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ON TODAY’S LECTURE

¢ The linear probability model

* Nonlinear probability models

» Probit
+ Logit

¢ Brief introduction of maximum likelihood estimation

* Interpretation of coefficients in logit and probit models
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INTRODUCTION

* So far the dependent variable (Y') has been continuous:

+ Average hourly earnings

« Birth weight of babies

* What if Yisbinary?

e Y = getinto college, or not; X = parental income.
* Y = person smokes, or not; X = cigarette tax rate, income.

* Y = mortgage application is accepted, or not; X = race, income,
house characteristics, marital status ...



The linear probability model

* Multiple regression model with continuous dependent variable
Yi=po+ frXni+ -+ PeXuitui
* The coefficient fjcan be interpreted as the change in Y associated with a
unit change in X;
* We will now discuss the case with a binary dependent variable
* Weknow that the expected value of a binary variable Y is
E[Y]=1 Pr(Y =1)+0 -Pr(Y =0)=Pr(Y =1)

¢ In the multiple regression model with a binary dependent variable
we have
ElYi|Xu, -+, Xu]=Pr(Yi =1 Xu, -, Xui)

* Itis therefore called the linear probability model.

4/38



EXAMPLE

* Most individuals who want to buy a house apply for a mortgage at

a bank.

+ Not all mortgage applications are approved.

* What determines whether or not a mortgage application is approved or

denied?

* During this lecture we use a subset of the Boston HMDA data
(N = 2380)

- adata set on mortgage applications collected by the Federal

Reserve Bank in Boston

Variable Description Mean SD

deny = 1if mortgage application is denied 0.120 0.325
pi_ratio anticipated monthly loan payments / monthly income  0.331  0.107
black = 1if applicant is black, = 0 if applicant is white 0.142 0.350




EXAMPLE

* Does the payment to income ratio affect whether or not a mortgage
application is denied?

. regress deny pi_ratio, robust

Linear regression Number of obs = 2380
F( 1, 2378) = 37.56
Prob > F = 0.0000
R-squared = 0.0397
Root MSE = .31828
Robust

deny Coef. Std. Err. t P>t [95% Conf. Interval]
pi_ratio .6035349 .0984826 6.13 0.000 .4104144 .7966555
_cons -.0799096 .0319666 -2.50 0.012 -.1425949 -.0172243

* The estimated OLS coefficient on the payment to income ratio equals
Bi=0s

* The estimated coefficient is significantly different from 0 ata 1%
significance level.

» How should we interpret 5?7
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The linear probability model

¢ The conditional expectation equals the probability that Y;=1 conditional
on Xuj, -+, Xui:

E[Yil Xy, Xu]=Pr(Yi =11 Xu, -, Xu) = o+ p1Xri + P Xui
¢ The population coefficient fjequals the change in the probability that
Yi=1 associated with a unit change in X;.

OPr(Y; =11 Xqi, -, Xxi) =p;
oX; !

In the mortgage application example:
« Fi=06

A change in the payment to income ratio by 1 is estimated to increase
the probability that the mortgage application is denied by 0.60.

* A change in the payment to income ratio by 0.10 is estimated toincrease
the probability that the application is denied by 6% (0.10*0.60*100).



The linear probability model

Assumptions are the same as for general multiple regression model:
* E(w|XnXau,...,Xa)=0

« Big outliers are unlikely

« No petfect multicollinearity.
Advantages of the linear probability model:

* Easy to estimate

* Coefficient estimates are easy to interpret
Disadvantages of the linear probability model

* Predicted probability can be above 1 or below 0!
* Etror terms are heteroskedastic
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The linear probability model: heteroskedasticity (optional)

Yi=Bo+ B1Xai+ -+ BxXui+ Ui

¢ The variance of a Bernoulli random variable:
Var(Y) =Pr(Y =1) (1- Pr(Y =1))

* We can use this to find the conditional variance of the error term

Pr(Yi=1] X1, Xei) x (1 = Pr(Yi = 1| X4, -+, Xki))
= (Bo+BiXei+ o+ B Xig) x (1 — Bo — B1Xai — -+ — B Xii)
# o

* Solution: Always use heteroskedasticity robust standard errors when
estimating a linear probability model!
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The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or
above 1!

Example: linear probability model, HMDA data
Mortgage denial v. ratio of debt payments to income
(P/I ratio) in a subset of the HMDA data set (n = 127)

Deny
1.4 —

.-
Mortgage denied

Linear probability model

0.0 f---------- - R e
*e * Mortgage approved

—0.4 1 1 1 1 1 I I ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P/I ratio
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Nonlinear probability models

* Probabilities cannot be less than 0 or greater than 1
» Toaddress this problem we will consider nonlinear probability models
Pr(Y; =1) = G(2)
with Z = Bo+ B1X1i+ -+ BuXui
and 0< G(Z) <1

* We will consider 2 nonlinear functions

@ Probit
G(Z) =9 (2)

@ Logit
1

C@ ez
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Probit model

Probit regression models the probability that Y =1
» Using the cumulative standard normal distribution function ®(Z)
» evaluated at Z = Bo+ B1Xii+ - - -+ BuXii

 since ®(z) = Pr(Z < z) we have that the predicted probabilities of
the probit model are between 0 and 1

Example

» Suppose we have only 1 regressorand Z = -2 + 3X
* We want to know the probability that Y = 1 when X; =0.4
e+ z=-2+3-04=-0.8

* Pr(Y =1) = Pr(Z < -0.8) = #(-0.8)
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Probit model

TABLE 1 The Cumulative Standard Normal Distribution Function, ®{z) = Pr(Z " z)
Area =PriZ 2)

1
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Second Decimal Value of z
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Pr(Y = 1) = Pr(Z < -0.8) = ®(-0.8) = 0.2119 °

F
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Logit model

Logit regression models the probability that Y = 1

» Using the cumulative standard logistic distribution function
1
1+e2
 evaluated at Z = Bo+ B1X1i+ - - -+ BuXki

F(z) =

» since F(z) = Pr(Z < z) we have that the predicted probabilities of the
probit model are between 0 and 1

Example

» Suppose we have only 1 regressor and Z = -2 + 3X1

» We want to know the probability that Y = 1 when X7 =0.4
«+z=-2+3:04=-0.8

 Pr(Y =1)=Pr(Z < -0.8) = F(-0.8)
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Logit model
Standard logistic density

Area = Pr(Z <=-0.8)
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Logit & Probit model

Standard Logistic CDF and Standard Normal CDF

= 9ae
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How to estimate logit and probit models

* In previous lectures we discussed regression models that are
nonlinear in the independent variables

- these models can be estimated by OLS

» Logit and Probit models are nonlinear in the coefficients Bo, B1, -~ -, Bk

« these models can’t be estimated by OLS

» The method used to estimate logit and probit models is Maximum
Likelihood Estimation (MLE).

e The MLE are the values of (Bo, B1. - - -, Bk) that best describe the full
distribution of the data.



Maximum likelihood estimation

» The likelihood function is the joint probability distribution of the data,
treated as a function of the unknown coefficients.

* The maximum likelihood estimator (MLE) are the values of the
coefficients that maximize the likelihood function.

* MLE's are the parameter values “most likely” to have produced the data.

Lets start with a special case: The MLE with no X

* We have ni.i.d. observations Y1, . . ., Y,on a binary dependent variable
* Yis a Bernoulli random variable

» There is only 1 unknown parameter to estimate:
« The probability pthat Y =1,

- which is also the mean of Y
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Maximum likelihood estimation (Optional)

Step 1: write down the likelihood function, the joint probability
distribution of the data

 Y,is a Bernoulli random variable we therefore have

Pr(Yi=y) = Pr(Yi=1)"-(1 = Pr(Yi=1)"7 = p’(1-p)'”

- Pr(Y;=1) =p'1- pP=p
- Pr(Y;=0)=p1- pl=1-p

* Yi..., Yn» are i.i.d, the joint probability distribution is therefore the
product of the individual distributions

Pr(Yi=wy,.... Yo=¥n) = Pr(Yi=wy)x...x Pr(Ya=yn)
= [P(1-p) ] < ox [P0 = p) ]
— p(h*)@*---*)’ﬂ) (1 7p)n—(yw+y2—---+yn)
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Maximum likelihood estimation (Optional)

We have the likelihood function:

fBemow’Hf(p; Yi=y1,....Yn= Vn) = pzyf (1— p)”—z)ﬁ'

Step 2: Maximize the likelihood function w.r.t p

+ Easier to maximize the logarithm of the likelihood function

In(feernouini (p; Y1 =y1,.... Yo=ya)) = (Z y;) -In(p)+ (n - ny) In(1—p)
i=1

i=1

 Since the logarithm is a strictly increasing function, maximizing the
likelihood or the log likelihood will give the same estimator.
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Maximum likelihood estimation (Optional)

» Taking the derivative w.r.t p gives

d Y n=%.y
d_pln(fBemouilﬁ(P; Y1 =V1,e-.- Yn = yn)) = ZI; Vi . 12_:,!_)1 Yi
» Setting to zero and rearranging gives
(1-pxXlyi = px(n=XL ¥
SiaYi—pYilyi = n-p—p3ilyi
iy = n-p

+ Solving for p gives the MLE

. 1 — -
PMLE:n;y;:Y
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MLE of the Probit model (Optional)

.....

Step 1: write down the likelihood function
Pr( Y, = )z

Pr(Yi=y1) x ... x Pr(Yy

= Jn)
P (1 —p)" 1] xox [P (1 = pa)' 7]

e so faritis very similar as the case without explanatory variables except
that p; depends on Xjj, . . ., Xii

o= ® (X

ij) =¢ (_;30 + 51 XK+ J:'Bkaf)
e substituting for p; gives the likelihood function:

[ (B0 + 81Xt + -+ + BXea)' (1= & (B + BiXes + -+ + BicKa) ™| x

% [da (Bo + B Xin + -+ BeXin)" (1 — b (Bo + B Xim -+ + _,sskxkn))‘ﬂ’”}

DHac
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MLE of the Probit model (Optional)

Also with obtaining the MLE of the probit model it is easier to take the
logarithm of the likelihood function
Step 2: Maximize the log likelihood function
In [forobit (So, - - - B Yi,..., Yol Xaiy oo Xigy i =1, n)]
= YL, Yin[® (5o + B1Xii+ -+ BkXu)]
+ 3 (1 =Y)In[1 — & (Bo + B1Xei + -+ - + S Xid)]

» There is no simple formula for the probit MLE, the maximization must be
done using numerical algorithm on a computer.
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MLE of the logit model (Optional)

Step 1: write down the likelihood function

Pr(Yi =Yoo Yo=ym) = [P(1=p0)" ] oo [Pt = pa)! ]
¢ very similar to the Probit model but with a different function for p;

pi=1/ [1 4 e*(50+.51X1|+---+.3kXH):|

Step 2: Maximize the log likelihood function w.r.t Fo. . ... 31

In [f]ogf{ (Bo, -+, Br; Yi,. .., Y| Xiis -+, X i =1,..., n]
= S Yiln (1/ [1 i 9*(30+31X1i+---+3kxki)})

#3001 = i (1= (17 [1 4 e san] )

* There is no simple formula for the logit MLE, the maximization must be

done using numerical algorithm on a computer.
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Probit: mortgage applications

probit deny pi_ratio

Iteration 0: log likelihood = -872.0853
Iteration 1: log likelihood = -832.02975
Iteration 2: log likelihood = -831.79239
Iteration 3: log likelihood = -831.79234
Probit regression Number of obs = 2380
LR chi2( 1) = 80.59
Prob > chi2 = 0.0000
Log likelihood = -831.79234 Pseudo R2 = 0.0462
deny Coef. Std. Err. z P>|z| [95% Conf. Interval
pi_ratio 2.967907 .3591054 8.26 0.000 2.264073 3.67174
_cons -2.194159 .12899 -17.01 0.000 -2.446974 -1.941343

» The estimated MLE coefficient on the payment to income ratio equals

L
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Probit: mortgage applications

The estimate of B1in the probit model CANNOT be interpreted as the change
in the probability that Y;= 1 associated with a unit change in X1!!

* In general the effect on Y of a change in X is the expected change in Y
resulting from the change in X

» Since Yis binary the expected change in Y'is the change in the
probability that Y =1
In the probit model the predicted change the probability that the mortgage
application is denied when the payment to income ratio increases from

0.10 to 0.20:
/_\.Pr( i =1)=¢(-2.19+2.97-0.20) — $(—2.19+2.97-0.10) = 0.0495

0.30 to 0.40:
APr( i=1)=¢(-2.19+2.97-040) — $(—2.19 4 2.97-0.30) = 0.0619
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Probit: mortgage applications

Predicted values in the probit model:

Deny
1.4 —
1.2 -
10 ---mmmmm e sss00e Sosnmemee -9 - - - - - ----
Mortgage denied
0.8 —
0.6 —
Probit model
0.4 —
0.2 —
R R _."_"""__»"_"_"I'V[o_rt_g_a_geappmved
-0.2
_0_4 1 1 1 1 | 1 1 J
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P/I ratio
» All predicted probabilities are between 0 and 1!

DHac
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Logit: mortgage applications

logit deny pi_ratio

Iteration 0: log likelihood -872.0853
Iteration 1: log likelihood -830.96071
Iteration 2: log likelihood -830.09497
Iteration 3: log likelihood -830.09403
Iteration 4: log likelihood = -830.09403
Logistic regression Number of obs = 2380
LR chi2 ( 1) = 83.98
Prob > chi2 = 0.0000
Log likelihood = -830.09403 Pseudo R2 = 0.0482
deny Coef. Std. Err. z P>|z]| [95% Conf. Interval]
pi_ratio 5.884498 .7336006 8.02 0.000 4.446667 7.322328
_cons -4.028432 .2685763 -15.00 0.000 -4.554832 -3.502032

» _The estimated MI E coeffici

nt on the payment to income ratio equals
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Logit: mortgage applications

Also in the Logit model:

The estimate of 31 CANNOT be interpreted as the change in the probability
that Yi= 1 associated with a unit change in X1!!

In the logit model the predicted change the probability that the mortgage
application is denied when the payment to income ratio increases from

0.10 to 0.20:
APHY, = 1) = (1/1 4 7(407-8800200) _ (11 g=(~403:5.80.10)) _ 9,023

0.30 to 0.40:

APF(’VI,": 1) _ (1/1 4 97(74.03+5.88.o.40))_(1/1 " 67(74.03v5‘88-0‘30)) — 0063
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Logit: mortage applications

The predicted probabilities from the probit and logit
models are very close in these HMDA regressions:

Deny
1.4

1.2 -

1.0----mmmmmme oo - 00 0e S mmee- 000 - - - - ----
Mortgage denied
0.8 —

Probit model —_ #_— Logit model

0.0 e - @ e cceeeae e
0.0 * Mortgage approved

—0.4 1 | 1 1 | 1 1 )
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P/I ratio
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Probit & Logit with multiple regressors

* We can easily extend the Logit and Probit regression models, by
including additional regressors

» Suppose we want to know whether white and black applications are
treated differentially

« |s there a significant difference in the probability of denial between black
and white applicants conditional on the payment to income ratio?

» Toanswer this question we need to include two regressors

- P/l ratio
- Black



Probit with multiple regressors

Probit regression Number of obs = 2380

LR chi2( 2) 149.90

Prob > chi2 = 0.0000

Log likelihood = =-797.13604 Pseudo R2 = 0.0859
deny Coef. std. Err. z P>|z| [95% Conf. Interval]

black .7081579 .0834327 8.49 0.000 .5446328 .8716831

pi_ratio 2.741637 .3595888 7.62 0.000 2.036856 3.446418

cons -2.258738 .129882 -17.39 0.000 -2.513302 -2.004174

» Tosay something about the size of the impact of race we need to
specify a value for the payment to income ratio

» Predicted denial probability for a white application with a P/I-ratio of 0.3

IS

®(-2.26 + 0.71 -0+ 2.74 -0.3) = 0.0749
» Predicted denial probability for a black application with a P/I-ratio of 0.3

IS

®(-2.26 + 0.71 -1 +2.74 -0.3) = 0.2327

« Difference is 15.8%



Logit with multiple regressors

Logistic regression Number of obs = 2380

LR chi2( 2) = 152.78

Prob > chi2 = 0.0000

Log likelihood = =-795.69521 Pseudo R2 = 0.0876
deny Coef. Std. Err. z P>|z| [95% Conf. Intervall]

black 1.272782 .1461983 8.71 0.000 .9862385 1.559325

pi_ratio 5.370362 .7283192 7.37 0.000 3.942883 6.797841

_cons -4.125558 .2684161 -15.37 0.000 -4.651644 -3.599472

» Tosay something about the size of the impact of race we need to
specify a value for the payment to income ratio

» Predicted denial probability for a white application with a P/I-ratio of 0.3

IS
1/1 + e (-4-13+5.37:0.30) _ () 075

» Predicted denial probability for a black application with a P/I-ratio of 0.3

1S 1/1 + e*(*4.13+5.37'0.30+1.27) =0.224

» Difference is 14.8%
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LPM, Probit & Logit

Table 1: Mortgage denial regression using the Boston HMDA Data

Dependent variable: deny = 1 if mortgage application is denied, = 0if accepted

regression model LPM Probit Logit
black 0.177%** 0.71%** 127
(0.025) (0.083) (0.15)
P/I ratio 0.559%** 2. 74H** 5.37H%*
(0.089) (0.44) (0.96)
constant -0.091*** -2.26%** -4, 13%**
(0.029) (0.16) (0.35)
difference Pr(deny =1) between black 17.7% 15.8% 14.8%

and white applicant when P/I ratio=0.3

o = = = = 9ae
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Threat to internal and external validity

Both for the Linear Probability as for the Probit & Logit models we have to
consider threats to

Internal validity

.

.

.

Is there omitted variable bias?

Is the functional form correct?

+ Probit model: is assumption of a Normal distribution correct?
+ Logit model: is assumption of a Logistic distribution correct?

Is there measurement error?
Is there sample selection bias?

is there a problem of simultaneous causality?

External validity

These data are from Boston in 1990-91.

Do you think the results also apply today, where you live?
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Distance to college & probability of obtaining a college degree

Linear regression Number of obs 3796
F( 1, 3794) 15.77
Prob > F 0.0001
R-squared 0.0036
Root MSE .44302
Robust
college Coef. Std. Err. t P>t [95% Conf. Interval]
dist -.012471 .0031403 -3.97 0.000 -.0186278 -.0063142
_cons .2910057 .0093045 31.28 0.000 .2727633 .3092481
Probit regression Number of obs = 3796
LR chi2( 1) 14.48
Prob > chi2 = 0.0001
Log likelihood = -2204.8977 Pseudo R2 0.0033
college Coef. std. Err. z P>z] [95% Conf. Interval]
dist -.0407873 .0109263 -3.73 0.000 -.0622025  -.0193721
_cons -.5464198 .028192  -19.38 0.000 -.6016752  -.4911645
Logistic regression Number of obs = 3796
LR chi2( 1) 14.68
Prob > chi2 = 0.0001
Log likelihood = -2204.8006 Pseudo R2 0.0033
college Coef. std. Err. z P>z [95% Conf. Interval]
dist -.0709896 .0193593 -3.67 0.000 -.1089332 -.033046
_cons -.8801555 .0476434 -18.47 0.000 -.9735349 -.786776




Distance to college & probability of obtaining a college degree
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* The 3 different models produce very similar results.
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SUMMARY
+ If Yiis binary, then E(Yi|X;) = Pr(Y; = 1|X))

Three models:

linear probability model (linear multiple regression)
probit (cumulative standard normal distribution)
logit (cumulative standard logistic distribution)

* LPM, probit, logit all produce predicted probabilities
» Effect of AX is a change in conditional probability that Y = 1
» For logit and probit, this depends on the initial X

» Probit and logit are estimated via maximum likelihood

- Coefficients are normally distributed for large n
- Large-n hypothesis testing, conf. intervals is as usual
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