PV181: Training 5 — Java Card technology

Javacard overview

Sun Microsystems published the Java Card Platform Specification and the Java Card
Development Kit, which includes a reference implementation based on the specification. The
aim is to provide the basis for cross-platform and cross-vendor applet interoperability. The
current version of the JavaCard specification is 2.2.1 [JC221]. JavaCard applet is Java-like
application that is uploaded to a smart card and is executed by the Java Virtual Machine on
the smart card.

%

=]

IavaCandPAppler i RRava CardAPpler (V)OPAP)

[T

Frameworlc APIS Applet Manager

Java Card Virtual Machine

Natives Layers

Hardware : CPU + Memories + [0

Figure 1 - JavaCard architecture overview

Java Card applications are compiled using common Java compilers. Due to limited memory
resources and computing power, Java Cards do not support:

dynamic class loading,

security manager,

threads and synchronization,

garbage collection and object cloning,

finalization,

large primitive data types (float, double, long and char) and

some classes (most of the java.lang, Object and Throwable in limited form).

JavaCard security
The main security features of Java Card include:

All the benefits of the Java language: data encapsulation, safe memory management,
packages, etc.

Applet isolation based on the Java Card firewall: applets cannot directly communicate
with each other. Special interface for sharing objects Shareable must be implemented
to allow cross applets interaction.

Atomic operations using transaction mode: JCSystem.beginTransaction(),
commitTransaction(), abortTransaction().

Transient data, which guarantees that sensitive session data is wiped out:
JCSystem.makeTransientByteArray().

A rich cryptography API for encryption, digital signatures and message digests.

Secure communication with the card reader, if the card is Open Platform compliant
(secure messaging, security domains).

Creating a JavaCard applet (GemXpressoRADIII, JBuilder?7)

The aim of this text is to create and compile a simple JavaCard applet. Detailed information
can be found in JavaCard API documentation. Described techniques use GemXpresso
RADIII and its plug-in into Borland JBuilder7.

Required development tools
- Development environment (IDE) for Java language (e.g. Borland JBuilder7)

- GemXpresso RADIII. Contains plug-in for JBilder7 and management environment
JCardManager for loading applets onto smart card, sending APDU commands etc.

- JavaCard Development Kit 2.1.2

General information
Whole process consists of four logical steps:

1. Creation of the applet as a descendant of the class javacard.framework.Applet in
arbitrarily development environment for Java language with respect to restrictions of
the JavaCard platform (restricted primitive types, only basic classes from javacard.*
package). Compilation using general Java compiler into *.class.

2. Conversion of *.class into *.jar using JavaCard converter. The code can be checked
using JavaCard Off-Card Verifier for correctness (not necessary for testing purposes).

3. Loading file *.jar onto the smart card, installation of the included applet and
registration in operating system of smart card. Done using appropriate interface like
OpenPlatform.

4. Repeated usage of the installed applet. During the first step, applet with the given AID
(unique identifier) is selected as the active one using SELECT command. All
subsequent APDU commands are directly passed to the active applet.

Source code, compilation

Using wizard File->New...->Gemplus->JavaCard applet, a class with a selected name
(-Applet name") is created. Set element type to ,JavaCard Open Platform Applet”, insert
unique identification of package (,Package AID") and unique identification of applet (,Applet
AIDY). In the next step, select the type of the card for which the conversion will be performed.

The result is a skeletal code of the applet that can be compiled and uploaded onto smart
card immediately. The skeletal code contains basic functionality required for installation and
registration of applet in the operating system of smart card.

Applet contains the following methods:

- protected applet_name(byte[] buffer, short offset, byte length) (constructor). It is
called from the install method only once during installation of applet. It is preferable to
initialize all needed structures, allocate all needed memory and objects that will be
required by applet in the body of this method (memory can be already occupied later)

- public static void install(byte[] bArray, short bOffset, byte bLength). This method is
called only once during the installation of the applet. Perform only calling of applet
constructor.

- public boolean select(). This method is called every time, when somebody tries to
select this applet as the active one. Selection of an applet can be suppressed in this
method by returning false value, for example because a required condition is not
satisfied. Needed structures can be initialized or security conditions reset here. This
method is called every time before applet can be used.

- public void deselect(). This method is called when the terminal sends a command to
set the applet as inactive (incoming commands will not be sent to this applet any

more until new select command is sent). It can be used for the cleanup of the code.
WARNING: There is no guarantee that this method will be called! The method is
called only during a correct deactivation of the applet, but not when smart card is
suddenly removed from reader. That is why it is highly recommended to perform
cleanup and initialization in the select() method.

- public void process(APDU apdu) . This method serves as the entrance gate for all
APDU commands (except system-reserved) received by the card after SELECT
command. Is properly to define own class of instructions (CLA), test the header of
incoming APDU to this class value and return exception
ISO7816.SW_CLA_NOT_SUPPORTED if it does not match. Branching based on the
value of the INS parameter is performed using the switch statement and the APDU
command (APDU object) is passed to the appropriate method. Actions inside
process() method are under control of the applet programmer.

public class Foo extends javacard.framework.Applet
protected Foo(byte[] buffer, short offset, byte length) {
// allocation of required memory and objects, initialization of structures
m_byteArray = JCSystem.makeTransientByteArray((short) 128, System.CLEAR_ON_DESELECT);
// registration of instance
}
public static void install(byte[] bArray, short bOffset, byte bLength) throws ISOException {
new Foo (bArray, bOffset, (byte)bLength);
}
public boolean select() {
// <PUT YOUR SELECTION ACTION HERE>
// return status of selection
return true;
}
public void deselect() {
// <PUT YOUR DESELECTION ACTION HERE>
return;
}
public void process(APDU apdu) throws ISOException {
// get the APDU buffer
byte[] apduBuffer = apdu.getBuffer();

// ignore the applet select command dispached to the process
if (selectingApplet()) return;

if (apduBuffer[ISO7816.0FFSET_CLA] == INS_CLA FOO) {
// APDU instruction parser
switch (apduBuffer[ISO7816.0FFSET _INS]) {
case INS_CARD_SET_KEY: SetKey(apdu); break;
case INS_CARD_COPYINPUT: Copylnput(apdu); break;
default: 1ISOException.throwlt(ISO7816.SW_INS_NOT_SUPPORTED); break;
}

}
else ISOException.throwlt(1ISO7816.SW_CLA NOT_SUPPORTED);

Other methods can be defined as needed and are called from the process() method. If there
is a need to work with incoming/outgoing data (usual), the following structure of the method
is needed:

void Test(APDU apdu) {
// reading of APDU header that contains CLA, INS, P1, P2, LC
byte[] apdubuf = apdu.getBuffer();

// reading of incoming data (relevant only when LC > 0)
short dataLen = apdu.setincomingAndReceive();

// manimulating header (e.g. reading of CLA and P1)
byte cla = apdubuf[ISO7816.0FFSET_CLA];
byte p1 = apdubuf[1SO7816.0FFSET_P1];

// sending the content of m_testArray with length ARRAY_LENGTH to SC output
Util.arrayCopyNonAtomic(apdubuf, 1ISO7816.0FFSET_CDATA, m_testArray, (short) O,
ARRAY_LENGTH);

apdu.setOutgoingAndSend(1SO7816.0FFSET_CDATA, ARRAY_LENGTH);

The applet is compiled using Project->Make project and converted into a smart card
compatible format. The conversion starts using the Convert command from the plug-in menu
added by the GemXpresso RADIII into environment (viz. Pict. A-2). This menu can be also
used for maodification of settings of project, adding new types of card for conversion etc.

ackTester,/AttackTesterMain.java

am Wizards Tools Window Help gEE

| % ‘M S 2 R ‘ga @:‘ £=1 Edit Germpressa Praject...
T Edit Gemxpresso Deployment...

- oy AftackTesterMain | 507
J,l'**

% Copyright (c) 2000

B e e e e eE=GsE |l
* Project name : Eev File Editar

* 2 About... -

*

* FPlatform : Java virtual machine

% Language : l.3.0-C

% Dewl tool : Borland (c) JBuilder 5.0 and 6.0

*

Pict. A-2: Conversion of compiled code for smart card.

Applet uploading, installation

In this step we assume, that we already have compiled and converted the applet (files *.jar or
*.sap (for smart card simulator)).

1. Run JCardManager environment
2. Insert the smart card or run the smart card simulator (Tools->Gse Gui)
3. Switch to tab OP 2.0.1

4. Authenticate against the smart card (,Authenticate” command). Smart cards used
for testing purposes have the default file containing authentication information
(diversification keys - e.g. for GXPPro-R3 the file D:\Program
Files\Gemplus\GemXpresso.rad3\resources\targets\GXPPro-R3.properties)

5. If older version of applet with same AID is already present on the card, it must be
removed using “Delete” command. Instances of the applet must also be removed.
Remove instances of the applet FIRST and the package as SECOND. The
package with active instance cannot be removed.

6. Upload the new package with your applet using “Upload file into a card*“

command. Set the path to package (*.jar or *.sap) and unique identification of the
package ,Package AID".

7. Install applet. ,Package AID" (see step 6.), ,Applet AID* and ,Instance AID* must

be filled. Last two can be same. During installation, install() method of applet of
your applet is invoked.

That steps will finish the installation of the applet and the applet is ready for use. The applet
will resist on the smart card until it is explicitly removed. If the smart card simulator is used
without saving the internal state (“clean” card every time), installation must be performed

every time. Steps from 4 to 7 can be automated using GemXpresso Deployment
(Deployment->New...).

@Gem!presso RAD - DeploymentEditor 3.2 - |EI|1|
~Deployment file

EiDevelopittackTesterAttackTester oxd

[GXPPro-R3 [GXPELL_PK_IS

& futhenticate ~Target File
% Delete
42 Delete [] set default card property file
] Unload file into a card [DPrograr FilesiGemplusiGernixpressa.rad3iresourcesitargetsIGKPPro-R 3. properties | @
| N Install
E: Select ~Key Information ecurity Lewel
Tse the default target key set version [w] () Encipher and MAC
Or use the following key set version ' MAC
Eey index in set IE % No Security

—Application Selection

) Currently selected application

® Uze the Security Domain of the target file
) User

S [v]

‘ 0Ok || Cancel || Help ‘

Pict. A-3: GemXpresso Deployment.

Communication with applet

Installed applet with AID (e.g.. ‘41 74 74 61 63 6B 54 65 30 30 30 31') is assumed in this
part. Switch to tab OP 2.0.1.

1. Send ,Select* command with AID of applet (41 74 74 61 63 6B 54 65 30 30 30 31).
Return status <- 90 00 in log windows should be displayed as a confirmation of the
successful selection of the applet as being active.

2. Send your commands using ,Send APDU" with parameters filled according to your
needs. Card responses can be found in the log window.

Debugging using JBuilderu7 and Gemplus Simulator

The debugging process of a real smart card is difficult as there’s no possibility to perform
debug steps using the source code, no trace output can be displayed etc. GemXpresso
RADIII environment contains a possibility to run smart card simulator for a particular type of a
real smart card with debug features enabled. The debugging can be performed directly from
Borland JBuilder7:

1. In project settings Project->Project Properties...->Run set item ,Main class" to
‘com.gemplus.javacard.gse.Simulator* and ,Application parameters* to ‘-port 5000 -
card GXPPro-R3' (GXPPro-R3 smart card will be simulated). For different type of
card change string after -card statement and ALSO change type of linked library of
simulator in Project->Project properties->Required libraries->GSE...

2. Compile and convert applet as usual.

3. Set breakpoints to the required positions in the code and run Run->Debug project. A
simulator of the selected card is launched (GXPPro-R3 in our case). The type of the
launched card is displayed in the log window of JBuilder7.

4. Upload and install the applet onto the simulator using the JCardManager and send
Select command.

5. Send APDU that cause invocation of the method with our breakpoint.

JavaCard applet for PIN verification
The sample applet implements the following logical steps:
e Allocation of PIN object (OwnerPIN())
¢ |Initial setting of the secret value of PIN (OwnerPIN.update())
o Verification of the correctness of the supplied PIN (OwnerPIN.check())
e Get remaining tries of PIN verification attempts (OwnerPIN.getTriesRemaining())

e Set tries counter to maximum value and unblock blocked PIN.
(OwnerPIN.resetAndUnblock())

// CREATE PIN OBJECT (try limit == 5, max. PIN length == 4)

OwnerPIN m_pin = new OwnerPIN((byte) 5, (byte) 4);

// SET CORRECT PIN VALUE

m_pin.update(INIT_PIN, (short) 0, (byte) INIT_PIN.length);

// VERIFY CORRECTNESS OF SUPPLIED PIN

boolean correct = m_pin.check(array_with_pin, (short) 0, (byte) array_with_pin.length);
// GET REMAING PIN TRIES

byte j = m_pin.getTriesRemaining();

// RESET PIN RETRY COUNTER AND UNBLOCK IF BLOCKED

m_pin.resetAndUnblock();

JavaCard applet for encryption of the supplied data
The sample applet implements the following logical steps:

e Allocation and initialization of the key object (KeyBuilder.buildKey())

e Set key value (DESKey.setKey())

¢ Allocation and initialization of the object of cipher (Cipher. getinstance(), Cipher. init())
e Receive incoming data (APDU.setincomingAndReceive())

e Encrypt or decrypt data (Cipher.update(), Cipher.doFinal())

e Send outgoing data (APDU. setOutgoingAndSend())

// ... INICIALIZATION SOMEWHERE (IN CONSTRUCT)
// CREATE DES KEY OBJECT

DESKey m_desKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES, KeyBuilder.LENGTH_DES,
false);

// SET KEY VALUE
m_desKey.setKey(array, (short) 0);

// CREATE OBJECTS FOR ECB CIPHERING

m_encryptCipher = Cipher.getinstance(Cipher.ALG_DES_ECB_NOPAD, false);
// INIT CIPHER WITH KEY FOR ENCRYPT DIRECTION
m_encryptCipher.init(m_desKey, Cipher.MODE_ENCRYPT);

/...

// ENCRYPT INCOMING BUFFER
void Encrypt(APDU apdu) {
byte[] apdubuf = apdu.getBuffer();
short dataLen = apdu.setincomingAndReceive();

// CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)
if ((dataLen % 8) != 0) ISOException.throwlt(SW_CIPHER_DATA_LENGTH_BAD);

// ENCRYPT INCOMING BUFFER
m_encryptCipher.doFinal(apdubuf, ISO7816.0FFSET_CDATA, dataLen, m_ramArray, (short) 0);

// COPY ENCRYPTED DATA INTO OUTGOING BUFFER
Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.0FFSET_CDATA, datalLen);

// SEND OUTGOING BUFFER
apdu.setOutgoingAndSend(1SO7816.0OFFSET_CDATA, datalLen);

JavaCard applet for hashing of the supplied data

JavaCard 2.2.1 standard describes hashing functions MD5, SHA-1 and RIPEMD160. Not all
can be implemented by a particular smart card.

The sample applet implements the following logical steps:
e Allocation of the hashing object (MessageDigest.getinstance())

¢ Reset internal state of hash object (MessageDigest. reset ())
e Update intermediate hash value using incoming array (MessageDigest.update())
¢ Finalize and read hash value of data (MessageDigest.doFinal())

// CREATE MD5 OBJECT
MessageDigest m_md5 = MessageDigest.getinstance(MessageDigest.ALG_MD5, false);

// RESET HASH ENGINE

m_md5.reset();

// PROCESS ALL PARTS OF DATA

while (next_part _to_hash_available) {

m_md5.update(array_to_hash, (short) 0, (short) array_to_hash.length);

}

// FINALIZE HASH VALUE (WHEN LAST PART OF DATA IS AVAILABLE)

// AND OBTAIN RESULTING HASH VALUE

m_md>5.doFinal(array_to_hash, (short) O, (short) array to_hash.length, out_hash_array, (short) 0);

Homework

Create a JavaCard applet capable to encrypt file on PC hardisk by on-card encryption only
(no key is transferred to PC, encryption of all blocks is performed on smart card). Use DES
algorithm in CBC mode. Note, that file size can be bigger than data that can be send in one
APDU (~260B), so multiple APDUs may be required. Process should consist:

1. Read first block from file to be encrypted (~260B).
2. Send block to card.

3. Encrypt block on card and return ciphertext.

4. Save ciphertext as part of encrypted file.

5. Read next block from file and continue with step 2.

Use P1 of APDU header in step 2. to signalize last block. Use Cipher.update() to encrypt
incoming data in APDU except the last block. Use Cipher.doFinal() to encrypt last block.

	PV181: Training 5 – Java Card technology
	Javacard overview
	JavaCard security

	Creating a JavaCard applet (GemXpressoRADIII, JBuilder7)
	Required development tools
	General information
	Source code, compilation
	Applet uploading, installation
	Communication with applet
	Debugging using JBuilderu7 and Gemplus Simulator
	JavaCard applet for PIN verification
	JavaCard applet for encryption of the supplied data
	JavaCard applet for hashing of the supplied data
	Homework

