Role of standards and evaluation criteria & non-technical topics – risk analysis, security manager, etc.

PV018 Vašek Matyáš

Broader scope of standards related to information security

• Audit standards

– Financial audit – IS/IT audit

- <u>IT security standards</u>
- (Other) IT standards

IT security standards

- Basic standards OSI security architecture, entity authentication mechanisms
- Functional standards how to use basic standards
- Evaluation criteria
- Industrial standards and methodologies
- Interpretative documentation dictionaries, guidelines, etc.

Classification of standards

- By publisher
 - Worldwide ISO, ISO/IEC, CCITT/ITU
 - US ANSI, NIST
 - EU CEN, CENELEC, ECMA
 - Groups IETF-RFC, IEEE
 - Industrial RSA PKCS
- By content/cover

Basic cryptography standards

- Symmetric crypto DES, AES
- Asymmetric crypto encryption, signatures, key exchange and transfer
 - IEEE P1363 Factoring-based, Discrete log based, Elliptic curve
 - NIST FIPS 186-3 Digital Signature Standard
- Hash functions SHA-1, RIPEMD, (MD5), SHA-512

Cryptographic algorithms

- Crucial to most systems
- National (self-)interests
- Decades of intentional avoidance of this topic for international standardization
- Crucial to DES importance indirect support by missing a widely accepted better standards
- Therefore high expectations of AES

Applied/Functional cryptography standards

- Digital certificates X.509,
- PKCS RSA, D-H, Certificate, Message, Private-Key, Attributes, Certificate Request, Crypto Token Interface & Information, ECC
- Security/Crypto protocols
 - Low level basic standards (entity auth.)
 - ISO/IEC Key Management 11770, Non-rep. 13888
 - IETF PKIX, IPSEC, S/MIME

Cryptonessie

- New European Schemes for Signatures, Integrity, and Encryption – EU, start 2000, closed recently
- Block ciphers, stream ciphers
- Message authentication codes
- Hash functions
- Pseudorandom functions
- Asymmetric schemes for
 - Encryption
 - Signatures
 - Identification
- All two levels standard/high; *http://cryptonessie.org*

Other areas in ISO/IEC

- OSI security subcommittee 6, 21
- Smartcards SC17
- Message Handling Services SC18
- Security mechanisms SC 27
 - Group 1 General documents Requirements, Security Services, Guidelines
 - Group 2 Majority of the (technical) work Techniques and Mechanisms
 - Group 3 Security evaluation criteria

Application areas

- Banking security
 - Standards of ISO TC68
 - ANSI X9 authentication, key management, public-key cryptography
- Cryptographic modules FIPS 140-1 (2)
- Trusted Third Parties
- Electronic payments

Evaluation criteria

- USA late 60s and 70s need to minimize costs for individual evaluations
- 1985 Trusted Computer System
 Evaluation Criteria "Orange Book"
 - D class no security
 - A1 highest security (mathematical formalism)

Development of criteria

- Europe ITSEC separation of functionality and assurance
- Canada CTCPEC functionality separated into confidentiality, integrity, accountability, and availability
- US Federal Criteria development halted
- Common Criteria worldwide standard
 ISO/IEC 15408

Common Criteria

- Interests of users, manufacturers, evaluators
- Target of evaluation (TOE) what is (to be) evaluated
- Protection profile (smartcards, biometrics, etc.)
 Catalogued as a self-standing evaluation document
- Security target (ST) theoretical concept/aim
- Evaluation of TOE is the reality corresponding to theory (ST)?
- Functional and Assurance requirements

Importance of criteria

• Eases application and use of secure systems – easier comparison and choice-to-fit

• Eases specification of requirements

• Easier design and development

BS7799

- Code of Practice for Information Security Management – 1995
- Specification for Information Security Management Systems – 1998
- Update of both in 1999
- ISO/IEC standard 17799

Information dominance

 Aim: Reaching own information dominance: having the right information at the right place in the right time.

2. Aim (offensive): Limit the other party in reaching full information dominance.

One step after another...

- 1. Risk analysis
- 2. Specification of security policy and security architecture
- 3. Design and implementation of security mechanisms
- 4. Support, maintenance, control, reevaluation (back to 1...)

Risk

- **Risk** The probability that a particular threat will exploit a particular vulnerability of the system.
- Risk analysis The process of identifying security risks, determining their magnitude, and identifying areas needing safeguards.
 Risk analysis is a part of risk management.

Risk analysis

- Often rather risk assessment less formal and rigorous process
- Quantitative vs. qualitative
- Quantitative
 - Easy to understand the results
 - Results usually in \$\$\$ (risk exposure)
- Qualitative
 - Discrete scale (not \$\$\$)
 - Easy to automate, not that easy to understand the results

Analysis of IS in general

- Often based on BS7799
- Comparison of risks and controls
 - Use of defined scale
 - Does not value assets
- Asset-based evaluation
 - For companies critically dependent on IT and those with a bit more complicated structure. A one-man shop can do things rather informally, comparing risks and controls.

Risk analysis – ALE method

 Annual Loss Expectancy (sometimes called Estimated Annual Cost – EAC)

• $ALE = SLE \times ARO$

- SLE Single Loss Exposure
- ARO Annualized Rate of Occurrence

Problems of quantitative risk analysis

- Unreliability and inaccuracy of the data used.
- Probability is hardly precise.
- Expectations based on data from the past can lead to ungrounded complacency.
- Countermeasures and controls can address some events that are inter-related.

Principle of qualitative risk analysis

Impact Probability	Low (10)	Medium (50)	High (100)
High (1.0)	Low (10)	Medium (50)	High (100)
Medium (0.5)	Low (5)	Medium (25)	High (50)
Low (0.1)	Low (1)	Low (5)	Low (5)

Risk analysis – BPA

- Business Process Analysis
- Broader view of risks, not just IT
- Some IT risks might not be identified if they do possibly not impact a business process
- Outputs
 - map of processes and their descriptions
 - Table of risks (qualitative) and controls
 - Recommendations

CRAMM

- 1985 UK Government Risk Analysis and Management Method
- Structured three-stage approach
 - Identify and value assets
 - Assess the threats and vulnerabilities to the assets
 - Select appropriate recommended countermeasures
- Very complex analysis (need for time and trained specialists, use of special software).

Risk analysis – notes

- Information collection questionnaires, interviews
- Control of completeness formal checks, experience of the evaluator (!!!)
- Processing of inputs (semi-automated)
- Report with suggestions for risk reduction or even elimination

Incidents caused by

- Errors (not intended to happen): 50-70%
- Natural/utility influence: 10-15%
- Malicious software: 5-10%
- Intentional sabotage/attack/corruption by own/past employees/members: 10-20%
- External attackers: 1-5%

Impact of incidents is yet another issue!

Role of IT security manager

- Experience with IT security very important
- Art of persuasion critical!
- Experience: 60% management skills, 40% security expert skills
- Very demanding and challenging position
 Criticized for incidents
 - Criticized for obstructions to "normal" processes
 - Can be appreciated for "nothing happening"? ③

Security is not just prevention

1. Prevention (protection)

2. Detection

3. Reaction

Security policy

- VERY IMPORTANT for improving the (IT) security in any company
- Company *business goals* → IT goals → IT security goals
- Helps with
 - Setting priorities (for IT, security departments)
 - Long-term goals vs. short-term goals
 - Improvement of services (vs.) company survival(!)
 - Getting management support and assuming direct responsibilities

Security policy and company culture

- The best security mechanisms are useless without effective support of all parties involved
- End-users must be trained and interested
- Management must be involved (or better lead!)
- Security is a process, not a product

Recommended reading this week

• Paper "*Trends in Government Endorsed Security Product Evaluations*", RE Smith

http://csrc.nist.gov/nissc/2000/proceedings/papers/032.pdf