LECTURE 11

Introduction to Econometrics

Binary Dependent Variable

Hieu Nguyen

Fall semester, 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ON TODAY'S LECTURE

- The linear probability model
- Nonlinear probability models
 - Probit
 - Logit
- Brief introduction of maximum likelihood estimation
- Interpretation of coefficients in logit and probit models

INTRODUCTION

- So far the dependent variable (*Y*) has been continuous:
 - Average hourly earnings
 - · Birth weight of babies
- What if *Y* is binary?
 - *Y* = get into college, or not; *X* = parental income.
 - *Y* = person smokes, or not; *X* = cigarette tax rate, income.
 - *Y* = mortgage application is accepted, or not; *X* = race, income, house characteristics, marital status ...

The linear probability model

• Multiple regression model with continuous dependent variable

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

- The coefficient β_j can be interpreted as the change in Y associated with a unit change in X_j
- · We will now discuss the case with a binary dependent variable
- We know that the expected value of a binary variable Y is

$$E[Y] = 1 \cdot Pr(Y = 1) + 0 \cdot Pr(Y = 0) = Pr(Y = 1)$$

• In the multiple regression model with a binary dependent variable we have

 $E[Y_i | X_{1i}, \cdots, X_{ki}] = Pr(Y_i = 1 | X_{1i}, \cdots, X_{ki})$

• It is therefore called the linear probability model.

EXAMPLE

- Most individuals who want to buy a house apply for a mortgage at a bank.
- Not all mortgage applications are approved.
- What determines whether or not a mortgage application is approved or denied?
- During this lecture we use a subset of the Boston HMDA data (*N* = 2380)
 - a data set on mortgage applications collected by the Federal Reserve Bank in Boston

Description	Mean	SD
= 1if mortgage application is denied	0.120	0.325
	0.331	0.107
= 1if applicant is black, = 0 if applicant is white	0.142	0.350
	··· • • • · ·	= 1 if mortgage application is denied0.120anticipated monthly loan payments / monthly income0.331

5/38

EXAMPLE

- Does the payment to income ratio affect whether or not a mortgage application is denied?
- . regress deny pi ratio, robust Number of obs = 2380 Linear regression F(1, 2378) = 37.56Prob > F = 0.0000 R-squared = 0.0397 Root MSE = 31828 Robust denv Coef. Std Err t P>|t| [95% Conf. Interval] pi ratio .6035349 0984826 6 1 3 0 000 4104144 7966555 _cons - 0799096 0319666 -2 50 0 012 - 1425949 - 0172243
 - The estimated OLS coefficient on the payment to income ratio equals $\widehat{\beta_1} = 0.6$
 - The estimated coefficient is significantly different from 0 at a 1% significance level.
 - How should we interpret β₁?

≣▶ ≣ - ∽ Q (~ 6/38

The linear probability model

• The conditional expectation equals the probability that $Y_i = 1$ conditional on X_{1i}, \dots, X_{ki} :

 $E[Y_i | X_{1i}, \dots, X_{ki}] = Pr(Y_i = 1 | X_{1i}, \dots, X_{ki}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

• The population coefficient β_j equals the change in the probability that $Y_i = 1$ associated with a unit change in X_j .

$$\frac{\partial Pr(Y_i = 1 \mid X_{1i}, \cdots, X_{ki})}{\partial X_i} = \beta_j$$

In the mortgage application example:

•
$$\widehat{\beta_1} = 0.6$$

- A change in the payment to income ratio by 1 is estimated to increase the probability that the mortgage application is denied by 0.60.
- A change in the payment to income ratio by 0.10 is estimated to increase the probability that the application is denied by 6% (0.10*0.60*100).

7/38

The linear probability model

Assumptions are the same as for general multiple regression model:

- $E(u_1 | X_{11}, X_{22}, ..., X_{kl}) = 0$
- Big outliers are unlikely
- No perfect multicollinearity.

Advantages of the linear probability model:

- Easy to estimate
- Coefficient estimates are easy to interpret

Disadvantages of the linear probability model

- Predicted probability can be above 1 or below 0!
- Error terms are heteroskedastic

The linear probability model: heteroskedasticity (optional)

$$Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + u_i$$

• The variance of a Bernoulli random variable:

$$Var(Y) = Pr(Y = 1) (1 - Pr(Y = 1))$$

• We can use this to find the conditional variance of the error term

$$= Pr(Y_i = 1 | X_{1i}, \cdots, X_{ki}) \times (1 - Pr(Y_i = 1 | X_{1i}, \cdots, X_{ki}))$$
$$= (\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}) \times (1 - \beta_0 - \beta_1 X_{1i} - \cdots - \beta_k X_{ki})$$
$$\neq \sigma_u^2$$

 Solution: Always use heteroskedasticity robust standard errors when estimating a linear probability model! The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or above 1!

Example: linear probability model, HMDA data Mortgage denial v. ratio of debt payments to income (P/I ratio) in a subset of the HMDA data set (n = 127)

^{10/38}

Nonlinear probability models

- Probabilities cannot be less than 0 or greater than 1
- · To address this problem we will consider nonlinear probability models

 $Pr(Y_i = 1) = G(Z)$ with $Z = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$ and $0 \le G(Z) \le 1$

We will consider 2 nonlinear functions

Probit

$$G(Z)=\Phi(Z)$$

2 Logit

$$G(Z) = \frac{1}{1 + e^{-Z}}$$

<ロト < 合 ト < 言 ト < 言 ト ミ うへで 11/38

Probit model

Probit regression models the probability that Y = 1

- Using the cumulative standard normal distribution function $\Phi(Z)$
- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since Φ(z) = Pr (Z ≤ z) we have that the predicted probabilities of the probit model are between 0 and 1

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

12/38

Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$
- $z = -2 + 3 \cdot 0.4 = -0.8$
- $Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8)$

Probit model

 $Pr(Y = 1) = Pr(Z \le -0.8) = \Phi(-0.8) = 0.2119^{-1.4} + (10.8) = 0.2119^$

Logit model

Logit regression models the probability that Y = 1

Using the cumulative standard logistic distribution function

$$F(Z) = \frac{1}{1 + e^{-Z}}$$

- evaluated at $Z = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$
- since $F(z) = Pr(Z \le z)$ we have that the predicted probabilities of the probit model are between 0 and 1

Example

- Suppose we have only 1 regressor and $Z = -2 + 3X_1$
- We want to know the probability that Y = 1 when $X_1 = 0.4$

•
$$z = -2 + 3 \cdot 0.4 = -0.8$$

• $Pr(Y = 1) = Pr(Z \le -0.8) = F(-0.8)$

<ロ > < 合 > < 言 > < 言 > < 言 > こ の Q (~ 14/38

• $Pr(Y = 1) = Pr(Z \le -0.8) = \frac{1}{1+e^{0.8}} = 0.31$

Logit & Probit model

<ロト < 部ト < 差ト < 差ト 差 うへで 16/38 How to estimate logit and probit models

- In previous lectures we discussed regression models that are nonlinear in the independent variables
 - · these models can be estimated by OLS
- Logit and Probit models are nonlinear in the coefficients $\beta_0, \beta_1, \cdots, \beta_k$
 - · these models can't be estimated by OLS
- The method used to estimate logit and probit models is Maximum Likelihood Estimation (MLE).
- The MLE are the values of (β₀, β₁, · · · , β_k) that best describe the full distribution of the data.

Maximum likelihood estimation

- The **likelihood function** is the joint probability distribution of the data, treated as a function of the unknown coefficients.
- The **maximum likelihood estimator (MLE)** are the values of the coefficients that maximize the likelihood function.
- MLE's are the parameter values "most likely" to have produced the data.

Lets start with a special case: The MLE with no X

- We have *n* i.i.d. observations Y₁, ..., Y_n on a binary dependent variable
- Y is a Bernoulli random variable
- There is only 1 unknown parameter to estimate:
 - The probability \boldsymbol{p} that Y = 1,
 - which is also the mean of Y

Maximum likelihood estimation (Optional)

Step 1: write down the likelihood function, the joint probability distribution of the data

Y_i is a Bernoulli random variable we therefore have

$$Pr(Y_i = y) = Pr(Y_i = 1)^{y} \cdot (1 - Pr(Y_i = 1))^{1-y} = p^{y}(1 - p)^{1-y}$$

•
$$Pr(Y_i = 1) = p^1(1 - p)^0 = p$$

• $Pr(Y_i = 0) = p^0(1 - p)^1 = 1 - p$

 Y₁,..., Y_n are i.i.d, the joint probability distribution is therefore the product of the individual distributions

$$Pr(Y_{1} = y_{1}, \dots, Y_{n} = y_{n}) = Pr(Y_{1} = y_{1}) \times \dots \times Pr(Y_{n} = y_{n})$$

$$= \left[p^{y_{1}}(1-p)^{1-y_{1}}\right] \times \dots \times \left[p^{y_{n}}(1-p)^{1-y_{n}}\right]$$

$$= p^{(y_{1}+y_{2}+\dots+y_{n})} (1-p)^{n-(y_{1}+y_{2}+\dots+y_{n})}$$

$$= p^{(y_{1}+y_{2}+\dots+y_{n})} (1-p)^{n-(y_{1}+y_{2}+\dots+y_{n})}$$

Maximum likelihood estimation (Optional)

We have the likelihood function:

$$f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n) = p^{\sum y_i} (1-p)^{n-\sum y_i}$$

Step 2: Maximize the likelihood function w.r.t p

· Easier to maximize the logarithm of the likelihood function

$$ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \left(\sum_{i=1}^n y_i\right) \cdot ln(p) + \left(n - \sum_{i=1}^n y_i\right) ln(1-p)$$

• Since the logarithm is a strictly increasing function, maximizing the likelihood or the log likelihood will give the same estimator.

Maximum likelihood estimation (Optional)

• Taking the derivative w.r.t p gives

$$\frac{d}{dp} ln(f_{Bernouilli}(p; Y_1 = y_1, \dots, Y_n = y_n)) = \frac{\sum_{i=1}^n y_i}{p} - \frac{n - \sum_{i=1}^n y_i}{1 - p}$$

Setting to zero and rearranging gives

$$(1 - p) \times \sum_{i=1}^{n} y_{i} = p \times (n - \sum_{i=1}^{n} y_{i})$$
$$\sum_{i=1}^{n} y_{i} - p \sum_{i=1}^{n} y_{i} = n \cdot p - p \sum_{i=1}^{n} y_{i}$$
$$\sum_{i=1}^{n} y_{i} = n \cdot p$$

Solving for p gives the MLE

$$\widehat{p}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{Y}$$

<ロト<部ト<差ト<差ト<差ト 21/38 MLE of the Probit model (Optional)

Step 1: write down the likelihood function

$$Pr(Y_1 = y_1, \dots, Y_n = y_n) = Pr(Y_1 = y_1) \times \dots \times Pr(Y_n = y_n)$$
$$= [p_1^{y_1}(1 - p_1)^{1 - y_1}] \times \dots \times [p_n^{y_n}(1 - p_n)^{1 - y_n}]$$

 so far it is very similar as the case without explanatory variables except that p_i depends on X_{1i},..., X_{ki}

$$p_i = \Phi(X_{1i}, \ldots, X_{ki}) = \Phi(\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki})$$

• substituting for *p_i* gives the likelihood function:

$$\begin{bmatrix} \Phi (\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1})^{y_1} (1 - \Phi (\beta_0 + \beta_1 X_{11} + \dots + \beta_k X_{k1}))^{1-y_1} \end{bmatrix} \times \dots \\ \times \begin{bmatrix} \Phi (\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn})^{y_n} (1 - \Phi (\beta_0 + \beta_1 X_{1n} + \dots + \beta_k X_{kn}))^{1-y_n} \end{bmatrix}$$

MLE of the Probit model (Optional)

Also with obtaining the MLE of the probit model it is easier to take the logarithm of the likelihood function

Step 2: Maximize the log likelihood function

$$In [f_{probit} (\beta_0, ..., \beta_k; Y_1, ..., Y_n | X_{1i}, ..., X_{ki}, i = 1, ..., n)]$$

= $\sum_{i=1}^n Y_i ln [\Phi (\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})]$
+ $\sum_{i=1}^n (1 - Y_i) ln [1 - \Phi (\beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki})]$

w.r.t β_0, \ldots, β_1

• There is no simple formula for the probit MLE, the maximization must be done using numerical algorithm on a computer.

MLE of the logit model (Optional)

Step 1: write down the likelihood function

 $Pr(Y_1 = y_1, \dots, Y_n = y_n) = \left[p_1^{y_1}(1-p_1)^{1-y_1}\right] \times \dots \times \left[p_n^{y_n}(1-p_n)^{1-y_n}\right]$

very similar to the Probit model but with a different function for p_i

$$p_i = 1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki})} \right]$$

Step 2: Maximize the log likelihood function w.r.t $\beta_0, ..., \beta_1$ $ln [f_{logit} (\beta_0, ..., \beta_k; Y_1, ..., Y_n | X_{1i}, ..., X_{ki}, i = 1, ..., n)]$ $= \sum_{i=1}^{n} Y_i ln \left(1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki})} \right] \right)$ $+ \sum_{i=1}^{n} (1 - Y_i) ln \left(1 - \left(1 / \left[1 + e^{-(\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki})} \right] \right) \right)$

There is no simple formula for the logit MLE, the maximization must be done using numerical algorithm on a computer. < □ > < ♂ < < > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ < 24/38

Probit: mortgage applications

. probit deny p Iteration 0: Iteration 1: Iteration 2: Iteration 3: 10	log likelihood log likelihood log likelihood	a = -832.0 a = -831.7)2975 79239				
Probit regress: Log likelihood				Number o LR chi2 Prob > o Pseudo	(1) chi2	= = =	2380 = 80.59 0.0000 0.0462
deny	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
pi_ratio _ ^{cons}	2.967907 -2.194159	.3591054 .12899	8.26 -17.01			.26407 .44697	

· The estimated MLE coefficient on the payment to income ratio equals

Probit: mortgage applications

The estimate of β_1 in the probit model CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

- In general the effect on Y of a change in X is the expected change in Y resulting from the change in X
- Since Y is binary the expected change in Y is the change in the probability that Y = 1

In the probit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20:

$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.20) - \Phi(-2.19 + 2.97 \cdot 0.10) = 0.0495$$

0.30 to 0.40:

$$\triangle \widehat{Pr(Y_i = 1)} = \Phi(-2.19 + 2.97 \cdot 0.40) - \Phi(-2.19 + 2.97 \cdot 0.30) = 0.0619$$

Probit: mortgage applications

Predicted values in the probit model:

All predicted probabilities are between 0 and 1!

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ 27/38

Logit: mortgage applications

. logit deny pi_ratio

-872.0853	=	likelihood	log	0:	Iteration
-830.96071	=	likelihood	log	1:	Iteration
-830.09497	=	likelihood	log	2:	Iteration
-830.09403	=	likelihood	log	3:	Iteration
-830.09403		ikelihood =	log 1	4:	Iteration

Logistic regression

Number of obs	=	2380
LR chi2(1)	=	83.98
Prob > chi2	=	0.0000
Pseudo R2	=	0.0482

Log likelihood = -830.09403

deny	Coef.	Std. Err.	Z	₽> z	[95% Conf. In	iterval]
pi_ratio	5.884498	.7336006	8.02		4.446667	7.322328
_cons	-4.028432	.2685763	-15.00		-4.554832	-3.502032

• The estimated MLE coefficient on the payment to income ratio equals

Logit: mortgage applications

Also in the Logit model:

The estimate of β_1 CANNOT be interpreted as the change in the probability that $Y_i = 1$ associated with a unit change in $X_1!!$

In the logit model the predicted change the probability that the mortgage application is denied when the payment to income ratio increases from

0.10 to 0.20: $\triangle \widehat{Pr(Y_i = 1)} = \left(\frac{1}{1 + e^{-(-4.03 + 5.88 \cdot 0.20)}}\right) - \left(\frac{1}{1 + e^{-(-4.03 + 5.88 \cdot 0.10)}}\right) = 0.023$ 0.30 to 0.40: $\triangle \widehat{Pr(Y_i = 1)} = \left(\frac{1}{1 + e^{-(-4.03 + 5.88 \cdot 0.40)}}\right) - \left(\frac{1}{1 + e^{-(-4.03 + 5.88 \cdot 0.30)}}\right) = 0.063$

29/38

Logit: mortage applications

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:

30/38

Probit & Logit with multiple regressors

- We can easily extend the Logit and Probit regression models, by including additional regressors
- Suppose we want to know whether white and black applications are treated differentially
- Is there a significant difference in the probability of denial between black and white applicants conditional on the payment to income ratio?
- To answer this question we need to include two regressors
 - P/I ratio
 - Black

Probit with multiple regressors

Probit regress				Number o LR chi2 Prob > c Pseudo	(2) =	2380 = 149.90 0.0000 0.0859
deny	Coef.	Std. Err.	Z	₽> z	[95% Conf. 3	[nterval]
black pi_ratio _cons	.7081579 2.741637 -2.258738	.0834327 .3595888 .129882	8.49 7.62 -17.39	0.000 0.000 0.000	.5446328 2.036856 -2.513302	3.446418

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 0 + 2.74 \cdot 0.3) = 0.0749$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$\Phi(-2.26 + 0.71 \cdot 1 + 2.74 \cdot 0.3) = 0.2327$$

Difference is 15.8%

Logit with multiple regressors

Logistic regres		L		Number c LR chi2(Prob > c Pseudo	(2) chi2 =	2380 = 152.78 0.0000 0.0876
deny	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
black pi_ratio _cons	1.272782 5.370362 -4.125558	.1461983 .7283192 .2684161	8.71 7.37 -15.37	0.000 0.000 0.000	.9862385 3.942883 -4.651644	6.797841

- To say something about the size of the impact of race we need to specify a value for the payment to income ratio
- Predicted denial probability for a white application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13+5.37\cdot0.30)} = 0.075$$

Predicted denial probability for a black application with a P/I-ratio of 0.3 is

$$1/1 + e^{-(-4.13+5.37\cdot0.30+1.27)} = 0.224$$

Difference is 14.8%

<ロト < 昂 > < 臣 > < 臣 > 王 のへで 33/38

LPM, Probit & Logit

Table 1: Mortgage denial regression using the Boston HMDA Data

Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted								
regression model	LPM	Probit	Logit					
black	0.177***	0.71***	1.27***					
	(0.025)	(0.083)	(0.15)					
P/I ratio	0.559***	2.74***	5.37***					
	(0.089)	(0.44)	(0.96)					
constant	-0.091***	-2.26***	-4.13***					
	(0.029)	(0.16)	(0.35)					
difference Pr(deny=1) between black and white applicant when P/I ratio=0.3	17.7%	15.8%	14.8%					

・ロット 中 ・ ・ 山 ・ ・ 日 ・ うくの

34/38

Threat to internal and external validity

Both for the Linear Probability as for the Probit & Logit models we have to consider threats to

Internal validity

- Is there omitted variable bias?
- Is the functional form correct?
 - Probit model: is assumption of a Normal distribution correct?
 - Logit model: is assumption of a Logistic distribution correct?
- Is there measurement error?
- Is there sample selection bias?
- is there a problem of simultaneous causality?

External validity

- These data are from Boston in 1990-91.
- Do you think the results also apply today, where you live?

Distance to college & probability of obtaining a college degree

					F(1, 3794) Prob > F R-squared Root MSE	= 0.0001
college	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
dist _cons	012471 .2910057	.0031403 .0093045	-3.97 31.28	0.000	0186278 .2727633	0063142 .3092481
Probit regressi Log likelihood		7		Number LR chi2 Prob > Pseudo	chi2 =	3796 14.48 0.0001 0.0033
college	Coef.	Std. Err.	z	P> z	[95% Conf. In	terval]
dist _cons	0407873 5464198	.0109263 .028192	-3.73 -19.38		0622025 6016752	
Logistic regres Log likelihood		6				3796 14.68 0.0001 0.0033
college	Coef.	Std. Err.	Z	₽> z	[95% Conf. Ir	nterval]
dist _cons	0709896 8801555	.0193593 .0476434	-3.67 -18.47		1089332 9735349	033046 786776

36/38

Distance to college & probability of obtaining a college degree

SUMMARY

• If Y_i is binary, then $E(Y_i|X_i) = Pr(Y_i = 1|X_i)$

Three models:

- linear probability model (linear multiple regression)
- probit (cumulative standard normal distribution)
- logit (cumulative standard logistic distribution)
- · LPM, probit, logit all produce predicted probabilities
- Effect of ΔX is a change in conditional probability that Y = 1
- For logit and probit, this depends on the initial X
- · Probit and logit are estimated via maximum likelihood
 - · Coefficients are normally distributed for large n
 - · Large-n hypothesis testing, conf. intervals is as usual