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REVISION: THE PREVIOUS LECTURE
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e (Desired) properties of anestimator:

 An estimator is unbiased if the mean of its distribution 
is  equal to the value of the parameter it is estimating

 An estimator is consistent if it converges to the value of 
the  true parameter as the sample size increases

 An estimator is efficient if the variance of its 
sampling  distribution is the smallest possible



REVISION: THE PREVIOUS LECTURE

e We explained the principle of OLS estimator: minimizing  
the sum of squared differences between the observation  
and the regression line yi = β0 + β1xi + εi

e We found the formulae for theestimates:
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REVISION: THE PREVIOUS LECTURE

4/36

e We explained that the stochastic error term must be  
present in a regression equation because of:

1. omission of many minor influences (unavailable data)

2. measurement error

3. possibly incorrect functional form

4. stochastic character of unpredictable human behavior

e Remember that all of these factors are included in the error  
term and may alter its properties

e The properties of the error term determine the properties  
of the estimates



WARM-UP EXERCISE
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e You receive a unique dataset that includes wages of all
citizens of Brno as well as their experience (number of
years spent working). Obviously, you are very curious
about what is the effect of experience on wages.

e You run an OLS regression of monthly wage in CZK on the  
number of years of experience and obtain the following  
results:

1. Interpret the meaning of the coefficient of experi.

2. Use the estimates to determine the average wage of a  
person with 1, 5, 20, and 40 years of experience.

3. Do the predicted wages seem realistic? Explain your  
answer.



ON TODAY’S LECTURE
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e We will derive estimation formulas for multivariate OLS

e We will list the assumptions about the error term and the  
explanatory variables that are required in classical  
regression models

e We will show that under these assumptions, OLS is the  
best estimator available for regression models

e The rest of the course will mostly deal in one way or  
another with the question what to do when one of the  
classical assumptions is not met

e Readings:
Studenmund - chapter 4
Wooldridge - chapters 5, 8, 9, 12



ORDINARY LEAST SQUARES WITH SEVERAL  

EXPLANATORY VARIABLES
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e Usually, there are more than one explanatory variables in  
regression models

e Multivariate model with k explanatory variables:

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + εi

e For observations 1,2, . . . , n, we have:

y1 = β0 + β1x11 + β2x12 + . . . + βkx1k + ε1

y2 = β0 + β1x21 + β2x22 + . . . + βkx2k + ε2

. .. .

yn = β0 + β1xn1 + β2xn2 + . . . + βkxnk + εn



MATRIX NOTATION
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e We can write in matrix form:

or in a simplified notation:

Y = Xβ + ε

k

k



OLS - DERIVATION UNDER MATRIX  NOTATION(OPTIONAL)



MEANING OF REGRESSION COEFFICIENT
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e Consider the multivariate model

Q = β0 + β1P + β2Ps + β3Y + ε

^
sestimated as Q = 31.50 − 0.73P + 0.11P + 0.23Y

Q . . . quantitydemanded
P . . . commodity’sprice

Ps . . . price ofsubstitute
Y . . . disposableincome

e Meaning of β1 is the impact of a one unit increase in P on  
the dependent variable Q, holding constant the other  
included independent variables Ps and Y

e When price increases by 1 unit (and price of a substitute
good and income remain the same), quantity demanded
decreases by 0.73 units



EXERCISE

11/36

e Remember the unique dataset that includes wages of all  
citizens of Brno as well as their experience (number of  
years spent working).

e Because you realize that wages may not be linearly  
dependent on experience, you add an additional variable  
exper2

i into your model and you obtain the following  
results:

wagei= 14450 + 1160 ·experi − 25 ·exper2
i

1. What is the overall impact of increasing the number of  
years of experience by 1 year?

2. Use the estimates to determine the average wage of a  
person with 1, 5, 20, and 40 years of experience.

3. Do the predicted wages seem realistic now? Explain your  
answer.

^



THE CLASSICAL ASSUMPTIONS
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1. Linearity: the regression model is linear in the parameters  
(coefficients)

2. Random sampling: the data is a random sample drawn  
from the population and each data point follows the  
population equation

3. No perfect collinearity: the values of explanatory variables  
are not all the same and no explanatory variable is a  
perfect linear function of any other explanatory variable(s)

4. Zero conditional mean: values of explanatory variables  
must contain no information about the mean of the  
unobserved factors - explanatory variables are  
uncorrelated with the error term

5. Homoskedasticity: the error term has a constant variance

6. Normality of the error term: the error term is normally  
distributed



1. LINEARITY IN PARAMETERS
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The regression model is linear in coefficients.

e Linearity in variables is not required

e Example: production function Y = AKβ1 Lβ2 for which  
we suppose A = expβ0+ε can be transformed so that

ln Y = β0 + β1 ln K + β2 ln L + ε

and the linearity in coefficients is restored

e Note that it is the linearity in coefficients that allows us to  
rewrite the general regression model in matrix form



EXERCISE

Which of the following models is/are linear?
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EXERCISE

Which of the following models is/are linear?
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2. RANDOM SAMPLING
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The data is a random sample drawn from the population and each  
data point follows the population equation.

e Discussion during last class



3. NO PERFECT COLLINEARITY
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The values of explanatory variables are not all the same and no  
explanatory variable is a perfect linear function of any other  
explanatory variable(s).

e If this condition does not hold, we talk about
(multi)collinearity

e Multicollinearity can be perfect or imperfect

e Perfect multicollinearity: one explanatory variable is an  
exact linear function of one or more other explanatory  
variables

 In this case, the OLS model is incapable to distinguish 
one  variable from the other

 OLS estimation cannot be conducted

 Example: we include dummy variables for men 
and  women together with the intercept



3. NO PERFECT COLLINEARITY
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e Imperfect multicollinearity:

There is a linear relationship between the variables, but  
there is some error in that relationship

Example: we include two variables that proxy for  
individual health status

e Consequences ofmulticollinearity:

Estimated coefficients remain unbiased

But the standard errors of estimates are inflated - making  
the variable insignificant even though they might be  
significant

e Solution: drop one of the variables



EXERCISE
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e Which of the following pairs of independent variables  
would violate the Assumption of no multicollinearity?  
(That is, which pairs of variables are perfect linear  
functions of each other?)

 right shoe size and left shoe size (of students in the class)

 consumption and disposable income (in the United 
States  over the last 30 years)

 Xi and 2Xi

 Xi and (Xi)
2



4. BEFORE ZERO CONDITIONAL MEAN
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The error term has a zero population mean.

e Notation: E[εi] =  0 or E[ε] = 0

e Idea: observations are distributed around the regression  
line, the average of deviations is zero

e On average, we make no”mistakes”

e This assumption is satisfied as long as there is an intercept
included in the equation



4. ZERO CONDITIONAL MEAN
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All explanatory variables are uncorrelated with the error term.

e  Notation:   E[xiεi] = 0 or E[Xjε] = 0

e If an explanatory variable and the error term were  
correlated with each other, the OLS estimates would be  
likely to attribute some of the variation in y to the x
when it actually came from the error term

e Example: Impact of skipping classes on exam scores:

Motivated students are less likely to skip classes →
negative correlation between skipped and error term

e Leads to biased and inconsistent estimates

e We will solve this problem using IVapproach



5. HOMOSKEDASTICITY
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The error term has a constant variance - Var(si|Xi) = σ2

e If it is not satisfied, we talk about heteroskedasticity

e It states that each observation of the error is drawn from
a distribution with the same variance and thus varies in
the same manner around the regression line

e If the error term is heteroskedastic, it is more difficult for  
OLS to get precise estimates of the coefficients of the  
explanatory variables

e Technically: the OLS estimate will be consistent, but not  
efficient
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5. HOMOSKEDASTICITY - GRAPHICAL REPRESENTATION
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GRAPHICAL REPRESENTATION
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5. HOMOSKEDASTICITY
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e Heteroskedasticity is often present in cross-sectionaldata

e Example: Analysis of household consumptionpatterns

Variance of the consumption of certain goods might be  
greater for higher-income households

These have more discretionary income than do  
lower-income households

e We will solve this problem using Hull-White robust  
standard errors



GRAPHICAL REPRESENTATION



6. NORMALITY OF THE ERROR TERM
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The error term is normally distributed.

e This is an empirical question

e ^Normality of the error term is inherited by the estimate β

e Knowing the distribution of the estimate allows us to find  
its confidence intervals and to test hypotheses about  
coefficients



PROPERTIES OF THE OLS ESTIMATE
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e OLS estimate is defined by theformula

where y = Xβ + ε

e Hence, it is dependent on the random variable ε and thus

is a random variable itself

e The properties of are based on the properties ofε



EXPECTED VALUE OF THE OLS ESTIMATOR

28/36

e Under the assumptions 1-4, OLS is unbiased:

e The estimated coefficients may be smaller or larger,  
depending on the sample

e However, on average, they will be equal to the true  
parameters

e NOTE: in a given sample, estimates may differ  
considerably from true values



VARIANCE OF THE OLS ESTIMATOR
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 Under the assumptions1-5 , OLS is efficient :

 The error variance (σ2): increases the variance of an  
estimator

 The variation in explanatory variable reduces the 
variance of the estimator



GAUSS-MARKOV THEOREM
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Under the assumptions 1 - 5, the OLS estimator of β is the best linear  
unbiased estimator (BLUE) of the regression coefficients

e NOTE: assumption 6, normality, is not needed for this  
theorem

e Gauss-Markov Theorem meansthat:



EXPECTED VALUE OF THE OLS ESTIMATE (OPTIONAL)
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VARIANCE OF THE OLS ESTIMATE (OPTIONAL)
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NORMALITY OF THE OLS ESTIMATE
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CONSISTENCY OF THE OLS ESTIMATE
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e When no explanatory variables are correlated with the  
error term (Assumption 4), OLS estimate is consistent:

e In other words: as the number of observations increases,  
the estimate converges to the true value of the coefficient



CONSISTENCY OF THE OLS ESTIMATE
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e ^As long as the OLS estimate of β is consistent, the
residuals are consistent estimates of the error term

e If we have consistent estimates of the error term, we can  
test if it satisfies the classical assumptions

e Moreover, possible deviations from the classical model can  
be corrected

e As a consequence, the assumption of zero correlation  
between explanatory variables and the error term

is the most important one to satisfy in regressionmodels



SUMMARY
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e We expressed the multivariate OLS model in matrix  
notation y = Xβ + ε and we found the formula of the  
estimate:

e We listed the classical assumptions of regressionmodels:

 model linear in parameters, random sampling, 
explanatory  variables linearly independent

 (normally distributed) error term with zero mean 
and  constant variance

 no correlation between error term and 
explanatory  variables

e We showed that if these assumptions hold, OLS estimate is

 consistent (if no correlation between X and ε)

 unbiased (if no correlation between X and ε)

 efficient (if homoskedasticity and no autocorrelation of ε)

 normally distributed (if ε normally distributed)


