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ON TODAY’S LECTURE  

• The linear probability model 
 
• Nonlinear probability models 

• Probit 
• Logit 

 
• Brief introduction of maximum likelihood estimation 
 
• Interpretation of coefficients in logit and probit models 
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INTRODUCTION 

• So far the dependent variable (Y ) has been continuous: 

• Average hourly earnings 

• Birth weight of babies 

 
• What if Y is binary? 

• Y = get into college, or not; X = parental income. 

• Y = person smokes, or not; X = cigarette tax rate, income. 

• Y = mortgage application is accepted, or not; X = race, income,  
house characteristics, marital status ... 
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• Multiple regression model with continuous dependent variable 

Yi = β0 + β1X1i + · · · + βk Xki + ui 

• The coefficient βj can be interpreted as the change in Y associated with  a 
unit change in Xj 

 
• We will now discuss the case with a binary dependent variable 

• We know that the expected value of a binary variable Y is 

E [Y ] = 1 · Pr (Y = 1) + 0 · Pr (Y = 0) = Pr (Y = 1) 

• In the multiple regression model with a binary dependent variable 
we  have 

E [Yi |X1i , · · · , Xki ] = Pr (Yi = 1|X1i , · · · , Xki ) 

• It is therefore called the linear probability model. 

The linear probability model 
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EXAMPLE 

 
• Most individuals who want to buy a house apply for a mortgage at 

a  bank. 

• Not all mortgage applications are approved. 

• What determines whether or not a mortgage application is approved or  
denied? 

• During this lecture we use a subset of the Boston HMDA data  
(N = 2380) 

• a data set on mortgage applications collected by the Federal  
Reserve Bank in Boston 

Variable Description Mean SD 

deny  

pi_ratio  

black 

= 1if mortgage application is denied 0.120 0.325 

anticipated monthly loan payments / monthly income 0.331 0.107 

= 1if applicant is black, = 0 if applicant is white 0.142 0.350 
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EXAMPLE 

• Does the payment to income ratio affect whether or not a mortgage  
application is denied? 

. regress deny pi_ratio, robust 

 

Linear regression 

 

Number of obs = 

 

2380 

F( 1, 2378) = 37.56 

Prob > F = 0.0000 

R-squared = 0.0397 

Root MSE = .31828 

 
deny 

 
Coef. 

Robust  

Std. Err. 

 
t 

 
P>|t| 

 
[95% Conf. Interval] 

pi_ratio .6035349 .0984826 6.13 0.000 .4104144 .7966555 

_cons -.0799096 .0319666 -2.50 0.012 -.1425949 -.0172243 
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• The conditional expectation equals the probability that Yi = 1 conditional  
on X1i , · · · , Xki : 

E [Yi |X1i , · · · , Xki ] = Pr (Yi = 1|X1i , · · · , Xki ) = β0 + β1X1i + · · · βk Xki 

• The population coefficient βj equals the change in the probability that 
Yi = 1 associated with a unit change in Xj . 

∂Pr (Yi = 1|X1i , · · · , Xki ) 
= βj 

∂Xj 

 
In the mortgage application example: 

• A change in the payment to income ratio by 1 is estimated to increase  
the probability that the mortgage application is denied by 0.60. 

• A change in the payment to income ratio by 0.10 is estimated to increase  
the probability that the application is denied by 6% (0.10*0.60*100). 

The linear probability model 
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The linear probability model 
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Yi = β0 + β1X1i + · · · + βk Xki + ui 

• The variance of a Bernoulli random variable: 

Var (Y ) = Pr (Y = 1)  (1 −  Pr (Y = 1)) 

• We can use this to find the conditional variance of the error term 

• Solution: Always use heteroskedasticity robust standard errors when  
estimating a linear probability model! 

The linear probability model: heteroskedasticity (optional) 
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In the linear probability model the predicted probability can be below 0 or  

above 1! 

 
Example: linear probability model, HMDA data 
Mortgage denial v. ratio of debt payments to income  

(P/I ratio) in a subset of the HMDA data set (n = 127) 

The linear probability model: shortcomings 
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• Probabilities cannot be less than 0 or greater than 1 

• To address this problem we will consider nonlinear probability models 

Pr (Yi = 1) = G (Z ) 

with Z = β0 + β1X1i + · · · + βk Xki 

and   0 ≤  G (Z ) ≤  1 

• We will consider 2 nonlinear functions 

 
1 Probit 

G(Z ) = Φ (Z ) 

2 Logit 

G (Z ) =
  1  

1 + e−Z  

Nonlinear probability models 
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Probit regression models the probability that Y = 1 
 

• Using the cumulative standard normal distribution function Φ(Z ) 

• evaluated at Z = β0 + β1X1i + · · · + βk Xki 

• since Φ(z) = Pr (Z ≤  z) we have that the predicted probabilities of 

the  probit model are between 0 and 1 

 
 
Example 

 

• Suppose we have only 1 regressor and Z = −2 + 3X1 

• We want to know the probability that Y = 1 when X1 = 0.4 

• z = −2 + 3 · 0.4 = −0.8 

• Pr (Y = 1) = Pr (Z ≤  −0.8) = Φ(−0.8) 

Probit model 
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Pr (Y = 1) = Pr (Z ≤  −0.8) = Φ(−0.8) = 0.2119 

Probit model 
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Logit regression models the probability that Y = 1 

 
• Using the cumulative standard logistic distribution function 

F (Z ) =
  1  

1 + e−Z  

• evaluated at Z = β0 + β1X1i + · · · + βk Xki 

• since F (z) = Pr (Z ≤  z) we have that the predicted probabilities of the  

probit model are between 0 and 1 

Example 

 
• Suppose we have only 1 regressor and Z = −2 + 3X1 

• We want to know the probability that Y = 1 when X1 = 0.4 

• z = −2 + 3 · 0.4 = −0.8 

• Pr (Y = 1) = Pr (Z ≤  −0.8) = F (−0.8) 

Logit model 
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Area = Pr(Z <= -0.8) 
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Standard logistic density 

• Pr (Y = 1) = Pr (Z ≤  −0.8) = 1 
1+e 0.8 = 0.31 

Logit model 
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Logit & Probit model 
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• In previous lectures we discussed regression models that are 

nonlinear in the  independent variables 

 

• these models can be estimated by OLS 

 
• Logit and Probit models are nonlinear in the coefficients β0, β1, · · · , βk 

• these models can’t be estimated by OLS 

 
• The method used to estimate logit and probit models is Maximum  

Likelihood Estimation (MLE). 

 
• The MLE are the values of (β0, β1, · · · , βk ) that best describe the full  

distribution of the data. 

How to estimate logit and probit models 
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• The likelihood function is the joint probability distribution of the data,  

treated as a function of the unknown coefficients. 

• The maximum likelihood estimator (MLE) are the values of the  

coefficients that maximize the likelihood function. 

• MLE’s are the parameter values “most likely” to have produced the data. 

 
Lets start with a special case: The MLE with no X 

 
• We have n i.i.d. observations Y1, . . . , Yn on a binary dependent variable 

• Y is a Bernoulli random variable 

• There is only 1 unknown parameter to estimate: 

• The probability p that Y = 1, 

• which is also the mean of Y 

Maximum likelihood estimation 
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Step 1: write down the likelihood function, the joint probability  

distribution of the data 

 

• Yi is a Bernoulli random variable we therefore have 

Pr (Yi = y ) = Pr (Yi = 1)y · (1 −  Pr (Yi = 1))1−y = py (1 −  p)1−y  

i 
1 0 • Pr (Y = 1) = p (1 −  p) = p 

i 
0 1 • Pr (Y = 0) = p (1 −  p) = 1 −  p 

• Y1, . . . , Yn are i.i.d, the joint probability distribution is therefore the  

product of the individual distributions 

 

Maximum likelihood estimation (Optional) 
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We have the likelihood function: 

Step 2: Maximize the likelihood function w.r.t p 

 

• Easier to maximize the logarithm of the likelihood function 

• Since the logarithm is a strictly increasing function, maximizing the  

likelihood or the log likelihood will give the same estimator. 

Maximum likelihood estimation (Optional) 
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• Taking the derivative w.r.t p gives 
 

• Setting to zero and rearranging gives 

• Solving for p gives the MLE 

Maximum likelihood estimation (Optional) 
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MLE of the Probit model (Optional) 
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Also with obtaining the MLE of the probit model it is easier to take the  

logarithm of the likelihood function 

 
Step 2: Maximize the log likelihood function 

 
 

 
• There is no simple formula for the probit MLE, the maximization must be  

done using numerical algorithm on a computer. 

MLE of the Probit model (Optional) 
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• There is no simple formula for the logit MLE, the maximization must be  

done using numerical algorithm on a computer. 

MLE of the logit model (Optional) 
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. probit deny pi_ratio 

Iteration 0: log likelihood =  

Iteration 1: log likelihood =  

Iteration 2: log likelihood =  

Iteration 3: log likelihood = 

-872.0853 

-832.02975 

-831.79239 

-831.79234 

Probit regression 2380 

80.59 

0.0000 

0.0462 

= 

= 

Number of obs =  

LR chi2( 1)  

Prob > chi2 

Pseudo R2 Log likelihood = -831.79234 = 

deny Coef. Std. Err. z P>|z| [95% Conf. Interval] 

pi_ratio 2.967907 .3591054 8.26 0.000 2.264073 3.67174 

_cons -2.194159 .12899 -17.01 0.000 -2.446974 -1.941343 

• The estimated MLE coefficient on the payment to income ratio equals 

Probit: mortgage applications 
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The estimate of β1 in the probit model CANNOT be interpreted as the change  

in the probability that Yi = 1 associated with a unit change in X1!! 

 
• In general the effect on Y of a change in X is the expected change in Y 

resulting from the change in X 

• Since Y is binary the expected change in Y is the change in the  

probability that Y = 1 

 
In the probit model the predicted change the probability that the mortgage  

application is denied when the payment to income ratio increases from 

 

Probit: mortgage applications 

26 / 38 



Predicted values in the probit model: 

• All predicted probabilities are between 0 and 1! 

Probit: mortgage applications 
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. logit deny pi_ratio 

Iteration 0: log likelihood =  

Iteration 1: log likelihood =  

Iteration 2: log likelihood =  

Iteration 3: log likelihood =  

Iteration 4: log likelihood = 

-872.0853 

-830.96071 

-830.09497 

-830.09403 

-830.09403 

Logistic regression 2380 

83.98 

0.0000 

0.0482 

= 

= 

Number of obs =  

LR chi2( 1)  

Prob > chi2 

Pseudo R2 Log likelihood = -830.09403 = 

deny Coef. Std. Err. z P>|z| [95% Conf. Interval] 

pi_ratio 5.884498 .7336006 8.02 0.000 4.446667 7.322328 

_cons -4.028432 .2685763 -15.00 0.000 -4.554832 -3.502032 

• The estimated MLE coefficient on the payment to income ratio equals 

Logit: mortgage applications 

28 / 38 



Also in the Logit model: 

 
The estimate of β1 CANNOT be interpreted as the change in the probability  

that Yi = 1 associated with a unit change in X1!! 

 
In the logit model the predicted change the probability that the mortgage  

application is denied when the payment to income ratio increases from 

 

Logit: mortgage applications 
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The predicted probabilities from the probit and logit  

models are very close in these HMDA regressions: 

Logit: mortage applications 
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• We can easily extend the Logit and Probit regression models, by  

including additional regressors 

• Suppose we want to know whether white and black applications are  

treated differentially 

• Is there a significant difference in the probability of denial between black  

and white applicants conditional on the payment to income ratio? 

• To answer this question we need to include two regressors 

• P/I ratio 

• Black 

Probit & Logit with multiple regressors 

31 / 38 



Probit regression 2380 

149.90 

0.0000 

0.0859 

= 

= 

Number of obs =  

LR chi2( 2)  

Prob > chi2 

Pseudo R2 Log likelihood = -797.13604 = 

deny Coef. Std. Err. z P>|z| [95% Conf. Interval] 

black .7081579 .0834327 8.49 0.000 .5446328 .8716831 

pi_ratio 2.741637 .3595888 7.62 0.000 2.036856 3.446418 

_cons -2.258738 .129882 -17.39 0.000 -2.513302 -2.004174 

• To say something about the size of the impact of race we need to  

specify a value for the payment to income ratio 

• Predicted denial probability for a white application with a P/I-ratio of 0.3  

is 

Φ(−2.26 + 0.71 · 0 + 2.74 · 0.3) = 0.0749 

• Predicted denial probability for a black application with a P/I-ratio of 0.3  

is 

Φ(−2.26 + 0.71 · 1 + 2.74 · 0.3) = 0.2327 

• Difference is 15.8% 

Probit with multiple regressors 
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Logistic regression 2380 

152.78 

0.0000 

0.0876 

= 

= 

Number of obs =  

LR chi2( 2)  

Prob > chi2 

Pseudo R2 Log likelihood = -795.69521 = 

deny Coef. Std. Err. z P>|z| [95% Conf. Interval] 

black 1.272782 .1461983 8.71 0.000 .9862385 1.559325 

pi_ratio 5.370362 .7283192 7.37 0.000 3.942883 6.797841 

_cons -4.125558 .2684161 -15.37 0.000 -4.651644 -3.599472 

• To say something about the size of the impact of race we need to  

specify a value for the payment to income ratio 

• Predicted denial probability for a white application with a P/I-ratio of 0.3 

is 
1/1 + e−(−4.13+5.37·0.30) = 0.075 

• Predicted denial probability for a black application with a P/I-ratio of 0.3 

is 
1/1 + e−(−4.13+5.37·0.30+1.27) = 0.224 

• Difference is 14.8% 

Logit with multiple regressors 
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Table 1: Mortgage denial regression using the Boston HMDA Data 

 

 
Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted 

regression model LPM Probit Logit 

 

black 

 

0.177***  

(0.025) 

 

0.71***  

(0.083) 

 

1.27***  

(0.15) 

P/I ratio 0.559***  

(0.089) 

2.74***  

(0.44) 

5.37***  

(0.96) 

constant -0.091***  

(0.029) 

-2.26***  

(0.16) 

-4.13***  

(0.35) 

difference Pr(deny =1)  between black 

and white applicant when P/I ratio=0.3 

17.7% 15.8% 14.8% 

LPM, Probit & Logit 
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Both for the Linear Probability as for the Probit & Logit models we have to  
consider threats to 
 

1 Internal validity 

• Is there omitted variable bias? 

• Is the functional form correct? 

• Probit model: is assumption of a Normal distribution correct? 
• Logit model: is assumption of a Logistic distribution correct? 

• Is there measurement error? 

• Is there sample selection bias? 

• is there a problem of simultaneous causality? 
 

2 External validity 

• These data are from Boston in 1990-91. 

• Do you think the results also apply today, where you live? 

Threat to internal and external validity 
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Distance to college & probability of obtaining a college degree 
Linear regression Number of obs = 3796 

F( 1, 3794) = 15.77 

Prob > F = 0.0001 

R-squared = 0.0036 

Root MSE = .44302 

 
college 

 
Coef. 

Robust  

Std. Err. 

 
t 

 
P>|t| 

 
[95% Conf. Interval] 

dist -.012471 .0031403 -3.97 0.000 -.0186278 -.0063142 

_cons .2910057 .0093045 31.28 0.000 .2727633 .3092481 

Probit regression 3796 

14.48 

0.0001 

0.0033 

= 

= 

Number of obs =  

LR chi2( 1)  

Prob > chi2 

Pseudo R2 Log likelihood = -2204.8977 = 

college Coef. Std. Err. z P>|z| [95% Conf. Interval] 

dist -.0407873 .0109263 -3.73 0.000 -.0622025 -.0193721 

_cons -.5464198 .028192 -19.38 0.000 -.6016752 -.4911645 

Logistic regression 3796 

14.68 

0.0001 

0.0033 

= 

= 

Number of obs =  

LR chi2( 1)  

Prob > chi2 

Pseudo R2 Log likelihood = -2204.8006 = 

college Coef. Std. Err. z P>|z| [95% Conf. Interval] 

dist -.0709896 .0193593 -3.67 0.000 -.1089332 -.033046 

_cons -.8801555 .0476434 -18.47 0.000 -.9735349 -.786776 
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• The 3 different models produce very similar results. 

Distance to college & probability of obtaining a college degree  
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• If Yi is binary, then E (Yi |Xi ) = Pr (Yi = 1|Xi ) 

 

Three models: 
 

• linear probability model (linear multiple regression) 

• probit (cumulative standard normal distribution) 

• logit (cumulative standard logistic distribution) 
 

• LPM, probit, logit all produce predicted probabilities 

• Effect of ∆X is a change in conditional probability that Y = 1 

• For logit and probit, this depends on the initial X 

• Probit and logit are estimated via maximum likelihood 

• Coefficients are normally distributed for large n 

• Large-n hypothesis testing, conf. intervals is as usual 

SUMMARY 
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