

Chapter 21

Cost Minimization

Cost Minimization

- ◆ A firm is a cost-minimizer if it produces any given output level y ≥ 0 at smallest possible total cost.
- c(y) denotes the firm's smallest possible total cost for producing y units of output.
- ♦ c(y) is the firm's total cost function.

Cost Minimization

♦ When the firm faces given input prices w = (w₁,w₂,...,w_n) the total cost function will be written as c(w₁,...,w_n,y).

- ◆ Consider a firm using two inputs to make one output.
- ♦ The production function is $y = f(x_1,x_2)$.
- **◆** Take the output level y ≥ 0 as given.
- Given the input prices w_1 and w_2 , the cost of an input bundle (x_1,x_2) is $w_1x_1 + w_2x_2$.

♦ For given w_1 , w_2 and y, the firm's cost-minimization problem is to solve $\min_{\substack{x_1,x_2 \geq 0}} w_1x_1 + w_2x_2$ $x_1,x_2 \geq 0$ subject to $f(x_1,x_2) = y$.

- ◆ The levels x₁*(w₁,w₂,y) and x₁*(w₁,w₂,y) in the least-costly input bundle are the firm's conditional demands for inputs 1 and 2.
- ◆ The (smallest possible) total cost for producing y output units is therefore

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y)$$

 $+ w_2 x_2^*(w_1, w_2, y).$

Conditional Input Demands

- ◆ Given w₁, w₂ and y, how is the least costly input bundle located?
- ◆ And how is the total cost function computed?

- ◆ A curve that contains all of the input bundles that cost the same amount is an iso-cost curve.
- ♦ E.g., given w_1 and w_2 , the \$100 isocost line has the equation $w_1x_1 + w_2x_2 = 100$.

♦ Generally, given w_1 and w_2 , the equation of the \$c iso-cost line is $w_1x_1 + w_2x_2 = c$

i.e.
$$x_2 = -\frac{w_1}{w_2}x_1 + \frac{c}{w_2}$$
.

♦ Slope is - w_1/w_2 .

The y'-Output Unit Isoquant

The Cost-Minimization Problem At an interior cost-min input bundle:

The Cost-Minimization Problem At an interior cost-min input bundle:

The Cost-Minimization Problem At an interior cost-min input bundle:

A Cobb-Douglas Example of Cost Minimization

- ♦ A firm's Cobb-Douglas production function is $y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$.
- \bullet Input prices are w_1 and w_2 .
- ♦ What are the firm's conditional input demand functions?

A Cobb-Douglas Example of Cost Minimization

At the input bundle (x_1^*, x_2^*) which minimizes the cost of producing y output units:

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 and

(b)
$$-\frac{\mathbf{w_1}}{\mathbf{w_2}} = -\frac{\partial \mathbf{y}/\partial \mathbf{x_1}}{\partial \mathbf{y}/\partial \mathbf{x_2}} = -\frac{(1/3)(\mathbf{x_1^*})^{-2/3}(\mathbf{x_2^*})^{2/3}}{(2/3)(\mathbf{x_1^*})^{1/3}(\mathbf{x_2^*})^{-1/3}}$$

$$=-\frac{x_2^*}{2x_1^*}$$

A Cobb-Douglas Example of Cost Minimization (a) $y = (x_1^*)^{1/3} (x_2^*)^{2/3}$ (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.

A Cobb-Douglas Example of Cost Minimization *

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $x_2^* = \frac{2w_1}{w_2} x_1^*$.

A Cobb-Douglas Example of Cost Minimization

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $x_2^* = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get

$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2} x_1^* \right)^{2/3}$$

A Cobb-Douglas Example of

Cost Minimization

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $(x_2^*) = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get

$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2} x_1^*\right)^{2/3} = \left(\frac{2w_1}{w_2}\right)^{2/3} x_1^*.$$

A Cobb-Douglas Example of

Cost Minimization

(a)
$$y = (x_1^*)^{1/3} (x_2^*)^{2/3}$$
 (b) $\frac{w_1}{w_2} = \frac{x_2}{2x_1^*}$.
From (b), $\frac{x_2^*}{w_2} = \frac{2w_1}{w_2} x_1^*$.

From (b),
$$(x_2^*) = \frac{2w_1}{w_2}x_1^*$$
.

Now substitute into (a) to get
$$y = (x_1^*)^{1/3} \left(\frac{2w_1}{w_2} x_1^*\right)^{2/3} = \left(\frac{2w_1}{w_2}\right)^{2/3} x_1^*.$$

So
$$x_1^* = \left(\frac{w_2}{2w_1}\right)^{2/3}$$
 y is the firm's conditional demand for input 1.

A Cobb-Douglas Example of Cost Minimization

Since
$$x_2^* = \frac{2w_1}{w_2} x_1^*$$
 and $x_1^* = \left(\frac{w_2}{2w_1}\right)^{2/3} y$

$$\mathbf{x_2^*} = \frac{2\mathbf{w_1}}{\mathbf{w_2}} \left(\frac{\mathbf{w_2}}{2\mathbf{w_1}}\right)^{2/3} \mathbf{y} = \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}}\right)^{1/3} \mathbf{y}$$

is the firm's conditional demand for input 2.

A Cobb-Douglas Example of Cost Minimization

So the cheapest input bundle yielding y output units is

$$\begin{pmatrix} x_1^*(w_1, w_2, y), x_2^*(w_1, w_2, y) \\ = \begin{pmatrix} \left(\frac{w_2}{2w_1} \right)^{2/3} y, \left(\frac{2w_1}{w_2} \right)^{1/3} y \end{pmatrix}.$$

Fixed w_1 and w_2 .

A Cobb-Douglas Example of Cost Minimization

For the production function

$$y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$$

the cheapest input bundle yielding y output units is

$$(x_1^*(w_1, w_2, y), x_2^*(w_1, w_2, y))$$

$$= \left(\left(\frac{\mathbf{w_2}}{2\mathbf{w_1}} \right)^{2/3} \mathbf{y}, \left(\frac{2\mathbf{w_1}}{\mathbf{w_2}} \right)^{1/3} \mathbf{y} \right).$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

$$= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

$$= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$$

$$= \left(\frac{1}{2}\right)^{2/3} w_1^{1/3} w_2^{2/3} y + 2^{1/3} w_1^{1/3} w_2^{2/3} y$$

A Cobb-Douglas Example of Cost Minimization So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

$$= w_1 \left(\frac{w_2}{2w_1}\right)^{2/3} y + w_2 \left(\frac{2w_1}{w_2}\right)^{1/3} y$$

$$= \left(\frac{1}{2}\right)^{2/3} w_1^{1/3} w_2^{2/3} y + 2^{1/3} w_1^{1/3} w_2^{2/3} y$$

$$= 3 \left(\frac{w_1 w_2^2}{4}\right)^{1/3} y.$$

♦ The firm's production function is $y = min\{4x_1, x_2\}$.

- ♦ Input prices w₁ and w₂ are given.
- ♦ What are the firm's conditional demands for inputs 1 and 2?
- ♦ What is the firm's total cost function?

A Perfect Complements Example of Cost Minimization The firm's production function is $y = min\{4x_1, x_2\}$ and the conditional input demands are $x_1^*(w_1, w_2, y) = \frac{y}{4}$ and $x_2^*(w_1, w_2, y) = y$.

A Perfect Complements Example of Cost Minimization The firm's production function is $y = \min\{4x_1, x_2\}$ and the conditional input demands are $x_1^*(w_1, w_2, y) = \frac{y}{1}$ and $x_2^*(w_1, w_2, y) = y$. So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$$

A Perfect Complements Example of Cost Minimization The firm's production function is $y = \min\{4x_1, x_2\}$ and the conditional input demands are

$$x_1^*(w_1, w_2, y) = \frac{y}{4}$$
 and $x_2^*(w_1, w_2, y) = y$.

So the firm's total cost function is

$$c(w_1, w_2, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y) = w_1 \frac{y}{4} + w_2 y = \left(\frac{w_1}{4} + w_2\right) y.$$

Average Total Production Costs

♦ For positive output levels y, a firm's average total cost of producing y units is $AC(w_1, w_2, y) = \frac{c(w_1, w_2, y)}{y}$.

- ◆ The returns-to-scale properties of a firm's technology determine how average production costs change with output level.
- **♦** Our firm is presently producing y' output units.
- ♦ How does the firm's average production cost change if it instead produces 2y' units of output?

Constant Returns-to-Scale and Average Total Costs

◆ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.

Constant Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
- **♦** Total production cost doubles.

Constant Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits constant returns-to-scale then doubling its output level from y' to 2y' requires doubling all input levels.
- **♦** Total production cost doubles.
- ◆ Average production cost does not change.

Decreasing Returns-to-Scale and Average Total Costs

♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.

Decreasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- ◆ Total production cost more than doubles.

Decreasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits decreasing returns-to-scale then doubling its output level from y' to 2y' requires more than doubling all input levels.
- ◆ Total production cost more than doubles.
- **♦** Average production cost increases.

Increasing Returns-to-Scale and Average Total Costs

♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.

Increasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- ◆ Total production cost less than doubles.

Increasing Returns-to-Scale and Average Total Costs

- ♦ If a firm's technology exhibits increasing returns-to-scale then doubling its output level from y' to 2y' requires less than doubling all input levels.
- ◆ Total production cost less than doubles.
- **♦** Average production cost decreases.

♦ What does this imply for the shapes of total cost functions?

Av. cost increases with y if the firm's technology exhibits decreasing r.t.s.

Av. cost decreases with y if the firm's technology exhibits increasing r.t.s. c(2y') Slope = c(2y')/2y'c(y')Slope = c(y')/y'=AC(y').

- ♦ In the long-run a firm can vary all of its input levels.
- ◆ Consider a firm that cannot change its input 2 level from x₂' units.
- ♦ How does the short-run total cost of producing y output units compare to the long-run total cost of producing y units of output?

♦ The long-run cost-minimization problem is $\min_{x_1,x_2 = 0} w_1 x_1 + w_2 x_2$

subject to $f(x_1,x_2) = y$.

♦ The short-run cost-minimization problem is $\min_{x_1 = 0} w_1 x_1 + w_2 x_2$

subject to $f(x_1, x_2) = y$.

Short-Run & Long-Run Total

Costs

- ♦ The short-run $\cos t$ - $\sin t$. problem is the long-run problem subject to the extra constraint that $x_2 = x_2$.
- ♦ If the long-run choice for x_2 was x_2 ' then the extra constraint $x_2 = x_2$ ' is not really a constraint at all and so the long-run and short-run total costs of producing y output units are the same.

- ♦ The short-run cost-min. problem is therefore the long-run problem subject to the extra constraint that $x_2 = x_2$ ".
- ♦ But, if the long-run choice for $x_2 \neq x_2$ " then the extra constraint $x_2 = x_2$ " prevents the firm in this short-run from achieving its long-run production cost, causing the short-run total cost to exceed the long-run total cost of producing y output units.

Short-Run & Long-Run Total

♦ Now suppose the firm becomes subject to the short-run constraint that $x_2 = x_2$ ".

- ◆ Short-run total cost exceeds long-run total cost except for the output level where the short-run input level restriction is the long-run input level choice.
- ◆ This says that the long-run total cost curve always has one point in common with any particular shortrun total cost curve.

Short-Run & Long-Run Total

Costs

A short-run total cost curve always has one point in common with the long-run total cost curve, and is elsewhere higher than the long-run total cost curve.

