Introductory Econometrics Multiple Hypothesis Testing

by Hieu Nguyen

Fall 2024

1.

File wage.csv contains a cross-sectional dataset on 526 working individuals for the year 1976 in the US. Using this labor market data, estimate a simple model describing the impact of years of education and work experience on hourly wage in USD per hour:

wage = $\beta_0 + \beta_1$ educ + β_2 exper + ϵ .

- (a) Import data into Gretl from the .csv file. Carry out a basic inspection of data (display values, visually, descriptive statistics).
- (b) Comment on the expected signs of coefficients β_1 and β_2 first and then estimate the model.
- (c) Evaluate the statistical significance of β_1 and β_2 based on the Gretl output.
- (d) How much of the variation in wage for these 526 individuals is explained by educ and exper? Explain.
- (e) Estimate also the model without exper, compare R^2 and R^2_{adi} . Which is a better model? Why?
- (f) Test formally the following hypotheses at the 5% significance level:
 - (i) Education has a significant impact on wages.
 - (ii) Workforce experience has a significantly positive impact on wages.
 - (iii) The regression is overall significant.
- (g) Set up a 90% confidence interval for β_2 (and a 99% confidence interval for β_1).
- (h) How would the estimated coefficients, standard errors, and t-statistics have differed if we transformed the wage variable into monthly income and **exper** into decades? Explain.

2.

Answer the following questions about data on the sales prices of houses in the UK. The variables in this study are:

- $PRICE_i$: sales price for house i;
- $ASSESS_i$: assessed price of house i;
- $LOTSIZE_i$: size of lot (in square feet) for house i;
- $BDRMS_i$: number of bedrooms for house i;
- $BATH_i$: number of bathrooms for house i;
- $OCEAN_i$: a variable equal to 1 if house *i* is located within 10 miles of the ocean, 0 otherwise;
- $URBAN_i$: a variable equal to 1 if house *i* is located in an area classified as urban, 0 otherwise;
- $LAKE_i$: a variable equal to 1 if house *i* is located within 10 miles of a lake, 0 otherwise;

Table 1: Results of regressionsDependent variable $PRICE_i, n = 238$							
$ASSESS_i$	0.90	0.90	0.91	0.90	0.89	0.90	0.90
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
$LOTSIZE_i$	0.0035	0.00059	0.00059	0.00057	0.00058	0.00059	0.00060
	(0.00002)	(0.00002)	(0.00002)	(0.00002)	(0.00002)	(0.00002)	(0.00002)
$BDRMS_i$	11.5	9.74	7.65	8.74	10.43		
	(2.32)	(3.11)	(3.29)	(3.54)	(3.77)		
$BATH_i$			3.57	3.78			
			(2.24)	(1.11)			
$OCEAN_i$	15.6	14.32	16.76	15.32	14.56		
	(11.43)	(5.21)	(4.32)	(4.98)	(7.01)		
$URBAN_i$		9.54	10.29	12.32			
		(8.99)	(5.43)	(5.22)			
$LAKE_i$				11.36	12.87	11.98	
				(4.28)	(8.32)	(6.43)	
INTERCEPT	261.9	-38.91	-40.30	-43.21	-36.54	-42.37	-38.44
	(11.98)	(6.78)	(7.32)	(6.99)	(5.87)	(7.22)	(9.43)
RSS	145.69	142.99	136.66	134.54	135.38	135.22	136.54
\mathbb{R}^2	0.143	0.159	0.196	0.209	0.204	0.205	0.197

• *INTERCEPT*: intercept in the model.

Table 1 lists estimated coefficients with standard errors in parentheses below.

- (a) Using the reported regressions, could you test whether the value of the house near water was different from the value of the house away from water at the 5% significance level, controlling for assessed value, lot size, and the number of bedrooms? If so, perform the test. If not, explain what results you would need to do the test.
- (b) Could you test whether bathrooms change the house value, controlling for assessed value, lot size, and the number of bedrooms at the 5% significance level? If so, perform the test. If not, explain what results you would need to do the test.
- (c) Can you test whether the assessed value and number of bedrooms are jointly significant, controlling for lot size? If yes, perform the test at the 5% significance level. If not, explain what you would need to perform this test.
- (d) Could you test whether all 7 of the listed variables (excluding the intercept) are jointly significant at the 5% significance level? Be sure to state any assumptions you are making.