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Abstract
We propose a novel approach to proving the termination of heap-
manipulating programs, which combines separation logic with
cyclic proof within a Hoare-style proof system. Judgements in
this system express (guaranteed) termination of the program when
started from a given line in the program and in a state satisfying a
given precondition, which is expressed as a formula of separation
logic. The proof rules of our system are of two types: logical rules
that operate on preconditions; and symbolic execution rules that
capture the effect of executing program commands.

Our logical preconditions employ inductively defined predicates
to describe heap properties, and proofs in our system are cyclic
proofs: cyclic derivations in which some inductive predicate is un-
folded infinitely often along every infinite path, thus allowing us to
discard all infinite paths in the proof by an infinite descent argu-
ment. Moreover, the use of this soundness condition enables us to
avoid the explicit construction and use of ranking functions for ter-
mination. We also give a completeness result for our system, which
is relative in that it relies upon completeness of a proof system for
logical implications in separation logic. We give examples illustrat-
ing our approach, including one example for which the correspond-
ing ranking function is non-obvious: termination of the classical
algorithm for in-place reversal of a (possibly cyclic) linked list.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of programs

General Terms Verification, theory, reliability

Keywords separation logic, termination, cyclic proof, program
verification, inductive definitions, Hoare logic

1. Introduction
Termination is an essential requirement of many computer pro-
grams yet, as every undergraduate computing student learns, decid-
ing whether a particular program terminates on a given input is, in
general, impossible. Thus research into proving program termina-
tion must focus on the development of appropriate frameworks and
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proof search heuristics for termination proofs for various classes of
program. In this paper, we give a proof system, based upon separa-
tion logic and employing the method of cyclic proof, that is tailored
towards proving termination of simple imperative programs.

Many important computer programs in use today are written in
low-level imperative languages, and the ability to establish termi-
nation of such programs is thus clearly desirable. However, imper-
ative programs have often proven resistant to formal analysis, at
least partially due to the difficulty of reasoning about their use of
pointer arithmetic and similar operations that operate on data stored
in shared structures, such as the heap. Recently, separation logic
was developed to help overcome this impasse by providing logical
tools to reason about shared, mutable resource (Reynolds 2002).
As well as the usual additive connectives of first-order logic, sepa-
ration logic employs multiplicative connectives to express proper-
ties involving heap resource. The multiplicative conjunction ∗ de-
notes a division of the heap into two parts in which each conjunct
holds respectively, and the multiplicative implication —∗ expresses
a property of resource addition: if an arbitrary heap satisfies the
antecedent formula and is disjoint with the current heap, then the
combined heap satisfies the consequent formula. Separation logic
has successfully underpinned several program verification applica-
tions to date, including the Smallfoot automated tool (Berdine et al.
2006a), local shape analysis (Distefano et al. 2006; Calcagno et al.
2006), inductive recursion synthesis (Guo et al. 2007), total cor-
rectness proofs of non-trivial algorithms (Torp-Smith et al. 2004;
Bornat et al. 2004) and, pertinently for our purposes, automated
termination checking (Berdine et al. 2006b).

Existing work on program verification in separation logic has
relied on the identification and use of suitable inductive defini-
tions to express shape properties of the heap (at some given point
in the execution of the program). A recent paper by the first au-
thor (Brotherston 2007) developed a general framework for induc-
tive definitions in O’Hearn and Pym’s logic of bunched implica-
tions BI (O’Hearn and Pym 99), which underlies the pure-logical
part of separation logic, and gave proof systems for the extension,
including an appropriate notion of cyclic proof. For logics featur-
ing inductive predicates or similar fixed-point constructions, cyclic
proof provides an alternative to traditional inductive proof, mod-
elled on Fermat’s infinite descent (Brotherston 2006; Brotherston
and Simpson 2007; Sprenger and Dam 2003). In the case of induc-
tively defined relations, one way of stating this principle is: if in
some case of a proof some inductive definition is unfolded infinitely
often, then that case may be disregarded. Essentially, this principle
is sound because each inductive definition has a least-fixed point
interpretation which can be constructed as the union of a chain
of approximations, indexed by ordinals; unfolding a definition in-
finitely often can thus be seen as inducing an infinite descending
chain of these ordinals, which contradicts their well-foundedness.
In cyclic proof systems, the capacity for unfolding a definition in-
finitely often is built in to the system by allowing proofs to be non-
well-founded, i.e. to contain infinite paths. Such proof structures
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are, in general, unsound, so a global “well-formedness” condition
is additionally imposed on proofs to ensure that every infinite path
can be disregarded by the infinite descent principle outlined above.
The portion of proof that is not disregarded by this principle is thus
finite, and sound for standard reasons.

Our main contribution in this paper is the formulation of a cyclic
proof system tailored to proving termination of programs written
in a simple, yet relatively expressive imperative programming lan-
guage. Given some fixed program, the judgements of this system
express guaranteed (non-faulting) termination of the program when
started from a given line in the program and in a state satisfying a
given precondition, which is expressed as a formula of separation
logic. The proof rules of the system are of two types: logical rules
that operate on the precondition, and symbolic execution rules that
simulate program execution steps. Thus, a program execution path
corresponds to a path in a derivation, interleaved with logical infer-
ences.

A program terminates just if no infinite computation is pos-
sible, i.e. if all potentially infinite computations can be dismissed
as logically contradictory. An instance of this principle is the size
change principle for program termination of Lee, Jones and Ben-
Amran, which states that a program is terminating if every infi-
nite computation induces an infinite descending sequence of values
from a well-ordered set (Lee et al. 2001). Here, we employ the ex-
isting techniques of cyclic proof (Brotherston 2007, 2006, 2005;
Sprenger and Dam 2003; Schöpp and Simpson 2002) to consider
and then dismiss potentially infinite computations in the manner
described above. A cyclic pre-proof in our system is formed from
partial derivation trees by identifying every ‘bud’ (a node to which
no proof rule has yet been applied) with a syntactically identical
interior node, so that pre-proofs can be immediately understood as
cyclic graphs in which infinite program computations correspond
to infinite proof paths. To ensure that all such computations can
be disregarded, we demand that, to count as a bona fide cyclic
proof, a pre-proof must satisfy a global trace condition which for-
malises the fact that some inductively defined predicate is unfolded
infinitely often along every infinite path. This ensures the sound-
ness of our cyclic proofs. Moreover, the use of this condition means
that we do not need to construct explicit ranking functions for ter-
mination. Indeed, it appears possible to construct cyclic termina-
tion proofs for which it is difficult to construct or deploy a ranking
function.

The remainder of this paper is structured as follows. In Section 2
we give the syntax and small-step semantics of a simple imperative
programming language, TOY-C, which is nonetheless sufficient to
express many pointer-based algorithms. In Section 3, we give the
syntax and semantics of our language for program preconditions,
which is an extension of separation logic with a schema for induc-
tive definitions as given in Brotherston (2007). In Section 4, we give
the rules of our proof system for termination, and then proceed to
formalise the notion of a cyclic proof in this system in Section 5,
(along very similar lines to the notions of cyclic proof employed
in Brotherston (2007, 2006)). We provide a soundness theorem and
also a relative completeness theorem for our system, the latter result
demonstrating that the question of provability of a valid judgement
in our system can always be reduced to the question of provability
of a valid logical judgement in pure separation logic. In Section 6,
we give some sample termination proofs in our cyclic system, in-
cluding one example — the in-place reversal of a cyclic linked list
— for which the termination measure is far from obvious. Finally,
in Section 7 we summarise and identify the directions for future
work.

2. TOY-C: a small imperative programming
language

In this section we give the syntax and semantics of a toy program-
ming language, TOY-C, that nevertheless contains the following
essential features: conditional branching; assignment; dereferenc-
ing; and memory allocation/deallocation. This allows us to deal
with manipulation of the heap, the traditional domain of separa-
tion logic, but the cyclic proof method applies to a far wider range
of programs than we can consider here.

We assume the existence of a denumerably infinite set Var of
variables, and a first-order language Σexp, called the expression
language, satisfying Σexp ⊇ Var and containing a distinguished
constant symbol nil. The expressions E of TOY-C are just the
terms (defined as usual) of the expression language. The syntax of
branching conditions Cond and atomic commands C is then given
by the following grammar:

Cond ::= E = E | E 6= E
C ::= x := E | x := [E] | [E] := E | x := new()

| free(E) | ifCond goto j | stop

where x := [E] and [E] := F access and assign to the heap cell
with addressE. A program in TOY-C is a finite sequence of indexed
commands 1 : C1; · · · ;n : Cn (we say that Ci is the command at
program point i). We write the command goto j as an abbreviation
of if nil = nil goto j.

We give the semantics of TOY-C programs using a basic RAM
model. We fix a set Val of (program) values and a set Loc ⊂ Val
of (program) locations, and assume a distinguished “nullary” value
nil ∈ Val−Loc. A stack in this model is a function s : Var→ Val,
and a heap is a partial, finitely-defined function h : Loc ⇀fin Val;
we write Stacks and Heaps for the set of all stacks and the set of all
heaps respectively. We write s[x 7→ v] for the stack defined exactly
as s except that (s[x 7→ v])(x) = v, and adopt a similar notation
for heaps. We write ◦ to denote composition of heaps: if h1 and
h2 are heaps with dom(h1) ∩ dom(h2) = ∅, then h1 ◦ h2 is the
composite heap defined by:

(h1 ◦ h2)(l) =

 h1(l) if l ∈ dom(h1)
h2(l) if l ∈ dom(h2)
undefined otherwise

The interpretation [[E]]s of an expression E in a stack s is
standard: [[nil]]s = nil and [[x]]s = s(x) for any x ∈ Var
(given some fixed interpretation for any function symbols in the
expression language, s can then be extended to all expressions
in the usual way). Similarly, for branching conditions, we have
s ∈ [[E1 = E2]] iff [[E1]]s = [[E2]]s, and s ∈ [[E1 6= E2]] iff
[[E1]]s 6= [[E2]]s.

A (program) state in our model is a triple (i, s, h), where i ∈ N
represents the next line of the program to be executed (i.e. the value
of the program counter), s is a stack and h is a heap. The small-step
semantics of programs, presented in Figure 1, is given by a binary
relation  on program states, with the intended meaning that
(i, s, h)  (i′, s′, h′) holds if the execution of the next command
in the state (i, s, h) can result in the new program state (i′, s′, h′).
We write (i, s, h)↓ iff there is no infinite  -sequence beginning
with (i, s, h)  . . ., i.e. iff the program terminates when started
in the state (i, s, h). When a command tries to access unallocated
memory, the execution continues from the special location fault ,
and loops. This effectively equates memory errors and divergence.
(Note also that the absence of a case for stop in the small-step
semantics implies that our programs terminate immediately on
encountering a stop command.)
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Ci ≡ x := E

(i, s, h) (i+ 1, s[x 7→ [[E]]s], h)

Ci ≡ x := [E] [[E]]s ∈ dom(h)

(i, s, h) (i+ 1, s[x 7→ h([[E]]s)], h)

Ci ≡ [E] := E′ [[E]]s ∈ dom(h)

(i, s, h) (i+ 1, s, h[[[E]]s 7→ [[E′]]s])

Ci ≡ x := new() ` ∈ Loc \ dom(h) v ∈ Val

(i, s, h) (i+ 1, s[x 7→ `], h[` 7→ v])

Ci ≡ free(E) [[E]]s ∈ dom(h)

(i, s, h) (i+ 1, s, (h � (dom(h) \ {[[E]]s}))

Ci ≡ ifCond goto j s ∈ [[Cond]]

(i, s, h) (j, s, h)

Ci ≡ ifCond goto j s 6∈ [[Cond]]

(i, s, h) (i+ 1, s, h)

(fault , s, h) (fault , s, h)

Ci ≡ x := [E] | [E] := E′ | free(E) [[E]]s /∈ dom(h)

(i, s, h) (fault , s, h)

Figure 1. Small-step operational semantics of TOY-C, given by the binary relation over (N× Stacks× Heaps).

Example 2.1 (List traversal program). Consider the C-like pro-
gram for traversing a linked list:1

while (x!=nil) x:=[x];

The equivalent TOY-C program can be written as follows:

1: ifx = nil goto 4; 2 : x := [x]; 3 : goto 1; 4 : stop

Clearly this program terminates if the heap consists of an acyclic,
singly-linked list whose first node is pointed to by x and whose
last node contains the null pointer nil (because the length of the list
remaining to be traversed clearly decreases at each iteration of the
loop, and is initially finite). We give a formal proof in Section 6.

Our language has the termination monotonicity property (see
Yang and O’Hearn (2002)). If a program terminates in a heap h
then it terminates in every extension of h.

Proposition 2.2 (Termination monotonicity). If (i, s, h)↓ and h◦h′
is defined then (i, s, h ◦ h′)↓.

Proof. (Sketch) By contraposition, it suffices to show that the exis-
tence of an infinite -sequence starting from (i, s, h ◦ h′) implies
the existence of an infinite -sequence starting from (i, s, h). This
follows from the following claim:
Claim. If (i1, s1, h1 ◦ h′) (i2, s2, h2) then either:

1. h2 = h′′ ◦ h′ for some h′′, and (i1, s1, h1) (i2, s2, h
′′), or;

2. (i1, s1, h1) (fault, s1, h1).

Then given any infinite -sequence starting from (i, s, h ◦ h′), it
is either the case that no step in this sequence accesses h′, in which
case every step in this sequence can be equally well carried out
starting from (i, s, h), or that some step in the sequence accesses
h′, in which case the equivalent step in the sequence starting from
(i, s, h) causes a fault and thus this sequence immediately diverges.
In either case we have the required infinite  -sequence starting
from (i, s, h).

It only remains to substantiate the claim, which follows from a
straightforward case analysis on (i1, s1, h1 ◦ h′)  (i2, s2, h2).

3. Separation logic with inductive definitions
In this section, we reprise the syntax and semantics of separation
logic extended with a framework for inductive definitions, as given
in Brotherston (2007). This gives us a framework for expressing
heap properties using customised inductive definitions, which will

1 For simplicity, in this and other examples we treat lists which contain
nothing but pointers to successor cells.

be useful later in the expression of suitable preconditions for our
TOY-C programs.

We assume a fixed first-order language Σ, and for reasons of
expressivity stipulate that Σ ⊇ Σexp, i.e., that our logical lan-
guage extends the TOY-C expression language. The terms of Σ
are defined as usual, with variables drawn from the set Var. We
write t(x1, . . . , xk) for a term t all of whose variables occur in
{x1, . . . , xk}, and we often use vector notation to abbreviate se-
quences, e.g. x for (x1, . . . , xk). The interpretation [[t]]s of a term
t of Σ in a stack s is then defined as for expressions (provided we
have given an interpretation for any constant or function symbol
that is not in Σexp

2).
In contrast to the usual situation in first-order logic, but in

keeping with prior developments for first-order logic with induc-
tive definitions (Brotherston 2006), we designate finitely many of
the predicate symbols of Σ as special inductive symbols; a pred-
icate symbol that is not inductive is called ordinary. For each
predicate symbol Q of arity k (say) we assign an intepretation
[[Q]] ∈ Pow(Heaps×Valk). We insist that Σ contains a 0-ary ordi-
nary predicate symbol emp and a binary ordinary predicate symbol
7→, whose interpretations are given respectively by:

[[emp]] = {h | dom(h) = ∅}
[[7→]] = {(h, v1, v2) | dom(h) = {v1} and h(v1) = v2}

Thus the predicate emp denotes the empty heap, while v1 7→ v2
denotes those heaps having exactly one location, which is denoted
by v1 and whose contents are denoted by v2.

Our formulas are the usual formulas of predicate BI3, given by
the following grammar:

F ::= > | ⊥ | emp | Q(t1, . . . , tk) (k = arity of Q) | t1 = t2 |
F ∧ F | F ∨ F | F → F | F ∗ F | F —∗ F | ∃xF | ∀xF

where t1, . . . , tk range over the terms of Σ and Q ranges over
the predicate symbols (both ordinary and inductive) of Σ. We use
the standard precedences on the logical connectives, with ∗ and —∗
having the same logical precedence as ∧ and→ respectively, and
use parentheses to disambiguate where necessary. Also, we write
¬F as an abbreviation of the formula F → ⊥.

We may then define the standard satisfaction relation s, h |= F ,
by induction on the structure of F , as shown in Figure 2. However,
we shall further insist that the interpretation [[P ]] of each induc-
tive predicate symbol P coincides with the standard interpretation,
which is fixed by a given inductive definition for P . Our inductive
definition schema (essentially the one formulated in Brotherston
(2007)) is given by the following definition:

2 Our extension of stacks to arbitrary logical terms is a technical simplifica-
tion. We could instead use stack-extending environments to interpret terms.
3 However, note that here we write emp for the multiplicative unit I of BI.
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s, h |= > ⇔ true
s, h |= ⊥ ⇔ false

s, h |= t1 = t2 ⇔ [[t1]]s = [[t2]]s
s, h |= Q(t1, . . . , tk) ⇔ (h, [[t1]]s, . . . , [[tk]]s) ∈ [[Q]]

(Q ordinary or inductive)
s, h |= F1 ∨ F2 ⇔ s, h |= F1 or s, h |= F2

s, h |= F1 ∧ F2 ⇔ s, h |= F1 and s, h |= F2

s, h |= F1 → F2 ⇔ s, h |= F1 implies s, h |= F2

s, h |= F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and
s, h1 |= F1 and s, h2 |= F2

s, h |= F1 —∗ F2 ⇔ ∀h′. h ◦ h′ defined and s, h′ |= F1

implies s, h ◦ h′ |= F2

s, h |= ∀xF ⇔ ∀v ∈ Val. s[x 7→ v], h |= F
s, h |= ∃xF ⇔ ∃v ∈ Val. s[x 7→ v], h |= F

Figure 2. The relation s, h |= F for satisfaction of a separation
logic formula F by a stack s and heap h.

Definition 3.1 (Inductive definition). An inductive definition of an
inductive predicate symbol P is a set of statements:

C1(x1)⇒ P t1(x1), . . . , Ck(xk)⇒ P tk(xk)

where k ∈ N andC1(x1), . . . , Ck(xk) are inductive clauses, given
by the following grammar:

C(x) ::= P t(x) | F̂ (x) | C(x) ∧ C(x) | C(x) ∗ C(x)

| F̂ (x)→ C(x) | F̂ (x) —∗ C(x) | ∀xC(x)

where P ranges over the inductive predicate symbols of Σ and
F̂ (x) ranges over all formulas in which no inductive predicates
occur and whose free variables are contained in {x}.

Each statement Ci(xi) ⇒ Piti(xi) is read as a disjunctive
clause of the definition of the inductive predicate symbol Pi. As
in Brotherston (2007), our use of F̂ (x) on the left of implications
in inductive clauses is designed to ensure monotonicity of our in-
ductive definitions. A more liberal definition scheme might allow
inductively defined predicates to occur negatively subject to an ap-
propriate stratification of inductive definitions, as in iterated induc-
tive definitions (Martin-Löf 1971).

The standard interpretation of an inductive predicate symbol P
is then, as usual, the least prefixed point of a monotone operator
constructed from the inductive definitions. This operator, and the
process for constructing its least fixed point, are essential to under-
standing the soundness of our cyclic proof system, so we include
the details here:

Definition 3.2 (Definition set operator). Let the inductive predicate
symbols of Σ be P1, . . . , Pn with arities a1, . . . , an respectively,
and suppose we have a unique inductive definition for each predi-
cate symbol Pi. Then, for each i ∈ {1, . . . , n}, from the inductive
definition for Pi, say:

C1(x1)⇒ Pi t1(x1), . . . , Ck(xk)⇒ Pi tk(xk)

we obtain a corresponding n-ary function ϕi : (Pow(Heaps ×
Vala1)× . . .× Pow(Heaps×Valan))→ Pow(Heaps×Valai) as
follows:

ϕi(X) =
⋃

1≤j≤k{ (h, [[tj]](s[xj 7→ d])) |
s[xj 7→ d], h |=[[P]] 7→X Cj(xj)}

where s is an arbitrary stack and |=[[P]] 7→X is the satisfaction rela-
tion defined exactly as in Figure 2 except that [[Pi]] = πni (X) for
each i ∈ {1, . . . , n}. Note that any variables occurring in the right
hand side but not the left hand side of the set comprehension in the
definition of ϕi above are, implicitly, existentially quantified over

the entire right hand side of the comprehension. Then the defini-
tion set operator for P1, . . . , Pn is the operator ϕP, with domain
and codomain Pow(Heaps×Vala1)× . . .×Pow(Heaps×Valan),
defined by:

ϕP(X) = (ϕ1(X), . . . , ϕn(X))

Example 3.3. Consider the following inductive definition for a
binary inductive predicate symbol ls:

emp ⇒ ls x x
x 7→ x′ ∗ ls x′ y ⇒ ls x y

Then [[ls]] is the least prefixed point of the following operator, with
domain and codomain Pow(Heaps× Val2):

ϕls(X) = {(emp, (v, v)) | v ∈ Val}
∪ {(h1 ◦ h2, (v, v

′)) | ∃w ∈ Val. (h1, (v, w)) ∈ [[7→]]
and (h2, (w, v

′)) ∈ X}
The predicate ls denotes singly-linked list segments; ls x y is true
of those heaps that represent a (possibly cyclic) linked list segment
whose first element is pointed to by x and whose last element
contains the pointer y. (If the list is acyclic, then y is a dangling
pointer.)

The operator generated from a set of inductive definitions by
Definition 3.2 is monotone (Brotherston 2007), and consequently
has a least (pre)fixed point, which gives the standard interpretation
for the inductively defined predicates of the language. As is well-
known (see e.g. Aczel (1977)), this least prefixed point can be
iteratively approached in ordinal-indexed stages or approximants:

Definition 3.4 (Approximants). Let ϕP be the definition set op-
erator for the inductive predicates P1, . . . , Pn of Σ as in Def-
inition 3.2. Define a chain of ordinal-indexed sets (ϕαP)α≥0 by
transfinite induction: ϕαP =

⋃
β<α ϕP(ϕβP) (note that this im-

plies ϕ0
P = (∅, . . . , ∅)). Then for each i ∈ {1, . . . , n}, the set

Pαi = πni (ϕαP) is called the αth approximant of Pi.

Definition 3.5 (Standard interpretation). The function [[−]] is said
to respect the standard interpretation of the inductive predicates
P1, . . . , Pn of Σ if for all i ∈ {1, . . . , n}, we have [[Pi]] =

⋃
α P

α
i .

From now on, we assume that [[−]] always respects the standard
interpretation of any inductive predicate symbols.

4. Proof rules for termination judgements
In this section we give the rules of a Hoare-style proof system
for proving termination of programs written in TOY-C. We write
termination judgements of the form Γ `i↓, where i is a program
point and Γ is a bunch (O’Hearn and Pym 99):

Definition 4.1 (Bunch). A bunch is a tree whose leaves are formu-
las (as defined in Section 3) and whose internal nodes are ‘;’ or ‘,’
(which are logically equivalent to ∧ and ∗, respectively).

We write Γ(∆) to mean that Γ is a bunch of which ∆ is a subtree
(also called a “sub-bunch”), and write Γ(∆′) for the bunch obtained
by replacing the considered instance of ∆ by ∆′ in Γ(∆). We
observe that a bunch Γ can be considered as a formula by replacing
every occurrence of ‘;’ by ‘∧’ and every occurrence of ‘,’ by ‘∗’,
and thus we extend our notion of satisfaction (cf. Fig. 2) to bunches
in the obvious manner.

Definition 4.2 (Coherent equivalence). Coherent equivalence, ≡,
is the smallest binary relation on bunches satisfying the following
(commutative monoid) equations:

Γ1; (Γ2; Γ3) ≡ (Γ1; Γ2); Γ3 Γ1, (Γ2,Γ3) ≡ (Γ1,Γ2),Γ3

Γ1; Γ2 ≡ Γ2; Γ1 Γ1,Γ2 ≡ Γ2,Γ1

>; Γ ≡ Γ emp,Γ ≡ Γ
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plus the rule of congruence: ∆ ≡ ∆′ implies Γ(∆) ≡ Γ(∆′).

Definition 4.3 (Validity). A termination judgement Γ `i↓ is valid
iff s, h |= Γ implies (i, s, h)↓ for all s ∈ Stacks and h ∈ Heaps.

Our Hoare logic rules for termination judgements are given in
Figure 3. The symbolic execution rules for commands are adapta-
tions of standard rules for separation logic (Berdine et al. 2005).
The convention is that primed variables x′ and x′′ in the precondi-
tions must be chosen fresh. The general rules are similar to rules in
a proof system for implication. In places, our rules differ slightly
from the typical presentation of Hoare logic in order to simplify
the tracking of occurrences of inductive predicates, which is cru-
cial for cyclic proofs. For example, our use of the cut rule in place
of the usual rule of consequence in Hoare logic allows us to track
inductive predicates in the “context part” Γ of the rule. Our cut rule
is presented with just one premise, with the usual second premise
∆ ` F instead given as a side condition (which can be seen as
an analogue of the usual side condition, involving semantic entail-
ment, on the rule of consequence). This separates our Hoare rea-
soning, and tracking of inductive predicates, from an external rea-
soning process for establishing pure implication (which itself might
use cyclic proofs (Brotherston 2007) or an existing theorem prover
such as Berdine et al. (2006a)). The multiplicative weakening rule
(WkM) does not normally hold in separation logic but is valid in
the case of termination, justified by Proposition 2.2.

The case-split rule for inductive predicates will play a core role
in our cyclic proof system, and deserves more explanation. Suppose
that the inductive predicate P has definition:

C1(x1)⇒ P t1(x1), . . . , Ck(xk)⇒ P tk(xk)

Our case-split rule:

(Γ(t = tj(x);Cj(x)) `i↓)1≤j≤k (Case P )
∀x ∈ {x}. x 6∈ FV (Γ(P t))Γ(P t) `i↓

unfolds an occurrence P t of an inductive predicate according to its
definition (with the surrounding context Γ remaining unaffected).

Example 4.4 (List segment). Let ls be the inductive predicate
for (possibly cyclic) list segments defined in Example 3.3. The
inductive definition of ls determines the following case-split rule:

Γ(t = u; emp) `i↓ Γ(t 7→x′ ∗ ls x′ u) `i↓
(Case ls)

Γ(ls t u) `i↓
Proposition 4.5. The Hoare logic rules given in Figure 3 are
locally sound. That is to say, if all of the premises of any rule
instance are valid, and any relevant side conditions are satisfied,
then the conclusion of the rule instance is also valid.

5. Cyclic proofs of program termination
We now define a notion of cyclic proof for our termination judge-
ments. First we define cyclic pre-proofs: finite derivation trees to-
gether with a function that, for each leaf node in the tree to which
no proof rule has been applied (called a bud), assigns an interior
node in the tree that is labelled with an identical judgement; this in-
terior node is called the companion of the bud. A cyclic pre-proof
can thus be seen as a representation of a regular, infinite derivation
tree by a cyclic graph.

Definition 5.1 (Companion). Let B be a bud of a derivation tree
D. An internal node C inD is said to be a companion for B if they
have the same judgement labelling.

By assigning a companion to each bud node in a finite derivation
tree, one obtains a finite representation of an associated (regular)
infinite tree:

Definition 5.2 (Cyclic pre-proof). A cyclic pre-proof of a termi-
nation judgement F `i↓ is a pair P = (D,R), where D is a
derivation tree constructed according to the Hoare logic rules for
termination judgements given in Section 4 and whose root is la-
belled by F `i↓, and R is a function assigning a companion to
every bud of D.

If P = (D,R) is a cyclic pre-proof, we write GP for the graph
obtained from D by identifying each bud node B in D with its
companionR(B).

Definition 5.3 (Trace). Let P be a pre-proof and let (Γk `ik↓)k≥0

be a path in GP . A trace following (Γk `ik↓)k≥0 is a sequence
(τk)k≥0 such that, for all k, τk is the position of a leaf Fτk of Γk.
Furthermore, for each k ≥ 0, one of the following conditions must
hold:

1. (Fτk is in the active part of the rule) Γk `ik↓ is the conclusion
of one of the following inferences, τk is the position of the
underlined formula in the conclusion and τk+1 is the position
of one of the underlined formulae in the premise:

Γ(F1;F2) `i↓
(∧)

Γ(F1 ∧ F2) `i↓

Γ(F2) `i↓
∆ ` F1 (—∗)

Γ(∆, F1 —∗ F2) `i↓

Γ(F1, F2) `i↓
(∗)

Γ(F1 ∗ F2) `i↓

Γ(∆;F2) `i↓
∆ ` F1 (→)

Γ(∆;F1 → F2) `i↓

Γ(F [t/x]) `i↓
(∀)

Γ(∀xF ) `i↓

Γ(t = tj(x);Cj(x)) `i↓ . . .
(Case P )

Γ(P t) `i↓
(We remark that, due to the form of our inductive definitions
(cf. Defn 3.1), we never need to trace formulas through the
active part of the rules (∨) or (∃).) In the case where (Case P )
is applied with conclusion Γk `ik↓ as above, and τk and τk+1

are the positions of the leaves of Γk and Γk+1 indicated by
the underlining, the trace is said to progress at k. An infinitely
progressing trace is a trace that progresses at infinitely many
points.

2. (Fτk is not in the active part of the rule) τk+1 is the position
of the leaf in Γk+1 corresponding to τk in Γk, modulo any
splitting of Γk performed by the rule. (Thus Fτk+1 = Fτk ,
modulo any substitution performed by the rule.) E.g. if Γk `ik↓
is the conclusion of the inference:

Γ(F2) `i↓
∆ ` F1 (—∗)

Γ(∆, F1 —∗ F2) `i↓
then τk+1 and τk are the same position in Γ(−) (and thus
Fτk+1 = Fτk ). Similarly, if Γk `ik↓ is the conclusion of the
inference:

x = t[x′/x]; (E 7→ t,Γ)[x′/x] `i+1↓
Ci ≡ x := [E]

E 7→ t,Γ `i↓
then τk+1 and τk are the same position in Γ(−) (and thus
Fτk+1 = Fτk [x′/x]). As a final example, if Γk `ik↓ is the
conclusion of the inference:

Γ′ `i↓
Γ ≡ Γ′ (Equiv)

Γ `i↓
then the position of τk+1 in the rearranged bunch Γ′ must
respect the original position of τk in Γ in the obvious way (and
thus Fτk+1 = Fτk ).
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Symbolic execution rules:

x = E[x′/x]; Γ[x′/x] `i+1↓
Ci ≡ x := E

Γ `i↓

Cond; Γ `j↓ ¬Cond; Γ `i+1↓
Ci ≡ ifCond goto j

Γ `i↓

x = t[x′/x]; (E 7→ t,Γ)[x′/x] `i+1↓
Ci ≡ x := [E]

E 7→ t,Γ `i↓

x 7→ x′′,Γ[x′/x] `i+1↓
Ci ≡ x := new()

Γ `i↓

E0 7→ E1,Γ `i+1↓
Ci ≡ [E0] := E1

E0 7→ t,Γ `i↓

Γ `i+1↓
Ci ≡ free(E)

E 7→ t,Γ `i↓
Ci ≡ stop

Γ `i↓

General rules:

Γ(∆) `i↓
(WkA)

Γ(∆; ∆′) `i↓

Γ(∆) `i↓
(WkM)

Γ(∆,∆′) `i↓

Γ(∆; ∆) `i↓
(Contr)

Γ(∆) `i↓

Γ′ `i↓
Γ ≡ Γ′ (Equiv)

Γ `i↓

Γ(F ) `i↓
∆ ` F (Cut)

Γ(∆) `i↓

Γ `i↓ x not a program
variable (Subst)

Γ[t/x] `i↓

Γ(>)[t2/x, t1/y] `i↓
(=)

Γ(t1 = t2)[t1/x, t2/y] `i↓

(⊥)
⊥ `i↓

Γ(F1) `i↓ Γ(F2) `i↓
(∨)

Γ(F1 ∨ F2) `i↓

Γ(F1;F2) `i↓
(∧)

Γ(F1 ∧ F2) `i↓

Γ(∆;F2) `i↓
∆ ` F1 (→)

Γ(∆;F1 → F2) `i↓

Γ(F [t/x]) `i↓
(∀)

Γ(∀xF ) `i↓

Γ(F [z/x]) `i↓
z 6∈ FV (Γ(∃xF )) (∃)

Γ(∃xF ) `i↓

Γ(F1, F2) `i↓
(∗)

Γ(F1 ∗ F2) `i↓

Γ(F2) `i↓
∆ ` F1 (—∗)

Γ(∆, F1 —∗ F2) `i↓

Case-split rule:

(Γ(t = tj(x);Cj(x)) `i↓)1≤j≤k C1(x1)⇒ P t1(x1), . . . , Ck(xk)⇒ P tk(xk)
∀x ∈ {x}. x 6∈ FV (Γ(P t))

(Case P )
Γ(P t) `i↓

Figure 3. Hoare logic rules for termination judgements.

Definition 5.4 (Proof). A pre-proofP is a proof if for every infinite
path π in GP , there is an infinitely progressing trace following some
tail of π.

Theorem 5.5. If there is a proof of Γ `i↓ then Γ `i↓ is valid.

An outline proof of Theorem 5.5 is given in Appendix A.

Proposition 5.6. It is decidable whether a pre-proof is a proof.

As well as soundness, our proof system enjoys the following
relative completeness property:

Theorem 5.7 (Relative Completeness). Under the assumption that
the underlying proof system for ordinary implications Γ ` F is
complete, if Γ `i↓ is valid then there is a proof of Γ `i↓.

Intuitively, it is possible to define inductive predicates termi
which ensure termination starting from program point i, and the
proof that Γ ensures termination at i can be reduced to an ordinary
implication Γ ` termi x. This situation is analogous to what hap-
pens in ordinary Hoare logic, where relative completeness proofs
are typically expressed with respect to an oracle for implications.

We give an outline proof of Theorem 5.7 in Appendix B.

6. Examples of cyclic termination proofs
We show three examples, two straightforward and one more intri-
cate. In each example we have treated goto as if it had a single-
premise rule of its own.

Example 6.1 (Termination of list traversal). Consider the program
from Example 2.1 with precondition ls x nil, with predicate ls as in
Example 3.3. Figure 4 gives a proof of termination. We show the
association of a suitable companion to the only bud in the pre-proof
with a (red) arrow. Note that there is only one infinite path in the
pre-proof – which goes around the cycle – and the associated trace
(underlined) makes progress infinitely often at the case-split rule.
Therefore we have termination.

This proof uses multiplicative weakening (WkM), throwing
away part of the heap, in this case the cells of the list that have
already been traversed. This is a peculiar thing to do in separation
logic, in which proofs are careful to account for all resource. In
the next two examples we show that proofs which more carefully
account are possible, but for termination of list traversal we really
only need to know that the list yet to be traversed diminishes, and
the proof of figure 4 is all that is required.

Example 6.2 (Termination of in-place list reversal). The classical
in-place reverse algorithm reverses a list in place, using two vari-
ables and no additional heap space:

y := nil; while x 6= nil do z := x;x := [x]; [z] := y; y := z od
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stop

x = nil; ls x nil �4↓

(⊥)
⊥; x = nil; emp �2↓

(→)
x �= nil; x = nil; emp �2↓

ls x nil �1↓
goto 1

ls x nil �3↓
(WkM)

x′′ �→ x, ls x nil �3↓
(WkA)

x �= nil; (x′′ �→ x, ls x nil) �3↓
(=)

x = x′; x �= nil; (x′′ �→ x′, ls x′ nil) �3↓
x := [x]

x �= nil; (x �→ x′, ls x′ nil) �2↓
(∗)

x �= nil; x �→ x′ ∗ ls x′ nil �2↓
(Case ls)

x �= nil; ls x nil �2↓
ifx = nil goto 4

ls x nil �1↓

stop

x = nil; ls x nil �4↓

(⊥)
⊥; x = nil; emp �2↓

(→)
x �= nil; x = nil; emp �2↓

ls x nil �1↓
goto 1

ls x nil �3↓
(WkM)

x′′ �→ x, ls x nil �3↓
(WkA)

x �= nil; (x′′ �→ x, ls x nil) �3↓
(=)

x = x′; x �= nil; (x′′ �→ x′, ls x′ nil) �3↓
x := [x]

x �= nil; (x �→ x′, ls x′ nil) �3↓
(∗)

x �= nil; x �→ x′ ∗ ls x′ nil �2↓
(Case ls)

x �= nil; ls x nil �2↓
ifx = nil goto 4

ls x nil �1↓

Figure 4. A termination proof of list traversal

stop
x = nil ∧
(ls y nil ∗ ls x nil)

�8↓

⊥
z = x ∧ x �= nil ∧
(ls y nil ∗ (x = nil ∧ emp))

�4↓

ls y nil ∗ ls x nil �2↓
goto 2

ls y nil ∗ ls x nil �7↓
cut

y = z ∧ (ls y′ nil ∗ z �→ y′ ∗ ls x nil) �7↓
y := z

ls y nil ∗ z �→ y ∗ ls x nil �6↓
[z] := y

ls y nil ∗ z �→ x ∗ ls x nil �5↓
= I

x = x′ ∧ z = x′′ ∧ (ls y nil ∗
x′′ �→ x′ ∗ ls x′ nil)

�5↓
x := [x]

z = x ∧ (ls y nil ∗ x �→ x′ ∗ ls x′ nil) �4↓
WkA

z = x ∧ x �= nil ∧ (ls y nil ∗ x �→ x′ ∗ ls x′ nil) �4↓
(Case ls)

z = x ∧ x �= nil ∧ (ls y nil ∗ ls x nil) �4↓
z := x

x �= nil ∧ (ls y nil ∗ ls x nil) �3↓
ifx = nil goto 8

ls y nil ∗ ls x nil �2↓

Figure 5. Termination of in-place list reversal

This proof could have used multiplicative weakening in place
of cut, but we have chosen not to do so in order to emphasise the
connection with the next example.

Example 6.3 (Termination of in-place “frying-pan list” reversal).
The previous example algorithm will reverse a cyclic list segment,
but the loop measure, and hence the proof of termination, is tricky.

A cyclic list segment ls x j in which the terminating pointer j
points to a node already in the segment can be seen as a separated
three-part structure of two acyclic list segments and a “join node”,
represented in separation logic as:

∃k.(ls x j ∗ j �→ k ∗ ls k j) (2)

Diagrammatically, such segments resemble a frying pan in which
ls x j is the handle and ls k j is the pan. The reversal algorithm
goes down the handle, reversing it until it reaches the join node,
which it redirects towards the reversed handle; then it goes round
the pan, reversing that; then it re-redirects the join node to the
reversed pan; finally it comes back up the handle, re-reversing it.
The precondition is (2) and the invariant is:

∃k1 , k2 , k3 ·

0

@
(ls x j ∗ ls y nil ∗ j �→ k1 ∗ ls k1 j) ∨
(ls k2 nil ∗ j �→ k2 ∗ ls x j ∗ ls y j) ∨
(ls x nil ∗ ls y j ∗ j �→ k3 ∗ ls k3 j)

1

A (3)

in which each of the disjuncts corresponds directly to one of the
pictures in figure 6.

This invariant is sufficiently obvious that it can be discovered
automatically [13], but it’s hard to see what formula to use as a
measure for this process, because x plays different rôles at different
stages of the proof. A termination proof could be hacked up using
auxiliary variables to record the join point and the stage of the
proof, but the proof stages and the join point are proof artefacts,
and it should be unnecessary to reveal them.

Figure 7 shows a pre-proof of the judgement I �2↓, where I is
the invariant (3) (with existential quantifications omitted for sim-
plicity, and double-line steps indicating implicit additive weaken-
ing (WkA)). The cycles in the proof are:

B reversing the handle, progressing by unrolling ls x j;
D reversing the pan, progressing by unrolling ls x j;
E re-reversing the handle, progressing (like figure 5) by unrolling

ls x nil;
A redirect the join-node to the reversed handle, move to reverse the

pan;
C redirect the join-node to the reversed pan, move to re-reverse the

handle.

It looks more complicated than it is.

Figure 4. A termination proof of list traversal
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stop
x = nil ∧
(ls y nil ∗ ls x nil)

�8↓

(⊥)
z = x ∧ x �= nil ∧
(ls y nil ∗ (x = nil ∧ emp))

�4↓

ls y nil ∗ ls x nil �2↓
goto 2

ls y nil ∗ ls x nil �7↓
(Cut)

y = z ∧ (ls y′ nil ∗ z �→ y′ ∗ ls x nil) �7↓
y := z

ls y nil ∗ z �→ y ∗ ls x nil �6↓
[z] := y

ls y nil ∗ z �→ x ∗ ls x nil �5↓
(=)

x = x′ ∧ z = x′′ ∧ (ls y nil ∗
x′′ �→ x′ ∗ ls x′ nil)

�5↓
x := [x]

z = x ∧ (ls y nil ∗ x �→ x′ ∗ ls x′ nil) �4↓
(WkA)

z = x ∧ x �= nil ∧ (ls y nil ∗ x �→ x′ ∗ ls x′ nil) �4↓
(Case ls)

z = x ∧ x �= nil ∧ (ls y nil ∗ ls x nil) �4↓
z := x

x �= nil ∧ (ls y nil ∗ ls x nil) �3↓
ifx = nil goto 8

ls y nil ∗ ls x nil �2↓

Figure 5. Termination of in-place list reversal

This proof could have used multiplicative weakening in place
of cut, but we have chosen not to do so in order to emphasise the
connection with the next example.

Example 6.3 (Termination of in-place “frying-pan list” reversal).
The previous example algorithm will reverse a cyclic list segment,
but the loop measure, and hence the proof of termination, is tricky.

A cyclic list segment ls x j in which the terminating pointer j
points to a node already in the segment can be seen as a separated
three-part structure of two acyclic list segments and a “join node”,
represented in separation logic as:

∃k.(ls x j ∗ j �→ k ∗ ls k j) (2)

Diagrammatically, such segments resemble a frying pan in which
ls x j is the handle and ls k j is the pan. The reversal algorithm
goes down the handle, reversing it until it reaches the join node,
which it redirects towards the reversed handle; then it goes round
the pan, reversing that; then it re-redirects the join node to the
reversed pan; finally it comes back up the handle, re-reversing it.

The precondition is (??) and the invariant is:

∃k1 , k2 , k3 ·

0

@
(ls x j ∗ ls y nil ∗ j �→ k1 ∗ ls k1 j) ∨
(ls k2 nil ∗ j �→ k2 ∗ ls x j ∗ ls y j) ∨
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A (3)

in which each of the disjuncts corresponds directly to one of the
pictures in figure ??.

This invariant is sufficiently obvious that it can be discovered
automatically [?], but it’s hard to see what formula to use as a
measure for this process, because x plays different rôles at different
stages of the proof. A termination proof could be hacked up using
auxiliary variables to record the join point and the stage of the
proof, but the proof stages and the join point are proof artefacts,
and it should be unnecessary to reveal them.

Figure ?? shows a pre-proof of the judgement I �2↓, where
I is the invariant (??) (with existential quantifications omitted for
simplicity, and double-line steps indicating implicit additive weak-
ening (WkA)). The cycles in the proof are:

B reversing the handle, progressing by unrolling ls x j;
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(=)
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(Case ls)
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⊥
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of cut, but we have chosen not to do so in order to emphasise the
connection with the next example.

Example 6.3 (Termination of in-place “frying-pan list” reversal).
The previous example algorithm will reverse a cyclic list segment,
but the loop measure, and hence the proof of termination, is tricky.

A cyclic list segment ls x j in which the terminating pointer j
points to a node already in the segment can be seen as a separated
three-part structure of two acyclic list segments and a “join node”,
represented in separation logic as:

∃k.(ls x j ∗ j �→ k ∗ ls k j) (2)

Diagrammatically, such segments resemble a frying pan in which
ls x j is the handle and ls k j is the pan. The reversal algorithm
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A (3)

in which each of the disjuncts corresponds directly to one of the
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This invariant is sufficiently obvious that it can be discovered
automatically [13], but it’s hard to see what formula to use as a
measure for this process, because x plays different rôles at different
stages of the proof. A termination proof could be hacked up using
auxiliary variables to record the join point and the stage of the
proof, but the proof stages and the join point are proof artefacts,
and it should be unnecessary to reveal them.

Figure 7 shows a pre-proof of the judgement I �2↓, where I is
the invariant (3) (with existential quantifications omitted for sim-
plicity, and double-line steps indicating implicit additive weaken-
ing (WkA)). The cycles in the proof are:

B reversing the handle, progressing by unrolling ls x j;
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of cut, but we have chosen not to do so in order to emphasise the
connection with the next example.

Example 6.3 (Termination of in-place “frying-pan list” reversal).
The previous example algorithm will reverse a cyclic list segment,
but the loop measure, and hence the proof of termination, is tricky.

A cyclic list segment ls x j in which the terminating pointer j
points to a node already in the segment can be seen as a separated
three-part structure of two acyclic list segments and a “join node”,
represented in separation logic as:

∃k.(ls x j ∗ j �→ k ∗ ls k j) (2)

Diagrammatically, such segments resemble a frying pan in which
ls x j is the handle and ls k j is the pan. The reversal algorithm
goes down the handle, reversing it until it reaches the join node,
which it redirects towards the reversed handle; then it goes round
the pan, reversing that; then it re-redirects the join node to the
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The precondition is (??) and the invariant is:
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in which each of the disjuncts corresponds directly to one of the
pictures in figure ??.

This invariant is sufficiently obvious that it can be discovered
automatically [?], but it’s hard to see what formula to use as a
measure for this process, because x plays different rôles at different
stages of the proof. A termination proof could be hacked up using
auxiliary variables to record the join point and the stage of the
proof, but the proof stages and the join point are proof artefacts,
and it should be unnecessary to reveal them.

Figure ?? shows a pre-proof of the judgement I �2↓, where
I is the invariant (??) (with existential quantifications omitted for
simplicity, and double-line steps indicating implicit additive weak-
ening (WkA)). The cycles in the proof are:

B reversing the handle, progressing by unrolling ls x j;

Figure 5. Termination of in-place list reversal

In TOY-C the program becomes

1: y := nil; 5 : [z] := y;
2 : ifx = nil goto 8; 6 : y := z;
3 : z := x; 7 : goto 2;
4 : x := [x]; 8 : stop

(1)

With precondition ls x nil the invariant of the loop (lines 2–8)
is ls y nil ∗ ls x nil, and the interesting problem is then ls y nil ∗
ls x nil 2↓. The proof is shown in figure 5. (This and the next
example are not completely formal: we have used ‘∗’ and ‘∧’
rather than ‘,’ and ‘;’ in bunches, and we have omitted steps which
reorganise bunches.)

This proof could have used multiplicative weakening in place
of cut, but we have chosen not to do so in order to emphasise the
connection with the next example.

Example 6.3 (Termination of in-place “frying-pan list” reversal).
The previous example algorithm will reverse a cyclic list segment,
but the loop measure, and hence the proof of termination, is tricky.

A cyclic list segment ls x j in which the terminating pointer j
points to a node already in the segment can be seen as a separated
three-part structure of two acyclic list segments and a “join node”,
represented in separation logic as:

∃k.(ls x j ∗ j → k ∗ ls k j) (2)

Diagrammatically, such segments resemble a frying pan in which
ls x j is the handle and ls k j is the pan. The reversal algorithm
goes down the handle, reversing it until it reaches the join node,
which it redirects towards the reversed handle; then it goes round
the pan, reversing that; then it re-redirects the join node to the
reversed pan; finally it comes back up the handle, re-reversing it.
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x

j
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rev H
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j

rev P

rev H0 H1

(c) coming out

Figure 6. Stages of reversing a frying-pan list with handle H and pan P

The precondition is (2) and the invariant is:

∃k1 , k2 , k3 ·




(ls x j ∗ ls y nil ∗ j → k1 ∗ ls k1 j) ∨
(ls k2 nil ∗ j → k2 ∗ ls x j ∗ ls y j) ∨
(ls x nil ∗ ls y j ∗ j → k3 ∗ ls k3 j)


 (3)

in which each of the disjuncts corresponds directly to one of the
pictures in figure 6.

This invariant is sufficiently obvious that it can be discovered
automatically (Distefano et al. 2006), but it’s hard to see what
formula to use as a measure of the number of loop executions,
because x plays different rôles at different stages of the proof.
A termination proof might perhaps be hacked up using auxiliary
variables to record the join point and the stage of the proof, but the
proof stages and the join point are proof artefacts, and it should be
unnecessary to reveal them.

Figure 7 shows a pre-proof of the judgement I 2↓, where I is
the invariant (3) (with existential quantifications omitted for sim-
plicity, and double-line steps indicating implicit additive weaken-
ing (WkA)). The cycles in the proof are:

B reversing the handle, progressing by unrolling ls x j;
D reversing the pan, progressing by unrolling ls x j;
E re-reversing the handle, progressing (like figure 5) by unrolling

ls x nil;
A redirect the join-node to the reversed handle, move to reverse the

pan;
C redirect the join-node to the reversed pan, move to re-reverse the

handle.

It looks more complicated than it is.

• The right-hand stack, which deals with the third disjunct of
the invariant and the re-reversal of the handle, is a straight-line
list reversal, extremely similar to figure 5, with ‘stop’ as the
left antecedent of the if-goto step, and contradiction (because
x = nil∧x = nil) the left alternative of the unrolling of ls x nil;

• The left-hand stack, which deals with the first disjunct of the
invariant and the original reversal of the handle, is also similar
to figure 5, but in place of ‘stop’ it has contradiction (x can’t be
nil whilst ls x j ∗ j → k1 ) and in place of contradiction it has
a sequence of executions (when you exhaust ls x j you reach
the join-node j → k1 , and one execution of the loop deals with
that);

• The middle stack is very like the left-hand one.

There are no infinite paths in this proof which don’t involve un-
rolling one or more predicates infinitely often. Hence we have ter-
mination. Incidentally we observe that the number of loop execu-
tions is now clear: it’s exactly twice the length of the handle (cycles
B and E) plus the length of the pan (cycle D) plus 2 (paths A and
C).

The proof is long and tedious, but it involves no arithmetic and is
very much the sort of thing an automatic tool (see e.g. Berdine et al.

(2006a)) might be expected to do. One can imagine list processing
in such a tool being so stylised that it could recognise the need to
unroll the ls definitions to form the cycles B, D and E in the proof,
and invent the empty definitions to form the paths A and C.

7. Conclusions and future work
In this paper we outline a novel approach to the problem of prov-
ing termination of imperative programs. Our approach builds upon
previous theoretical work in cyclic proof (Brotherston 2007; Broth-
erston and Simpson 2007; Brotherston 2005; Sprenger and Dam
2003) and relies heavily upon separation logic techniques (Berdine
et al. 2005; Reynolds 2002; Bornat et al. 2004). The infinite descent
flavour of our cyclic proofs is highly reminiscent of Lee, Jones and
Ben-Amran’s size-change termination principle (Lee et al. 2001).
However, since the soundness requirement for our proofs is based
on unfolding an inductive definition infinitely often along every in-
finite path, we avoid the need to explicitly construct and reason
with ranking functions. In the case of our termination proof for
reversal of a frying-pan list (Example 6.3) we did not have to in-
troduce auxiliary variables to represent phases of the algorithm or
deal with the conditional measure function which would be needed
to exploit knowledge of the phase (and then the phase annotation
would require a lexicographical ranking function).

The Terminator and Mutant automated termination proving
tools rely on a theoretical result concerning well-founded rela-
tions due to Podelski and Rybalchenko (Rybalchenko et al. 2006;
Berdine et al. 2006b, 2007). The relationship between this princi-
ple and our cyclic proof principle is not yet clear to us. Nor does
there seem to be a straightforward comparison with termination
tools based on term rewriting (see e.g. Hofbauer and Serebrenik
(2007)). However, we observe that our approach is amenable to in-
teractive as well as automatic theorem proving, and we believe that
the Smallfoot assertion checking tool for separation logic (Berdine
et al. 2006a) is a promising candidate platform for implementing
our approach. In general, any proof search mechanism for our for-
malism would need to extend the usual heuristics with the notion
of searching for cycles (by identifying suitable companions else-
where in the proof tree for the current buds, which correspond to
unproven subgoals). The recent work on shape analysis for separa-
tion logic (see e.g. Guo et al. (2007); Lee et al. (2005); Distefano
et al. (2006)) provides one obvious direction, based on abstract
interpretation, with a finite domain built from separation logic for-
mulas. Proof search combined with abstraction immediately gives
a finite number of derivation trees, and cyclic pre-proofs for free.
This immediately suggests an algorithm, and we can already see
that it applies to the in-place list reversal program.

Thus far we have dealt only with small iterative algorithms. We
already understand how to deal with iterative problems that nor-
mally require lexicographic measures; we have not yet considered
more complex ranking functions (but we note that Lee and Ben-
Amram (Ben-Amram and Lee 2007) have shown that measures
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Figure 7. A termination proof of in-place reversal of a frying-pan list
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need not be arbitrarily complicated in size-change transition prob-
lems). We intend to consider more difficult problems such as tree
algorithms: to deal with recursive algorithms we will need at least
to include postconditions in our termination judgements; to deal
with iterative tree algorithms we will have to consider subtle termi-
nation measures.

We do not claim to have invented a panacea. We have uncov-
ered a novel approach to termination which gives natural-seeming
proofs which has already, in the frying-pan list example, simpli-
fied a previously difficult problem and which appears to have the
potential to be extended in other directions.
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A. Outline proof of soundness (Theorem 5.5)
In this section we give a sketch of the proof of our main soundness
result: Theorem 5.5. The proof employs the following auxiliary
definition:

Definition A.1. Let Γ be a bunch and let τ be the position of a
distinguished leaf Fτ of Γ. We observe that Γ can be inductively
defined (up to coherent equivalence ≡) by the following grammar,
where F ranges over formulas:

∆ ::= F (F 6= Fτ ) | ∆; ∆ | ∆,∆
Γ ::= Fτ | Γ; ∆ | Γ,∆

Now let s be a stack and h be a heap. We define the relation ∼s
by induction on the structure of Γ (as given above) as follows:

s, h0 |= Fτ

〈h0, h0〉 ∼s 〈Fτ , Fτ 〉

〈h, h0〉 ∼s 〈Γ, Fτ 〉 s, h |= ∆

〈h, h0〉 ∼s 〈(Γ; ∆), Fτ 〉

〈h1, h0〉 ∼s 〈Γ, Fτ 〉 s, h2 |= ∆

〈h1 ◦ h2, h0〉 ∼s 〈(Γ,∆), Fτ 〉
Intuitively, 〈h, h′〉 ∼s 〈Γ, Fτ 〉 holds iff s and h satisfy Γ, Fτ

is a leaf of Γ and h′ is the sub-heap of h that satisfies Fτ . In other
words, the splitting of Γ into Fτ and a surrounding “bunch context”
is mirrored by the splitting of h into h′ and a surrounding “heap
context”.

Lemma A.2. Each of the Hoare logic rules for termination judge-
ments given in Figure 3 enjoy the following two properties:

1. if the conclusion of the rule, say Γ `i↓, is invalid, i.e. there is
some stack s and heap h such that s, h |= Γ but (i, s, h)↓ does
not hold, then there is some premise Γ′ `i′↓ of the rule, a stack
s′ and a heap h′ such that s′, h′ |= F ′ but (i′, s′, h′)↓ does not
hold;

2. if there is a trace (τ, τ ′) following the edge (Γ `i↓,Γ′ `i′↓)
then, given a heap h0 satisfying 〈h, h0〉 ∼s 〈Γ, Fτ 〉, there
exists a heap h′0 such that 〈h′, h′0〉 ∼s′ 〈Γ′, Fτ ′〉. Furthermore,
the following relation holds (and is well-defined):

least α s.t. s, h0 |=[P7→Pα] Fτ ≥ least α s.t. s′, h′0 |=[P 7→Pα] Fτ ′

where |=[P 7→Pα] is the satisfaction relation defined as in Fig-
ure 2, except that for all i ∈ {1, . . . , n} we have [[Pi]] = Pαi ,
i.e. each inductive predicate is interpreted using its αth approx-
imant (cf. Definition 3.4). Furthermore, if (τ, τ ′) is a progress-
ing trace, then this relation holds with > in place of ≥.

Proof. (Sketch) We just need to check that both properties of the
lemma hold for each proof rule. The first property is just one way
of stating that the rules are locally sound, i.e. that falsifiability of the
conclusion of a rule implies the falsifiability of one of its premises
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(cf. Proposition 4.5). For the second property, we need to show that
if there is a trace following the edge from the conclusion to this
falsifiable premise and 〈h, h0〉 ∼s 〈Γ, Fτ 〉 holds, i.e. h0 is the
sub-heap of h used to satisfy Fτ in the falsifying interpretation of
Γ `i↓, then we can construct a suitable substate h′0 of h′ that can
be used to satisfy Fτ ′ in the constructed falsifying interpretation
of Γ′ `i′↓. The main interesting case is when the rule applied is
a case-split rule (Case P ) and (τ, τ ′) is a progressing trace, with
the strict inequality relying on the fact that if the formula P t
unfolded by the rule is satisfied by s and h0, i.e. (h0, [[t]]s) is in
some approximant Pα of P , then for every case-descendant Qu of
P t we must have (h′0, [[u]]s) in some strictly smaller approximant
Qβ<α of Q.

Having proved the above lemma, concerning edges in a proof
tree, we can straightforwardly extend the two properties of the
lemma to cover paths in a pre-proof graph:

Lemma A.3. Let P be a pre-proof of Γ0 `i0↓ and suppose that
Γ0 `i0↓ is invalid. Then there exists an infinite path (Γj `ij↓)j≥0

in GP , a sequence (sj)j≥0 of stacks and a sequence (hj)j≥0 of
heaps such that the following two properties hold:

1. for all j ≥ 0, the judgement Γj `ij↓ is false with respect to the
stack sj and heap hj;

2. if there is a trace (τj)j≥m following a tail (Γj `ij↓)j≥m of
the path (Γj `ij↓)j≥0, then there exists a second sequence of
heaps (h′j)j≥m such that, for all j ≥ m:

least α s.t. sj , h′j |=α Fτ ≥ least α s.t. sj+1, h
′
j+1 |=α Fτ ′

Furthermore, if j is a progress point of the trace, then this
relation holds with > in place of ≥.

Proof. Γ0 `i0↓, s0 and h0 are given by assumption. If we in-
ductively assume that we have constructed Γk `ik↓, sk and hk,
then property 1 of Lemma A.2 tells us that we can construct
Γk+1 `ik+1↓, sk+1 and hk+1.

Now if we suppose that there is a trace following some tail
(Γj `ij↓)m≤j≤k+1 of the path constructed so far, property 2 of
Lemma A.2 tells us that we can construct the required sequence
(h′j)m≤j≤k+1. (It is easy to see how to construct the first element
h′m of this sequence because we have 〈hm, h′m〉 ∼sm 〈Γm, Fτm〉.)

Proof of Theorem 5.5. If we suppose that Γ `i↓ has a proof P but
is invalid, i.e. false in some stack s and heap h, then we can use
property 1 of Lemma A.3 to construct an infinite path π in GP to-
gether with a sequence of stacks and heaps that falsify each sequent
along the path. Since P is a proof, there is an infinitely progressing
trace following some tail of π. Thus we can invoke property 2 of
Lemma A.3 to create a monotonically decreasing chain of ordinals
which, since the trace progresses infinitely often, must decrease
infinitely often. This contradicts the well-foundedness of the ordi-
nals, so Γ `i↓ must indeed be valid.

B. Outline proof of Theorem 5.7 (via termination
weakest preconditions)

In this section we give a sketch of the proof of Theorem 5.7. First,
we present a construction that transforms a program into a family of
mutually defined inductive predicates, which capture the weakest
precondition for termination of the program. Then, we show that
every valid termination judgement has a cyclic proof in our system,
which uses the inductive predicates obtained from the program.

Consider a program 1 : C1; · · · ;n : Cn, and let x be the
variables occurring in the program. For each program point i, we

define a corresponding inductive predicate termi x in Figure 8 (we
use the notation E 7→− as an abbreviation for ∃x.E 7→x). The
result is a collection of predicates such that cycles in the definitions
correspond directly to cycles in the control flow of the program.

Example B.1 (List deletion program). The list deletion program:

1: ifx = nil goto 6; 4 : free(t);
2 : t := x; 5 : goto 1;
3 : x := [x]; 6 : stop;

gives the following definitions.

(x = nil ∧ term6 xt) ⇒ term1 x t
(x 6= nil ∧ term2 x t) ⇒ term1 x t

term3 xx ⇒ term2 x t
x 7→ x′ ∗ ((x 7→x′) —∗ term4 x

′ t) ⇒ term3 x t
(t 7→ −) ∗ term5 x t ⇒ term4 x t

term1 x t ⇒ term5 x t
> ⇒ term6 x t

By applying simplifications we obtain a single inductive predicate
for location 1. First notice that inlining term3, term4, term5 we
obtain

x 7→ x′ ∗ (x 7→ x′ —∗ (x 7→ − ∗ term1 x
′ x))⇒ term2 x t

and the left-hand side can be simplified to x 7→ x′ ∗ term1 x
′ x. By

further inlining and simplification, and noticing that the parameter
t is not used actively in the definition, we obtain

x = nil ⇒ term1 x
x 7→ x′ ∗ term1 x

′ ⇒ term1 x

which is exactly analogous to ls x nil except that we can have
garbage in the heap, since garbage does not affect termination.

Example B.2 (In-place list reversal program). Consider the in-
place list reversal program presented in Example 6.2. The corre-
sponding inductive definition for termination at program point 2
can be simplified to obtain the following definition:

x = nil ⇒ term2 x y
x 7→ x′ ∗ (x 7→ y —∗ term2 x

′ x) ⇒ term2 x y

In this inductive definition we cannot eliminate —∗. Instead we can
give a characterisation using another predicate. If we define the
cyclic list predicate cl by:

ls x x′ ∗ x′ 7→ x′′ ∗ ls x′′ x′ ⇒ cl x

then the following equivalence holds:

term2 x y ↔ (ls x nil) ∨ (cl x ∗ ls y nil)

which means that the program terminates either by traversing the
acyclic list starting from x and ending in nil, or by traversing the
cyclic list and then the acyclic list starting from y and ending in nil.

The following lemma shows that the termi predicate indeed
guarantees termination from program point i.

Lemma B.3. (i, s, h)↓ implies s, h |= termi x.

Proof. The proof is by induction on the length n of the longest
computation (i.e., -sequence) starting at (i, s, h). We show some
cases; other cases are analogous.

Case Ci ≡ x := E. The computation proceeds with (i+ 1, s′, h),
where s′ = s[x 7→ [[E]]s]. Then we have (i + 1, s′, h)↓ with
longest computation of length n − 1. By induction hypothesis we
have s′, h |= termi+1 x, therefore s, h |= termi+1 (x[E/x]). By
definition of termi we have s, h |= termi x, which concludes the
case.
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Command Inductive definition

Ci ≡ x := E termi+1(x[E/x])⇒ termi x
Ci ≡ x := [E] E 7→ x′ ∗ (E 7→ x′ —∗ termi+1(x[x′/x]))⇒ termi x
Ci ≡ [E] := F (E 7→ −) ∗ ((E 7→ F ) —∗ termi+1 x)⇒ termi x
Ci ≡ x := new() ∀x′, y′. (x′ 7→y′) —∗ termi+1(x[x′/x])⇒ termi x
Ci ≡ free(E) (E 7→−) ∗ termi+1 x⇒ termi x

Ci ≡ ifCond goto j

{
Cond ∧ termj x⇒ termi x

¬Cond ∧ termi+1 x⇒ termi x
Ci ≡ stop > ⇒ termi x

Figure 8. Transformation of commands to inductive predicates

Case Ci ≡ x := new(). We need to show s, h |= termi x, that
is s, h |= ∀x′, y′. (x′ 7→y′) —∗ termi+1(x[x′/x]) for x′, y′ fresh
in x. Take v1, v2 ∈ Val, and h′ such that s[x′ 7→ v1, y

′ 7→
v2], h′ |= (x′ 7→y′) and h ◦ h′ is defined. Then h′ = [v1 7→ v2]
and v1 ∈ Loc \ dom(h). It remains to show s[x′ 7→ v1, y

′ 7→
v2], h[v1 7→ v2] |= termi+1 (x[x′/x]).

Now the computation can proceed with (i+1, s[x 7→ `], h[` 7→
v]) for any ` ∈ Loc\dom(h) and v ∈ Val, in particular with ` = v1
and v = v2. Then we have (i + 1, s[x 7→ v1], h[v1 7→ v2])↓ with
longest computation of length n − 1. By induction hypothesis we
have s[x 7→ v1], h[v1 7→ v2] |= termi+1 x, therefore s[x′ 7→
v1, y

′ 7→ v2], h[v1 7→ v2] |= termi+1 (x[x′/x]), as required.

The following lemma shows how to construct a cyclic proof
that termi is a termination precondition for program point i, which
will be fundamental for the completeness result. Together with
soundness of cyclic proofs (Theorem 5.5) and Lemma B.3, this
implies that termi denotes the weakest precondition for termination
at program point i.

Lemma B.4. There is a cyclic proof of termi x `i↓.

Proof. We give a direct construction of the proof. For each com-
mand Ci in the program, let j1 · · · jk be the possible program
points where the execution might continue after executing Ci. We
show how to construct a derivation tree of the form

(termm x `m↓)m=j1···jk

· · ·

termi x `i↓
which admits a progressing trace from termi x `i↓ to each
termm x `m↓. The whole proof is then obtained by stacking the
appropriate derivation tree on top of each bud, unless that bud is
already matched with a companion in the derivation tree already
constructed. At the end of the process, each bud will be assigned a
companion, and every infinite path in the resulting graph will obvi-
ously progress infinitely often. We show in detail the construction
for some interesting cases:

Case Ci ≡ x := E. We have the following inductive definition for
termi x:

termi+1(x[E/x])⇒ termi x
We can derive:

termi+1 x `i+1↓
(WkA)

x = E[x′/x] ; termi+1(x) `i+1↓
(=)

x = E[x′/x] ; termi+1(x[E[x′/x]/x]) `i+1↓
x := E

termi+1(x[E/x]) `i↓
(Case termi)

termi x `i↓

CaseCi ≡ x := new(). We have the following inductive definition
for termi x:

∀x′, y′. (x′ 7→ y′) —∗ termi+1 (x[x′/x])⇒ termi x

We can derive:
termi+1 x `i+1↓

(—∗)
x 7→ x′′, ((x7→x′′) —∗ termi+1 (x[x′/x][x/x′])) `i↓

(∀)
x 7→ x′′, (∀x′, y′. (x′ 7→y′) —∗ termi+1 (x[x′/x])) `i+1↓

x := new()
∀x′, y′. (x′ 7→y′) —∗ termi+1 (x[x′/x]) `i↓

(Case termi)
termi x `i↓

Case Ci ≡ ifCond goto j. We have the following inductive
definition for termi x:

Cond ∧ termj x⇒ termi x
¬Cond ∧ termi+1 x⇒ termi x

We can derive:
termj x `j↓

(WkA)
Cond; termj x `j↓

if
Cond; termj x `i↓

(∧)
Cond ∧ termj x `i↓

termi+1 x `i+1↓
(WkA)

¬Cond; termi+1 x `i+1↓
if

¬Cond; termi+1 x `i↓
(∧)

¬Cond ∧ termi+1 x `i↓
(Case termi)

termi x `i↓

Proof of Theorem 5.7. Assume that Γ `i↓ is valid. For any s ∈
Stacks and h ∈ Heaps such that s, h |= Γ, we have (i, s, h)↓,
hence s, h |= termi x by Lemma B.3. Therefore Γ ` termi x is
valid, and it is derivable by the completeness assumption of the
underlying proof system.

The required proof of Γ `i↓ can be constructed using an in-
stance of Cut as follows

· · ····
termi x `i↓

Γ ` termi x (Cut)
Γ `i↓

where the dots are a placeholder for the proof of termi x `i↓ from
Lemma B.4.
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