data.

E.g., author catalog in library

Search Key – an attribute or a set of attributes used to look up

records in a file.

An index file consists of records (called index entries) of the form

Index files are typically much smaller than the original file

Two basic kinds of indices:

Ordered indices: search keys are stored in sorted order

Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 5

Ordered Indices

In an ordered index, index entries are stored sorted on the search

key value.

E.g., author catalog in library.

Primary index: assume a sequential file, the index whose search key

specifies the sequential order of records in the file.

Also called clustering index

The search key of a primary index is usually but not necessarily

the primary key.

Secondary index: an index whose search key specifies an order

different from the sequential order of records in the file.

Also called non-clustering index

Index-sequential file: sequential file with a primary index.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 10

Secondary Indices

Frequently, one wants to find all the records whose values in a

certain attribute (which is not the search-key of the primary

index) satisfy some condition.

Example 1:

The instructor relation stored sequentially by ID

We may want to find all instructors in a particular

department

Example 2:

As above

We want to find all instructors with a specified salary or

with salary in a specified range of values

We can have a secondary index

where an index record exists for each search-key value

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 11

Secondary Indices Example

Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

Secondary indices have to be dense.

Sequential file

by instructor ID

Secondary index

on salary attribute

of instructor

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 16

Primary and Secondary Indices

Indices offer substantial benefits when searching for records.

BUT: Updating indices imposes overhead on database

modification

When a file is modified, every index on the file must be

updated.

Sequential scan using primary index is efficient.

But a sequential scan using a secondary index is expensive.

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 17

B+-Tree Index Files

Disadvantage of indexed-sequential files

Performance degrades as file grows, since many overflow
blocks get created.

Periodic reorganization of entire file is required.

Advantage of B+-tree files:

Automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

Reorganization of entire file is not required to maintain
performance.

(Minor) disadvantage of B+-trees:

Extra insertion and deletion overhead, space overhead.

Advantages of B+-trees outweigh disadvantages

B+-trees are used extensively

B+-tree file organization is an alternative to indexed-sequential files.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 18

Example of B+-Tree on instructor name
B+-Tree as a secondary index

Sequential file by instructor ID

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 19

B+-Tree Index

A B+-tree is a rooted tree satisfying the following properties:

All paths from root to leaf are of the same length

Each node that is not a root or a leaf has between n/2 and n

children.

A leaf node has between (n–1)/2 and n–1 values

Special cases:

If the root is not a leaf, it has at least 2 children.

If the root is a leaf (i.e., there are no other nodes in the

tree), it can have between 0 and (n–1) values.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 20

B+-Tree Node Structure

Node structure:

Ki are values of the search key

Pi are pointers to children (for non-leaf nodes)

or pointers to records or buckets of records (for leaf nodes).

The search-key values in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(We assume no duplicate keys)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 21

Leaf Nodes in B+-Trees
Properties of a leaf node:

For i = 1, 2, . . ., n-1, pointer Pi points to a file record with search-

key value Ki,

If Li and Lj are leaf nodes and i < j, Li’s search-key values are less

than Lj’s search-key values

Pn points to the next leaf node in search-key order

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 22

Non-Leaf Nodes in B+-Trees

Non-leaf nodes form a multi-level sparse index on the leaf

nodes.

For a non-leaf node with n pointers:

All the search-keys K in the sub-tree to which P1 points are

less than K1 (K < K1)

For 2  i  n-1, all the search-keys in the sub-tree to which

Pi points have values K greater than or equal to Ki-1 and

less than Ki (Ki-1 ≤ K < Ki)

All the search-keys in the sub-tree to which Pn points have

values K greater than or equal to Kn-1 (Kn-1 ≤ K)

K < K1 K1 ≤ K < K2 Kn-1 ≤ K

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 23

Example of B+-tree with n=6

Leaf nodes must have

between 3 and 5 values ((n–1)/2 and n –1, with n = 6).

Non-leaf nodes other than root must have

between 3 and 6 children ((n/2 and n with n =6).

Root must have at least 2 children.

B+-tree on name for instructor file (n = 6)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 24

Observations about B+-trees

Since the inter-node connections are done by pointers,

“logically” close blocks need not be “physically” close.

The non-leaf levels of the B+-tree form a hierarchy of sparse

indices.

The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

etc.

If there are m search-key values in the file, the tree height is

no more than  logn/2(m)

thus searches can be conducted efficiently.

Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time

(as we shall see).

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 25

Queries on B+-Trees
Find record with a search-key value V.

1. Set C=root

2. While C is not a leaf node

1. Let i be the least value such that V < Ki

2. If no such exists, Let i be index of last non-null pointer in C

3. Set C = node that Pi points to

// now we are in a leaf node

1. Let i be the value such that Ki = V

2. If there is such a value i, follow pointer Pi to the desired record.

3. Else no record with search-key value k exists.

Search for Katz

Katz < Mozart

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 26

Queries on B+-Trees (Cont.)
Query evaluation efficiency:

Tree height is no more than logn/2(m)

where m is the number of search-key values in the file

n is B+-tree arity (number of fan-outs)

A node is generally the same size as a disk block, typically 8 KB

and n is typically around 200 (40 bytes per index entry).

With 1 million search key values and n = 200

at most log100(1,000,000) = 3 nodes are accessed in a lookup.

Contrast this with a balanced binary tree with 1 million search key
values – around 20 nodes are accessed in a lookup

above difference is significant since every node access may need
a disk I/O, costing around 20 milliseconds

Range (interval) queries:

Look for the lower boundary of the interval

Use leaf-node chaining to inspect next siblings

Stop when a key value greater than the upper boundary is found

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 27

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

1. (See query algorithm)

2. If the search-key value is already present in the leaf node

1. Add the new record to the file

2. If necessary, add a pointer to the bucket, which stores

pointers to all records of the same search-key.

3. If the search-key value is not present, then

1. Add the new record to the file

2. If there is room in the leaf node,

insert (key-value, pointer) pair in the leaf node

3. Otherwise, split the node

(along with the new (key-value, pointer) entry)

as discussed in the next slide.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 28

Updates on B+-Trees: Insertion (Cont.)

Splitting a leaf node:

Take the n (search-key value, pointer) pairs (including the one being

inserted) in sorted order.

Place the first n/2 in the original node, and the rest in a new node.

Let the new node be p, and let k be the least key value in p.

Insert (k,p) in the parent of the node being split.

If the parent is full, split it and propagate the split further up.

Splitting of nodes proceeds upwards till a node that is not full, is found.

In the worst case, the root node may be split increasing the height of

the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting

Adams

Next step: Insert entry with (Califieri,pointer-to-new-node) into parent

Newly created

node

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 29

B+-Tree Insertion

Insert ``Adams’’

Resulting tree

Newly created

node

The pair

(Califieri, pointer-to-new-node)

added

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 30

B+-Tree Insertion

Insert `` Lamport’’

Resulting tree

Newly created

node

Internal node with

(Calif,Einst.Gold) was split

Internal node with

(Calif,Einst.Gold) was split

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 31

Insertion in B+-Trees (Cont.)

Splitting a non-leaf node: when inserting (k,p) into an already full internal

node N

Copy N to an in-memory area M with space for n+1 pointers and n

keys

Insert (k,p) into M (keep all items sorted!)

Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’

Insert (K n/2,N’) into the parent of N

Crick Adams Brandt Califieri Crick Adams Brandt

Califieri

The key K n/2 has

not been added to

either N nor N’ , but

in their parent !!!

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 39

Hashing

In a hash file organization we obtain the address of a record directly

from its search-key value using a hash function.

Address is typically a bucket – a unit of storage containing one or

more records

A bucket corresponds to a disk block.

Hash function h

a function from the set of all search-key values K to the set of all

bucket addresses B.

used to locate records for access, insertion as well as deletion.

Records with different search-key values may be mapped to the same

bucket

thus entire bucket has to be searched sequentially to locate a

record.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 40

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as the key.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 41

Example of Hash File Organization

Hash function on dept_name can be defined as:

The binary representation of the i-th character in the alphabet is

assumed to be the integer i.

E.g. A = 1, B = 2, …

The hash function returns the sum of the binary representations of

all the characters modulo 8.

i.e., there are 8 buckets.

E.g.

h(Music) = 1 (M=13, u=21, s=19, i=9, c=3 => 65 mod 8 => 1)

h(History) = 2

h(Physics) = 3

h(Elec. Eng.) = 3

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 42

Hash Functions

Worst hash function maps all search-key values to the same bucket

this makes access time proportional to the number of search-key

values in the file.

An ideal hash function

uniform = each bucket is assigned the same number of search-key

values from the set of all possible values.

random = each bucket will have the same number of records

assigned to it irrespective of the actual distribution of

search-key values in the file.

Typical hash functions perform computation on the internal binary

representation of the search-key.

Example for a numeric search-key:

a value V could be multiplied by a prime number and the result

module the number of buckets could be returned.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 43

Handling of Bucket Overflows

Collision occurs when two different search-key values are hashed to

the same address (bucket).

Bucket overflow can occur because of

Insufficient bucket size

Skew in distribution of records. This can occur due to two reasons:

multiple records have the same search-key value

chosen hash function produces non-uniform distribution of key

values

Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using

Overflow buckets

Collision function

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 44

Handling of Bucket Overflows (Cont.)
Overflow chaining – the overflow buckets of a given bucket are chained together in

a linked list.

This scheme is called closed hashing.

An alternative, called open hashing, which does not use overflow buckets, is not

suitable for database applications.

A collision function is defined (it computes an alternative address for storing

the record).

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 45

Hash Indices

Hashing can be used not only for file organization, but also for index-

structure creation.

A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

Strictly speaking, hash indices are always dense indices

If the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

Hash indices are typically used as secondary indices

However, we use the term hash index to refer to both secondary

index structures and hash organized files.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 46

Example of Hash Index

hash index on instructor on attribute ID

Hash function = sum of all digits modulo 8

e.g. 7+6+7+6+6=32 mod 8

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 47

Deficiencies of Hashing

Static hashing: the function h maps search-key values to a fixed set

of bucket addresses. Databases grow or shrink with time.

If initial number of buckets is too small, and file grows,

performance will degrade due to too much overflows.

If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be under-filled).

If database shrinks, again space will be wasted.

One solution

Periodic re-organization of the file with a new hash function

Expensive, disrupts normal operations

Better solution

Allow the number of buckets to be modified dynamically.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 48

Dynamic Hashing

Good for database that grows and shrinks in size

Allows the hash function to be modified dynamically

Dynamic hashing (subject of course PV062 File Organizations)

Allows incremental growth / shrinkage of address space

Extensible hashing

Directory of bucket pointers

Linear hashing

Bucket address space is linearly increased

Comparison of Ordered Indexing and Hashing

Hashing

constant query time

constant time to compute address

linear time when overflow buckets are present or a collision
function defined

usually inevitable

type of query

exact match (records having a specified search-key value)

range search – almost impossible

Indexing

logarithmic query time

type of query

exact match

range search (in B+ trees, very good efficiency)

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 49

Comparison of Ordered Indexing and Hashing

Cost of periodic re-organization

Relative frequency of insertions and deletions

Is it desirable to optimize average access time at the expense of

worst-case access time?

In practice:

PostgreSQL supports hash indices but only single-column

indexes.

Values are not stored in the index, but rather their 4-byte

hash codes only.

Oracle supports a static hash organization but not hash

indices.

SQLServer supports B+-trees only.

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 50

BKM_DATS, Vlastislav Dohnal, FI MUNI, 2022 51

Index Definition in SQL

Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.: create index branch_index on branch(branch_name)

Drop an index

drop index <index-name>

Most database systems allow specification of type of index, and

clustering.

