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Cost Minimization

¢ A firm is a cost-minimizer if it
produces any given output levely >0
at smallest possible total cost.

¢ c(y) denotes the firm’s smallest
possible total cost for producing y
units of output.

¢ c(y) is the firm’s total cost function.




Cost Minimization

¢ When the firm faces given input
prices w = (w,,w,,...,w,) the total cost
function will be written as

C(W4,...,W,,Y).




The Cost-Minimization Problem

¢ Consider a firm using two inputs to
make one output.

¢ The production function is
y = f(x4,X,)-
¢ Take the output level y = 0 as given.

¢ Given the input prices w, and w,, the
cost of an input bundle (x,,Xx,) is
W, X, + WX,




The Cost-Minimization Problem

¢ For given w,, w, and y, the firm’s
cost-minimization problem is to
solve min WwiXjy +wjXy
XI,X220

subjectto f(x1,X9) =Y.




The Cost-Minimization Problem

¢ The levels x,*(w,,w,,y) and x.*(w,,w,,y)
in the least-costly input bundle are the
firm’s conditional demands for inputs
1 and 2.

¢ The (smallest possible) total cost for
producing y output units is therefore

%
c(W1,W2,Y) = WiX1(W1,W2,Y)

%
+ W9oX9 (W1, W2,¥).




Conditional Input Demands

¢ Given w,, w, and y, how is the least
costly input bundle located?

¢ And how is the total cost function
computed?




Iso-cost Lines

¢ A curve that contains all of the input
bundles that cost the same amount
IS an iso-cost curve.

¢ E.g., given w, and w,, the $100 iso-

cost line has the equation
W1X1 T W9rXy = 100.




Iso-cost Lines

¢ Generally, given w, and w,, the
equation of the $c iso-cost line is
W1X1 T W9Xy =¢C

1.e. - W1 C
Xy = — Ly +
W2 W2

¢ Slope is - w,/w,,.




Iso-cost Lines

) =
C’ = W, X +W,X,




Iso-cost Lines

Slopes = -w,/w,.

) =
C’ = W, X +W,X,




The y'-Output Unit Isoquant

XZ A

All input bundles yielding y’ units
of output. Which is the cheapest?

f()§1,x2) =y’




The Cost-Minimization Problem

XZ A

All input bundles yielding y’ units
of output. Which is the cheapest?

f()§1,x2) =y’




The Cost-Minimization Problem

XZ)

\

{

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

XZ A

All input bundles yielding y’ units
of output. Which is the cheapest?

f()§1,x2) =y’




The Cost-Minimization Problem

XZ A

All input bundles yielding y’ units
of output. Which is the cheapest?




The Cost-Minimization Problem

X,

At an interior cost-min input bundile:
' (a) f(x1,X2) =Y




The Cost-Minimization Problem
At an interior cost-min input bundile:

X2 + (a) f(x1,x2) =Yy  and
(b) slope of isocost = slope of
isoquant




The Cost-Minimization Problem
At an interior cost-min input bundile:

X2+ (a) f(x1,x2) =Yy  and
(b) slope of isocost = slope of
isoquant; i.e.
_MPb
MP,

% %
at (xq,X2).




A Cobb-Douglas Example of
Cost Minimization

¢ A firm’s Cobb-Douglas production
function is 1/3_2/3

y =1(xq,x2) = X1 7Xx3
¢ Input prices are w, and w,,.

¢ What are the firm’s conditional input
demand functions?




A Cobb-Douglas Example of
Cost Minimization

At the input bundle (x,*,x,*) which minimizes
the cost of producing y output units:

(@) y=xp' P

(b)

M |

and

__0y/axy __(1/3)(xp) (xS
wy  0y/0xa  2/3)xxy 73

XZ
2X1




A Cobb-Douglas Example of
Cost Minimization B

1/3 2/3 W1 _ X2
(@) y = (x)"3(x3) (b) Wz zx’{'




A Cobb-Douglas Example of

Cost Minimization  «

% % W X
@y=cn" e ) =%
2 2xq

* 2W1 *
From (b), x2 = Xq.
W2




A Cobb-Douglas Example of
Cost Minimization -

% % W X
(a) y:(xl)gxn” () | = %
2 2xq

From (b), X; = X1.

Now substitute into (a) to get

_ % 1/3[ 2w = 23
y =(x1) — X1
b))




A Cobb-Douglas Example of
Cost Minimization -

*1/3,.%.2/3 W1 _ X2
()y(ﬂ@)z) ) s

From (b), X; = X1.

Now substitute into (a) to get

w13 2wy 2/3 > w 2/3 .
Y= (Xl) ( 1 Xl) — (1) X1.
W2 W2




A Cobb-Douglas Example of
Cost Minimization -

% % W X
@) y:(Xl)gXZ)Z/?’ (b) o =,
2 2xq

From (b), X; = X1.

Now substitute into (a) to get

e 122wy 237/, N3
y = (x1) (lxlj :(1) X{.
W2 W2

2/3
So xi = (WZ) y is the firm’s conditional

2W1 demand for input 1.




A Cobb-Douglas Example of
Cost Minimization

W W 2/3
. % % %
Since X9y = —IXI and xq = (Zj y
W2 2W1
. 2W1 Ws 2/3 ) 2W1 1/3
X2 — Y= — y
W2 2W1 Wz

is the firm’s conditional demand for input 2.




A Cobb-Douglas Example of
Cost Minimization

So the cheapest input bundle yielding y
output units Is

(XI(W19W29y)9X2(W19W29Y))

4 2/3 1/3
[ w2 2w
- (ZW j y,( \YY j Y
N 1 2 Y,




Conditional Input Demand Curves

Fixed w, and w,,.

|

X,




Conditional Input Demand Curves

Fixed w, and w,. "
X,
y' @
L Xa(Y') '
XZ(y’) y’ ------ ,
X1 (y') '




Conditional Input Demand Curves

X,

X2(y")
X2(Y')

Fixed w, and w,,.
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Conditional Input Demand Curves

X,

XZ(y,,,)
X2 (y")
X (Y')

Fixed w, and w,,.

|

X1(y')| X1 (y")
X1(y")

yIII
yll

______________ ',

---------- .

------ °

) ) X
X2(Y")

________________ ,

__________ ’ |

w i ¥ T %
X1(y') {x1(y") Xy
X1(y")




Conditional Input Demand Curves

X,

XZ(y',,)
X2 (y")
X (Y')

Fixed w, and w,,.

|

output
expansion
path

/

X1(y')| X1 (y")
X1(Y")

yIII
yll
yl

A

X2(y")

* i o T %
x1(¥) i xi(y") Xy
X1(¥y")




Conditional Input Demand Curves

X,

XZ(y’,,)
Xz*(Y")
X (Y')

Fixed w, and w,,.

\ yHI
output y ,
expansion y
path

E/ ynr
| ynr y”
» . y' y
r x1
X1(y ) x1(y"")

X1(Y”)

. Cond. demand

for
P input 2

~Xz(y) Xz(Y’") X2
X3 (Y")

Cond.
idemand
for

|nput1

XdQ/))ﬁ(y ) X1
x1(y")




A Cobb-Douglas Example of
Cost Minimization

For the production function

_ . 1/3.2/3
y =f(x1,Xx3) =x7 "x3

the cheapest input bundle yielding y output
units Is

% %
(XI(W19W29y)9X2(W19W29Y))

4 2/3 1/3 )
W 2W
_ 2 1
- Y9 y .
2wWq W» )

\




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
c(W1,W2,¥) = W1X1(W1,W2,¥) + W2X9(W1,W2,¥)




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
c(W1,W2,¥) = W1X1(W1,W2,¥) + WaX2(W1,W2,¥)

2/3 1/3
_ W»oH 2W1
—Wl() Y+W2(j y
2W1 W2




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
C(W1,W2,Y) = WiX1 (W1, W2,¥) + WaXs (W1, W1,Y)

2/3 1/3
_ W2 2wy
—Wl() y+Wz() Yy
2W1 W2

_ () wl/3 w23y 4 U3 13 23




A Cobb-Douglas Example of

Cost Minimization
So the firm’s total cost function is

% %
C(W1,W2,Y) = W1X1(W1,W2,¥) + WoX2 (W1, W2,Y)

2/3 1/3
_ \\ ) 2w
= Wl() y+w2() y
2W1 W»

1?3 wl’3w 2/3 1/3 1/32/3
=() w1 y+2 ' "wyTws Ty

N\ 1/3
=3[W1W2j y.

4




A Perfect Complements Example
of Cost Minimization

¢ The firm’s production function is
y = min{4xy,X» }.

¢ Input prices w, and w, are given.

¢ What are the firm’s conditional
demands for inputs 1 and 2?

¢ What is the firm’s total cost
function?




A Perfect Complements Example

of Cost Minimization
X2 | 4x, = X,

/
/
/

v

/
/'/ min{4x,,X,} =y’

Y




A Perfect Complements Example

XZ A

RN

of Cost Minimization

‘}X1 = X,

/
/
/

N/
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X4




A Perfect Complements Example

XZ)

of Cost Minimization

| 4x, = X, Where is the least costly
/ input bundle yielding
/ ) -
y’ output units?
\\//
\/ \

/
| \\
/

X4




A Perfect Complements Example

of Cost Minimization

X2 4 ax. = x. Where is the least costly
1 2

/ input bundle yielding

N / y’ output units?

N

\.//
//\

X,* =y /, min{4x,,X,} =y’
/ \\
/|

*




A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.




A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.

So the firm’s total cost*function is
C(W19W29Y) — WIXI(W19W29Y)

%
T WZXZ(W19W29Y)




A Perfect Complements Example

of Cost Minimization

The firm’s production function is
y = min{4xy,X5}

and the conditional input demands are

* %
X1(W1,W2,Y) = Z and X2(W1,wW2,y) =Y.

So the firm’s total cost*function is
C(W19W29y) — WIXI(W19W29Y)




Average Total Production Costs

¢ For positive output levels y, a firm’s
average total cost of producing y

units.i C(W1,W»,
Adfwlawb}’): ( ly 2:Y),




Returns-to-Scale and Av. Total
Costs

¢ The returns-to-scale properties of a
firm’s technology determine how
average production costs change with
output level.

¢ Our firm is presently producing y’
output units.

¢ How does the firm’s average
production cost change if it instead
produces 2y’ units of output?




Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.




Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.

¢ Total production cost doubles.




Constant Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
constant returns-to-scale then
doubling its output level from y’ to
2y’ requires doubling all input levels.

¢ Total production cost doubles.

¢ Average production cost does not
change.




Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to

2y’ requires more than doubling all
input levels.




Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to
2y’ requires more than doubling all
input levels.

¢ Total production cost more than
doubles.




Decreasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
decreasing returns-to-scale then
doubling its output level from y’ to
2y’ requires more than doubling all
input levels.

¢ Total production cost more than
doubles.

¢ Average production cost increases.




Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.




Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.

¢ Total production cost less than
doubles.




Increasing Returns-to-Scale and
Average Total Costs

¢ If a firm’s technology exhibits
increasing returns-to-scale then
doubling its output level from y’ to
2y’ requires less than doubling all
input levels.

¢ Total production cost less than
doubles.

¢ Average production cost decreases.




Returns-to-Scale and Av. Total

Costs
$/output unit

AC(y) decreasing r.t.s.

constant r.t.s.

Increasing r.t.s.

.
>

y




Returns-to-Scale and Total Costs

¢ What does this imply for the shapes
of total cost functions?




Returns-to-Scale and Total Costs

Av. cost increases with y if the firm’s
$ technology exhibits decreasing r.t.s.

. Slope = c(y’)ly’
‘ =AC(y’).
c(y’)




Returns-to-Scale and Total Costs

Av. cost increases with y if the firm’s
$ technology exhibits decreasing r.t.s.
c(y)

Slope = c(y’)/y!
=AC(y’).
c(y’) |- :




Returns-to-Scale and Total Costs

Av. cost decreases with y if the firm’s
$ technology exhibits increasing r.t.s.

C(2y) [ ;

c(y’) : <

Slope = c(y )ly




Returns-to-Scale and Total Costs

Av. cost decreases with y if the firm’s
$ technology exhib#s-increasing r.t.s.

c(2y’) C(y)

c(y’)




Returns-to-Scale and Total Costs

Av. cost is constant when the firm’s
technology exhibits constant r.t.s.

c(2yy c(y)
=2C(Y’) Slope — C(Zy’)l2y’
= 2c(y’)/2y’
c(y’) |- i .o =c(y’)ly
' - AC(y’) = AC(2y).
y 2y’ Y




Short-Run & Long-Run Total
Costs

¢ In the long-run a firm can vary all of
its input levels.

¢ Consider a firm that cannot change
its input 2 level from x,’ units.

¢ How does the short-run total cost of
producing y output units compare to
the long-run total cost of producing y
units of output?




Short-Run & Long-Run Total
Costs

¢ The long-run cost-minimization
problem is min wx, +w,Xx,

Xy ,X5 10

subject to f(x,x,)=y.

¢ The short-run cost-minimization
problem is minwx, +w,Xx,

subject to f(x,x,) =Y.




Short-Run & Long-Run Total
Costs. _
¢ The short-run cost-min. problem is the

long-run problem subject to the extra
constraint that x, = x,’.

¢ If the long-run choice for x, was x,’
then the extra constraint x, = x,’ Is not
really a constraint at all and so the
long-run and short-run total costs of
producing y output units are the same.




Short-Run & Long-Run Total
Costs

¢ The short-run cost-min. problem is

therefore the long-run problem subject to
the extra constraint that x, = x,”.

¢ But, if the long-run choice for x, # x,”
then the extra constraint x, = x,” prevents
the firm in this short-run from achieving
its long-run production cost, causing the
short-run total cost to exceed the long-
run total cost of producing y output units.




Short-Run & Long-Run Total

Costs

Consider three output levels.

rn

y

r




Short-Run & Long-Run Total

y

y

I

y

r

Costs

In the long-run when the firm
is free to choose both x, and
X,, the least-costly input
bundles are ...




Short-Run & Long-Run Total
Costs




Short-Run & Long-Run Total
Costs

Long-run costs are:
c(y') = WXy + wWax)

i

c(y") = WiX] + W)X3
(:(:EV”’

rm rm

) = W1X] + W)X?




Short-Run & Long-Run Total
Costs

¢ Now suppose the firm becomes
subject to the short-run constraint
that x, = x,”.




Short-Run & Long-Run Total
Costs

y'"" Short-run
X2 4 output

Long-run costs are:
c(y') = WXy + wWax)

i

" c(y') = wixy + waxj
c(y

y expansion
path

rm rm rm

) = W1X] + W)X?




Short-Run & Long-Run Total
Costs

y'"" Short-run
X2 4 output

Long-run costs are:
c(y') = WXy + wWax)

i

" c(y') = wixy + waxj
c(y

y expansion
path

rm rm rm

) = W1X] + W)X?




Short-Run & Long-Run Total

Costs
Long-run costs are:
Short-run N — , ,
X2 A y Ou:)p:lt . C(y ) - Wle + WZXZ
T _ c(y") = wix] + worx5'
y expansion (}i,,) 1 ,1,, 2 %,

c(y'"') = WXy + wWox3

Short-run costs are:
cs(y')>c(y')

path




Short-Run & Long-Run Total

Costs
Long-run costs are:
Short-run N — , ,
X2 A y Ou:)p:lt . C(y ) - Wle + WZXZ
T _ c(y") = wix] + worx5'
y expansion (}i,,) 1 ,1,, 2 %,

c(y'"') = wixy'+ worxj
Short-run costs are:
cs(y')>c(y')

cs(y')=c(y")

path




Short-Run & Long-Run Total

Costs
Long-run costs are:
« y Shtort-trun c(Y') = Wix) + Woxh
2 ou pu Iy — I 11,
] C = WiX1 T WHX
expansion ()i,,) 1 ,1,, 2 %,

c(y'"') = wixy'+ worxj
Short-run costs are:
cs(y')>c(y')

cs(y')=c(y")

path




Short-Run & Long-Run Total
Costs

"y e Long-run costs are:
Y sutout c(y') = wix] + woxh
P c(y") = wixy + wrxy'

expansion SJ@?"t)'Euﬂlﬁ?ﬂﬁ Ale:

path

. cs(y')>ce(y')
3O ; cg(y") = e(y")
X2 o § c(Y'")>c(y'")




Short-Run & Long-Run Total
Costs

¢ Short-run total cost exceeds long-run
total cost except for the output level
where the short-run input level
restriction is the long-run input level
choice.

¢ This says that the long-run total cost
curve always has one point in
common with any particular short-
run total cost curve.




Short-Run & Long-Run Total
Costs

A short-run total cost curve always has
one point in common with the long-run
total cost curve, and is elsewhere higher
than the long-run total cost curve.

cs(y)

$

A




