

Week 2 – Absolute Value and Inequalities

Weekly Goals

- Understand the definition and graph of the absolute value function.
- Solve equations and inequalities involving absolute value.
- Practice solving linear and quadratic inequalities.

Solved Examples – With Detailed Steps

Example 1: Solve the equation:

$$2|x - 3| - 4 = 0$$

Steps:

- Isolate the absolute value: |x-3|=2
- Solve two cases:

$$x-3=2 \Rightarrow x=5, \quad x-3=-2 \Rightarrow x=1$$

$$\boxed{x=1 \text{ or } x=5}$$

Example 2: Solve the inequality:

$$|2x+1| < 5$$

Steps:

- Rewrite as compound inequality: -5 < 2x + 1 < 5
- Subtract 1: -6 < 2x < 4
- Divide by 2: -3 < x < 2

$$x \in (-3, 2)$$

Example 3: Solve the quadratic inequality:

$$x^2 - 5x + 6 < 0$$

Steps:

- Factor: $(x-2)(x-3) \le 0$
- Determine sign changes on intervals:
 - both terms are negative so the product is positive for x < 2
 - x-2 > 0 and x-3 < 0 for $x \in [2, 3]$
 - both terms and their product are positive for x > 3

1

$$x \in [2, 3]$$

Example 4: Graph the function:

$$f(x) = |x+2| - |x-1|$$

Steps:

- Identify critical points: x = -2, x = 1
- Split into intervals and analyze:
 - x < -2: f(x) = -(x+2) (1-x) = -3
 - $-2 \le x < 1$: f(x) = x + 2 (1 x) = 2x + 1
 - $x \ge 1$: f(x) = x + 2 (x 1) = 3

We obtain piecewise function: $f(x) = \begin{cases} -3 & x < -2 \\ 2x + 1 & -2 \le x < 1 \\ 3 & x \ge 1 \end{cases}$

Example 5: Solve the equation:

$$|2x - 3| = |x + 1|$$

Steps:

• Find critical points where expressions inside absolute values are zero:

$$2x - 3 = 0 \Rightarrow x = \frac{3}{2}, \quad x + 1 = 0 \Rightarrow x = -1$$

- Divide the real line into intervals:
 - 1. Case 1: x < -1 |2x - 3| = -(2x - 3), |x + 1| = -(x + 1) $-2x + 3 = -x - 1 \Rightarrow -x = -4 \Rightarrow x = 4 \notin (-\infty, -1)$ discard
 - 2. Case 2: $-1 \le x < \frac{3}{2}$ |2x - 3| = -(2x - 3), |x + 1| = x + 1 $-2x + 3 = x + 1 \Rightarrow -3x = -2 \Rightarrow x = \frac{2}{3} \in [-1, \frac{3}{2})$ accept
 - 3. Case 3: $x \ge \frac{3}{2}$ |2x-3| = 2x-3, |x+1| = x+1 $2x-3 = x+1 \Rightarrow x = 4 \in [\frac{3}{2}, \infty)$ accept

$$x = \frac{2}{3}, \ x = 4$$

Practice Problems for Seminar

Absolute Value

- 1. Solve: |3x 6| = 9
- 2. Solve: 2|x-1|+3=9
- 3. Solve: |x-2| = |3x+1|
- 4. Graph: f(x) = |x| |x 3|
- 5. Graph: f(x) = 2x + |x 2|

Inequalities

- 6. Solve: $x^2 4x > 5$
- 7. Solve: $(x+3)(x+1) \le -1$
- 8. Solve: $|x+2| \ge 4$
- 9. Solve: |x 4| < x