ATOL: Filesystems and Their Management

Marek Grác xgrac@fi.muni.cz

Red Hat Czech s.r.o. / Faculty of Informatics, Masaryk University

Advanced Topics of Linux Administration

Creating partiotions

- ► fdisk, cfdisk view and manage partition tables
- List partition tables from command line
- partprobe inform the OS of partition table changes
- cat /proc/partitions

Making Filesystems

- mkfs
- mkfs.ext2, mkfs.ext3, mkfs.msdos
- Specific filesystem utilities can be called directly
 - mke2fs [options] device

Filesystem Labels

- Alternate way to refer to devices
- ► Device independent
 - e2label devfile [fslabel]
 - mount [options] LABEL=fslabel mountpoint
- blkid used to see labels and filesystems type of all devices

Mount Points and /etc/fstab

- Configuration of the filesystem hierarchy
- Used by mount, fsck and other programs
- Maintains the hierarchy between system reboots
- May use filesystem volume labels in the device field
- ► The *mount -a* command cen be used to mount all filesystems listed in /etc/fstab

Unmounting Filesystems

- umount [options] device—mountpoint
- ▶ You cannot unmount a filesystem that is in use
 - ▶ Use *fuser* to check and/or kill processes
- Use the remount option to change a mounted filesystem's options atomically
 - mount -o remount,ro /data

Handling Swap Files and Partitions

- Swap space is a suppplement to system RAM
- Basic setup involves:
 - Create a swap partition or file
 - Write special signature using mkswap
 - Add appropriate entries to /etc/fstab
 - Activate swap space with swapon -a

Software RAID Configuration

- Create and define RAID devices using mdadm
 - mdadm -C /dev/md0 -a yes -l 1 -n 2 -x 1 elements
- ► Format each RAID device with a filesystem
 - mke2fs -k /dev/md0
- Test the RAID devices
- allows to check the status of your RAID devices
 - mdadm –detail /dev/md0

Software RAID Testing and Recovery

- Simulating disk failures
 - mdadm /dev/md0 -f /dev/sda1
- Recovering from a software RAID disk failure
 - replace the failed hard drive and power on
 - reconstruct partitions on the replacement drive
 - mdadm /dev/md0 -a /dev/sda1
- mdadm, /proc/mdstat and syslog messages

What is Logical Volume Manager?

- ▶ A layer of abstraction that allows easy manipulation of volumes. Including resizing of filesystems.
- Allow reorganization of filesystems across multiple physical devices
 - Devices are designated as Physical Volumes (PV)
 - One or more PV are used to create a Volume Group (VG)
 - PV are defined with Physical Extents of a fixed size
 - Logical Volumes (LV) are created on PV and are composed of Physical Extents
 - Filesystems may be created on Logical Volumes

Creating Logical Volumes

- Create physical volumes
 - pvcreate /dev/sda3
- Assign physical volumes to volume groups
 - vgcreate vg0 /dev/sda3
- Create logical volumes from volume groups
 - ▶ lvcreate -L 256M -n data vg0
 - mke2fs -j /dev/vg0/data

Resizing Logical Volumes

- Growing Volumes
 - Ivextend can grow logical volumes
 - resize2fs can grow EXT3 filesystems online
 - vgextend adds new physical volumes to an existing volume group
- Shrinking Volumes
 - Filesystem have to be reduced first
 - Requires a filesystem check and cannot be performed online
 - Ivreduce can then reduce volume
- Volume Groups can be reduced with:
 - pvmove /dev/sda3
 - vgreduce vg0 /dev/sda3

Lab: Installation

- ▶ Goals:
 - Deploy LVM on the software RAID device
 - Create a group with two partitions such that new partition could be added, and the filesystem could be extended

Lab: Prepare a paper

- ▶ Themes:
 - Compare software and hardware RAID
 - ► Compare filesystems in Linux (ext2, ext3, reiser, gfs, ...)
- Format:
 - ▶ Short presentation (15–20 minutes; 5-7 slides)
 - Paper containing comparision (500 words)