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Abstract

One of the main challenges in the verification of software systems is the analysis of statically unbounded data structures with
dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data
structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and
2) the operations satisfy their specifications expressed interms of changes to the set of objects stored in the data structure.
During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations
of formulas, represented as sets of binary decision diagrams. To synthesize loop invariants of this form, Bohne uses a
combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently
CVC Lite), first-order provers such as SPASS and E, and the automated reasoner within the Isabelle interactive theorem
prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between
different decision procedures. In addition, Bohne uses field constraint analysis, a combination mechanism that enables the
use of uninterpreted function symbols within formulas of Monadic Second-Order Logic over trees. Using Bohne, we have
verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent
pointers, two-level skip lists, array data structures, andsorted lists. We have deployed Bohne in the Hob and Jahob data
structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context
of larger programs. This paper describes the Bohne algorithm, the techniques that Bohne uses to reduce the amount of
annotations and the running time of the analysis.

1 Introduction

Complex data structure invariants are one of the main challenges in verifying software
systems. Unbounded data structures such as linked data structures and dynamically allo-
cated arrays make the state space of software artifacts infinite and require new reasoning
techniques (such as reasoning about reachability) that have traditionally not been part of
theorem provers specialized for program verification. The ability of linked structures to
change their shape makes them a powerful programming construct, but at the same time
makes them difficult to analyze, because the appropriate analysis representation is depen-
dent on the invariants that the program maintains. It is therefore not surprising that the
most successful verification approaches for analysis of data structures use parameterized
abstract domains; these analyses include parametric shapeanalysis [47] as well as predi-
cate abstraction [3,23] and its generalizations [14,31].

This paper presentsBohne, an algorithm for inferring loop invariants of programs that
manipulate heap-allocated data structures. Like predicate abstraction, Bohne is parameter-
ized by the properties to be verified. What makes the Bohne algorithm unique is the use
of a precise abstraction domain that can express detailed properties of different regions of
a program’s infinite memory, and a range of techniques for exploring this analysis domain
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using decision procedures. The algorithm was initially developed as a symbolic shape anal-
ysis [53,43] for linked data structures and uses the key idea of many shape analyses, made
explicit in the TVLA analyzer [47, 36]: the partitioning of objects according to certain
unary predicates. One of the observations of our paper is that the synthesis of heap parti-
tions is not only useful for analyzing shape properties (which involve transitive closure),
but also for combining such shape properties with sorting properties of data structures and
properties expressible using linear arithmetic and first-order logic.

1.1 Related Work

We next put the Bohne algorithm in the context of two abstractinterpretation [11] ap-
proaches that are closest to symbolic shape analysis: predicate abstraction and parametric
shape analysis. We then discuss the work on decision procedures because Bohne uses a
validity checker for an expressive logic to perform the analysis.

Predicate abstraction. Bohne builds on predicate abstraction but introduces important
new techniques that make it applicable to the domain of shapeanalysis. There are two main
sources of complexity of loop invariants in shape analysis.The first source of complexity is
the fact that the invariants contain reachability predicates. To address this problem, Bohne
uses a decision procedure for monadic second-order logic over trees [50,25], and combines
it with uninterpreted function symbols in a way that preserves completeness in important
cases [54]. The second source of complexity is that the invariants contain universal quanti-
fiers in an essential way. Among the main approaches for dealing with quantified invariants
in predicate abstraction is the use of Skolem constants [14], indexed predicates [31] and the
use of abstraction predicates that contain quantifiers. Thekey difficulty in using Skolem
constants for shape analysis is that the properties of individual objects depend on the “con-
text”, given by the properties of surrounding objects, which means that it is not enough to
use a fixed Skolem constant throughout the analysis; it is instead necessary to instantiate
universal quantifiers from previous loop iterations, in some cases multiple times. Compared
to indexed predicates [31] the domain used by Bohne is more general because it contains
disjunctions of universally quantified statements. The presence of disjunctions is not only
more expressive in principle, but allows Bohne to keep formulas under the universal quan-
tifiers more specific. This enables the use of less precise, but more efficient algorithms for
computing changes to properties of objects without losing too much precision in the overall
analysis. Finally, the advantage of using abstraction tailored to shape analysis compared
to using quantified global predicates is that the parametersto shape-analysis-oriented ab-
straction are properties of objects in a state, as opposed toglobal properties of a state, and
the number of global predicates needed to emulate state predicates is exponential in the
number of properties [39,53].

The advantages of combining predicate abstraction with shape analysis are clearly
demonstrated in lazy shape analysis [6]. Lazy shape analysis performs independent runs of
a shape analysis algorithm, whose results are then used to improve the precision of predi-
cate abstraction. In contrast, our symbolic shape analysisgeneralizes predicate abstraction
technique to the point where it itself becomes effective as ashape analysis. We note that
Bohne has also been extended to perform the automated discovery of predicates; the dis-
cussion of this extension is beyond the scope of this paper.

Shape analysis.Shape analyses are precise analyses for linked data structures. They were
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originally used for compiler optimizations [24, 19, 18] and lacked the precision needed to
establish invariants that Bohne is analyzing. Precise datastructure analyses for verification
include [29, 16, 26, 35, 41, 20, 47] and have recently also been applied to verify set imple-
mentations [45]. Unlike Bohne, most shape analyses that synthesize loop invariants are
based on precomputed transfer functions and a fixed (though parameterized) set of proper-
ties to be tracked; recent approaches enable automation of such computation using decision
procedures [57, 56, 58, 43, 54] or finite differencing [46]. Our approach differs from [32]
in using complete reasoning about reachability in both lists and trees, and using a differ-
ent architecture of the reasoning procedure. Our reasoningprocedure uses a coarse-grain
combination of reachability reasoning with decision procedures and theorem provers for
numerical and first-order properties, as opposed to using a Nelson-Oppen style theorem
prover. This allowed us to easily combine several tools thatwere developed completely in-
dependently [25,4,42]. Shape analysis approaches have also been used to verify sortedness
properties [38] relying on manually abstracting a sortedness relation.

Decision procedures. Our symbolic shape analysis algorithm relies on decision proce-
dures for expressive logics to perform synthesis of loop invariants. The system then verifies
that the synthesized invariants are sufficient to prove the absence of errors and to prove the
postcondition. During the invariant synthesis, the analysis primarily uses the MONA deci-
sion procedure [25] with field constraint analysis [54] to reason about expressive invariants
involving reachability in tree-like linked structures. Our analysis also uses CVC Lite [4]
via the SMT-LIB interface to reason about array data structures, local properties in non-
tree data structures, and linear arithmetic. These two decision procedures are most relevant
for the present paper. In our system (Figure1) we also use interactive theorem provers
Isabelle [42] and Coq [5] to debug the proof obligations and translations into decision pro-
cedures, as well as to automatically discharge some proof obligations using simplication
and proof search built into these provers. We have also had success using first-order theo-
rem provers Vampire [51], E [48] (via the TPTP interface [49]) as well as SPASS [52]. We
used first-order theorem provers in Jahob to verify implementations of data structures [8],
avoiding the use of reachability using specification variables similarly to the approaches
taken in [29,40] and automated to some extent in [37]. Finally, to reason about the sizes of
data structures, we used a new decision procedure [30,28] with a reduction to Presburger
arithmetic.

Several recent decision procedures address specifically linked lists [1, 12, 39, 7, 44],
where the emphasis is on the predictability (decision procedures for well-defined classes of
properties of linked lists), the efficiency (membership in NP), the ability to interoperate with
other reasoning procedures, and modularity. Although the Bohne approach is not limited
to lists, it can take advantage of decision procedures for lists by applying such specialized
procedures when they are applicable and using more general reasoning otherwise. In our
current experience, the MONA decision procedure [25] proved to be effective for verifying
reachability in both list and tree structures.

Bohne could also take advantage of logics for reasoning about reachability, such as
the logic of reachable shapes [55]. Existing logics, such as guarded fixpoint logic [21] and
description logics with reachability [10,17] are attractive because of their expressive power,
but so far no decision procedures for these logics have been implemented.
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1.2 Contributions

We have previously described the general idea of symbolic shape analysis [43] as well as
the field constraint analysis decision procedure for combining reachability reasoning with
uninterpreted function symbols [54]. These previous techniques are our starting point. The
main contributions of this paper are the following:

(i) We describe a method for synthesis of Boolean heap programs that improves the
efficiency of fixpoint evaluation by precomputing abstract transition relations and
can control the precision/efficiency trade-off by recomputing transition relations on-
demand during fixpoint computation.

(ii) We introduce semantic caching of decision procedure queries across different fixpoint
iterations and even different analyzed procedures. The caching yields substantial im-
provements for procedures that exhibit some similarity, which opens up the possibility
of using our analysis in an interactive context.

(iii) We describe a static analysis that propagates precondition conjuncts and quickly finds
many true facts, reducing the running time and the number of needed abstraction
predicates for the subsequent symbolic shape analysis.

(iv) We present a domain-specific quantifier instantiation technique that significantly im-
proves the running time of the analysis. Furthermore, it often eliminates the need for
the underlying decision procedures to deal with quantifiers.

Together, these new techniques allowed us to verify a range of data structures without
specifying loop invariants and without specifying a large number of abstraction predicates.
Our examples include implementations of lists (with iterators and with back pointers), trees
with parent pointers, two-level skip lists, sorted lists, as well as combinations of these data
structures. What makes these results particularly interesting is a higher level of automation
than in previous approaches: Bohne synthesizes loop invariants that involve reachability
expressions and numerical quantities, yet it does not have precomputed transfer functions
for a particular set of abstraction predicates. Bohne instead uses decision procedures to
reason about arbitrary predicates definable in a given logic. Moreover, in our system the
developer is not required to manually specify the changes ofmembership of elements in
sets because such changes are computed by the system. Our system uses such synthesized
invariants to communicate the information between different decision procedures.

Bohne as a component of Jahob.Bohne is part of the data structure verification frame-
works Jahob [27,28] and Hob [34,33]. The goal of these systems is to verify data structure
consistency properties in the context of non-trivial programs. To achieve this goal, these
tools combine multiple static analyses, theorem proving, and decision procedures. In this
paper we present our experience in deploying Bohne in the Jahob framework. The in-
put language for Jahob is a subset of Java extended with annotations written as special
comments. Therefore, Jahob programs can be compiled and executed using existing Java
compilers and virtual machines.

Figure 1 illustrates the integration of Bohne into the Jahob framework. Bohne uses
Jahob’s facilities for symbolic execution of program statements and the validity checker to
compute the abstraction of the source program. The output ofBohne is the source program
annotated with the inferred loop invariants. The annotatedprogram serves as an input to a
verification condition generator. The generated verification conditions are verified using an
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Fig. 1. Jahob Data Structure Analysis System Architecture

approach [28] that combines special purpose decision procedures, general purpose theorem
provers, and reasoning techniques such as field constraint analysis [54].

2 Motivating Example

We illustrate our technique on the procedureSortedList.insert shown in Figure2.
This procedure inserts aNode object into a global sorted list. The annotation given by
special comments/*: ... */ consists of data structure invariants, pre- and postcon-
ditions, as well as hints for the analysis. Formulas are expressed in a subset of the language
used in the Isabelle interactive theorem prover [42]. The specification uses an abstract set
variablecontentwhich is defined as the set of non-null objects reachable fromthe global
variablefirst by following the fieldnext. The data structure invariants are specified
by the annotationinvariant "...". For instance, the first invariant expresses the fact
that the fieldnext forms trees in the heap, i.e. thatnext is acyclic and injective; the third
invariant expresses the fact that the elements stored in thelist are sorted in increasing order
according to fielddata. The precondition of the procedure,requires "...", states
that the object to be inserted is non-null and not yet contained in the list. The postcondition,
ensures "...", expresses that the argument is properly inserted into the list.

The loop in the procedure body traverses the list until it finds the proper position for
insertion. It then inserts the argument such that the resulting data structure is again a sorted
list. Our analysis, Bohne, is capable of verifying that the postcondition holds at the end
of the procedureinsert, that data structure invariants are preserved, and that there are
no run-time errors such as null pointer dereferences. In order to establish these properties,
Bohne derives a complex loop invariant shown in Fig.3.

The main difficulties for inferring this invariant are: (1) it contains universal quantifiers
over an unbounded domain and (2) it contains constructs suchas reachability, numerical
properties, and uninterpreted function symbols.

Bohne infers universally quantified invariants using symbolic shape analysis based on
Boolean heaps [53, 43]. This approach can be viewed as a generalization of predicate
abstraction or a symbolic approach to parametric shape analysis. Abstraction predicates
can be Boolean-valued state predicates (which are either true or false in a given state, such
asprev_le_n) or predicates denoting sets of heap objects in a given state(which are
true of agiven objectin agiven state, such asreach_curr). The latter serve as building
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class Node {
public int data ;
public Node next;

}
class SortedList {

private static Node first ;
/∗ : public static specvar content :: objset ;

vardefs " content == {v. v 6= null ∧ next∗ first v}" ;

invariant " tree [next ]";
invariant " first = null ∨ (∀ n. n.next6= first)" ;
invariant "∀ v. v ∈ content∧ v.next 6= null −→ v..Node.data≤ v.next.data";
invariant "∀ v. v 6= null ∧ v.next 6= null −→ v.next∈ content";

∗/
public static void insert (Node n)

/∗ : requires "n 6= null ∧ n /∈ content"
modifies content
ensures" content = old content∪ {n}" ∗/

{ /∗ : specvar reach_curr :: objset ;
vardefs " reach_curr == {v. next∗ curr v}" ;
specvar prev_le_n :: bool ;
vardefs "prev . data <= n.data"; ∗/

Node prev = null ;
Node curr = first ;
while (( curr != null ) && (curr.data < n. data )) {

// : track ( reach_curr ); track (prev_le_n );
prev = curr ;
curr = curr . next ;

}
n.next = curr ;
if (prev != null ) prev . next = n;
else first = n;

}
}

Fig. 2. Insertion into a sorted list

tree [next ] ∧ ( first = null ∨ (∀ n. n.next6= first )) ∧
(∀ v. v ∈ content∧ v.next 6= null −→ v.data <= v.next.data)∧
(∀ v w. v 6= null & w 6= null & v.next = w−→ w ∈ content)∧
n ∧ null ∧ n /∈ content∧ content = old content∧
( curr ∧ null −→ curr∈ content)∧ (prev = null−→ first = curr)∧
(prev ∧ null −→ prev∈ content∧ prev /∈ reach_curr∧

prev . next = curr∧ prev_le_n)

Fig. 3. Loop invariant for procedureSortedList.insert

blocks of the inferred universally quantified invariants. Thetrack(...) annotation is
used as a hint on which predicates the analysis should use forthe abstraction of which code
fragments.

To reduce the annotation burden we use a syntactic analysis to infer abstraction predi-
cates automatically. Furthermore, parts of the invariant often literally come from the pro-
cedure’s precondition. In particular, data structure invariants are often preserved as long as
the heap is not mutated. We therefore precede the symbolic shape analysis phase with an
analysis that propagates precondition conjuncts across the control-flow graph of the proce-
dure’s body. Using this propagation technique we are able toinfer the first six conjuncts of
the invariant. The symbolic shape analysis phase makes use of this partial invariant to infer
the full invariant shown in Fig.3.

Bohne’s symbolic shape analysis enables the combination ofdifferent decision proce-
dures. Thereby the inferred invariants communicate information between the individual
decision procedures, as illustrated with the following example. Figure4 shows one of the
generated verification conditions for theinsert procedure. It expresses the fact that the
sortedness property is reestablished after executing the path from the exit point of the loop
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I ∧ ¬(curr.data < n.data)∧ prev 6= null ∧
next_1 = next [n:= curr ][ prev := n] ∧
content_1 = {v. v 6= null ∧ next_1∗ first v} ∧
v ∈ content_1∧ v.next_16= null −→ v.data≤ v.next_1.data

Fig. 4. Verification condition for preservation of sortedness

through the if-branch of the conditional to the procedure’sreturn point. The symbol “I”
denotes the loop invariant given in Fig.3. This verification condition is valid. Its proof
requires the factcontent’ = content ∪ {n}; denote this factP . P follows from the
given assumptions. The MONA decision procedure is able to concludeP by expanding the
definitions of the abstract setscontent andcontent’. However, MONA is not able to
prove the verification condition, because proving its conclusion requires reasoning over in-
tegers. On the other hand, the CVC Lite decision procedure isable to prove the conclusion
given the factP by reasoning over the abstract sets without expanding theirdefinitions,
but it is not able to concludeP from the assumptions, because this deduction step requires
reasoning over reachability. In order to communicateP between the two decision proce-
dures, Bohne infers, in addition to the loop invariantI, an invariant for the procedure’s
return point that includes the missing factP . This invariant enables CVC Lite to prove the
verification condition.

3 Context-Sensitive Abstraction

We next describe the symbolic shape analysis algorithm implemented in Bohne. What
makes this algorithm unique is the fact that abstract transition relations are computed on-
demand in each fixpoint iteration taking into account thecontextthat approximates pre-
viously explored abstract states. This approach allows thealgorithm to take advantage
of precomputed abstract transition relations from previous fixpoint iterations, while main-
taining sufficient precision for the analysis of linked datastructures by recomputing the
transitions when the context changes in a significant way.

3.1 Reachability Analysis

The input of Bohne is the procedure to be analyzed, preconditions specifying the initial
states of the procedure, and a set of abstraction predicates. Bohne converts the procedure
into a set of guarded commands that correspond to the loop-free paths in the control-flow
graph.

The pseudo code of Bohne’s top-level fixpoint computation loop is shown in Figure5.
The analysis first abstracts the conjunction of the procedure’s preconditions obtaining an
initial set of abstract states. It then computes an abstractreachability tree. Each node in
this tree is labeled by a program location and a set of abstract states, the root being labeled
by the initial location and the abstraction of the preconditions. The edges in the tree are
labeled by guarded commands. The reachability tree keeps track of abstract traces which
are used for the analysis of abstract counterexamples.

For each unprocessed node in the tree, the analysis computesthe abstract postcondition
for the associated abstract states and all outgoing transitions of the corresponding program
location. Transitions are abstracted context-sensitively, taking into account the previously
discovered reachable abstract states for the associated program location. Whenever the dif-
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proc Reach(init : precondition formula,
ℓinit : initial program location,
T : set of guarded commands) =

let init# = abstract(init)

let root = 〈location = ℓinit; states = init#; sons = ∅〉
let unprocessed = {root}
while unprocessed 6= ∅ do

choosen ∈ unprocessed

for all (n.location, c, ℓ′) ∈ T do
let context = {m.states | m.location = n.location }
let old = {m.states | m.location = ℓ′ }
let new = AbstractPost(c, context, n.states) − old

if new 6= ∅ then
let n′ = 〈location = ℓ′; states = new; sons = ∅〉
n.sons := n.sons ∪ {(c, n′)}
unprocessed := unprocessed ∪ {n′}

unprocessed := unprocessed − {n}
return root

Fig. 5. Reachability analysis in Bohne

ference between the already discovered abstract states of the post location and the abstract
post states of the processed transition is non-empty, a new unprocessed node is added to
the tree. The analysis stops after the list of unprocessed nodes becomes empty, indicating
that the fixpoint is reached. After termination of the reachability analysis, Bohne anno-
tates the original procedure with the computed loop invariants and passes the result to the
verification condition generator.

Focusing on algorithmic aspects, we next give a descriptionof the abstract domain,
abstraction function, and the abstract post operator.

3.2 Symbolic Shape Analysis

Following the framework of abstract interpretation [11], a static analysis is defined by
lattice-theoretic domains and by fixpoint iteration over the domains. Symbolic shape anal-
ysis can be seen as a generalization of predicate abstraction [22]. For predicate abstraction
the analysis computes an invariant; the fixpoint operator isan abstraction of thepostopera-
tor; the concrete domain consists of sets of states (represented by closed formulas), and the
abstract domain of a finite lattice of closed formulas.

Abstract Domain. Let Pred be a finite set of abstraction predicatesp(v) with an implicit
free variablev ranging over heap objects. AcubeC is a partial mapping fromPred to
{0, 1}. We call a total cubecomplete. We say that predicatep occurs positively (occurs
negatively, does not occur) inC if C(p) = 1 (C(p) = 0, C(p) is undefined). We denote by
Cubes the set of all cubes. An abstract state is a subset of cubes, which we call aBoolean
heap. The abstract domain is given by sets of Boolean heaps, i.e. sets of sets of cubes:
AbsDom = 22Cubes

.

Meaning Function. The meaning functionγ is defined on cubes, Boolean heaps, and sets
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of Boolean heaps as follows:

γ(C) =
∧

p∈Pred∩dom(C)

pC(p), γ(H) = ∀v.
∨

C∈H

γ(C), γ(H) =
∨

H∈H

γ(H)

wherep1 = p andp0 = ¬p

The meaning of a cubeC is the conjunction of the properly signed predicates inPred. A
Boolean heapH describes all concrete states whose heap is partitioned according to the
cubes inH. The meaning of a setH of Boolean heaps is the disjunction of the meaning of
all its elements.

Lattice Structure. Define a partial order⊑ on cubes by:

C ⊑ C ′ def
⇐⇒ ∀p ∈ Pred. C ′(p) = C(p) ∨ (C ′(p) is undefined).

For a cubeC and Boolean heapH we writeC ∈c H as a short notation for the fact that
C is complete and there existsC ′ ∈ H such thatC ⊑ C ′. The partial order⊑ is extended
from cubes to a preorder on Boolean heaps:

H ⊑ H ′ def
⇐⇒ ∀C ∈ H. ∃C ′ ∈ H ′. C ⊑ C ′.

For notational convenience we identify Boolean heaps up to subsumption of cubes, i.e. up
to equivalence under the relation (⊑ ∩ ⊑−1). We then identify⊑ with the partial order on
the corresponding quotient of Boolean heaps. In the same waywe extend⊑ from Boolean
heaps to a partial order on the abstract domain. These partial orders induce Boolean algebra
structures. We denote by⊓, ⊔ and · the meet, join and complement operations of these
Boolean algebras. Bohne usees binary decision diagrams (BDDs) [9] to implement Boolean
heaps, the abstract domain, and operations of the Boolean algebras.

Context-sensitive Cartesian post.The abstract post operator implemented in Bohne is a
refinement of the abstract post operator presented in [43]. Its core is given by theCartesian
post operator. This operator maps a guarded commandc, and a set of Boolean heapsH to
a set of Boolean heaps as follows:

CartesianPost(c,H) =

let cpost(c, C) =
d
{C ′ | ∀p ∈ Pred. C ⊑ wlp#(c, pC′(p)) }

in { { cpost(c, C) | C ∈c H } | H ∈ H}.

The actual abstraction occurs in the computation ofwlp#(c, F ) which is defined by:

wlp#(c, F ) = {C | γ(C) |= wlp(c, F ) } .

The Cartesian post maps each Boolean heapH in H to a new Boolean heapH ′. For a
given states satisfyingγ(H), a cubeC in H represents a set of heap objects ins. The
Cartesian post computes the local effect of commandc on each set of objects which is
represented by some complete cube inH: each complete cubeC in H is mapped to the
smallest cubecpost(c, C) that represents at least the same set of objects in the post states
under commandc. Consequently, each object in a given post state is represented by some
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cube in the resulting Boolean heapH ′, i.e. all post states satisfyγ(H ′). The effect ofc on
the objects represented by some cube is expressed in terms ofweakest preconditionswlp

of abstraction predicates. These are abstracted bywlp#.
Computing the effect ofc for each cube inH locally implies that we do not take into

account the full information provided byH. This becomes an inherent problem if updated
predicates express non-local properties such as reachability. As an example, consider a
Boolean heapH that contains two cubes

C1 = [(x = v) 7→ 1, (y = v) 7→ 0, (next∗z v) 7→ 1] and
C2 = [(x = v) 7→ 0, (y = v) 7→ 1, (next∗z v) 7→ 0] .

CubeC1 describes an object which is pointed to by a stack variablex and reachable from
some other stack variablez following field next. CubeC2 describes a second object which
is pointed to by stack variabley, but which is not reachable fromz. If we consider a field
update (c = (x.next := y)) then after the updatey is reachable fromz. However we have

cpost(c, C2) 6⊑ [(next∗z v) 7→ 1]

becauseC2 is updated independently ofC1. In principle one can strengthen the abstraction
of weakest preconditions by taking into account the BooleanheapH for which the post is
computed. In fact we have

γ(H) ∧ (y = v) |= wlp(c, next∗z v) .

This strengthening would result in a more precise Cartesianpost, but as a consequence
abstract weakest preconditions would have to be recomputedfor each Boolean heap to
which the Cartesian post is applied. This would make the analysis infeasible. Nevertheless,
such global context information is valuable when updated predicates describe global prop-
erties such as reachability. Therefore, we would like to strengthen the abstraction using
some global information, accepting that abstract weakest preconditions have to be recom-
puted occasionally. We introduce thecontext-sensitive Cartesian postto allow this kind of
strengthening:

CSCartesianPost(c,Γ,H) =

let cpost(c, C) =
d
{C ′ | ∀p ∈ Pred. C ⊑ wlp#(c,Γ, pC′(p)) }

in { { cpost(c, C) | C ∈c H } | H ∈ H}

where wlp#(c,Γ, F ) = {C | Γ ∧ γ(C) |= wlp(c, F ) } (1)

The formulaΓ is the key tuning parameter that controls the tradeoff between precision and
efficiency of the analysis. We impose a restriction onΓ: we say thatΓ is acontext formula
for a set of Boolean heapsH if γ(H) impliesΓ. In order to ensure soundness, we require
that for all applicationsCSCartesianPost(c,Γ,H) of the context-sensitive Cartesian postΓ

is a context formula forH.
Figure6 gives an implementation of the context-sensitive Cartesian post operator that

exploits the representation of Boolean heaps as BDDs. Firstit precomputes an abstract
transition relationc# which is expressed in terms of cubes over primed and unprimedab-
straction predicates. After that it computes the relational product ofc# and each Boolean
heap. The relational product conjoins a Boolean heap with the abstract transition relation,
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proc CSCartesianPost(c, Γ : context formula, H : AbsDom) : AbsDom =

let c# = Cubes

if c# is precomputed for(c,Γ) then c# := lookup(c,Γ)

else foreachp ∈ Pred do

c# := c# ⊓

(

[p′ 7→ 1] ⊓ wlp#(c,Γ,¬p) ⊔

[p′ 7→ 0] ⊓ wlp#(c,Γ, p)

)

let H′ = ∅

foreach H ∈ H do
let H ′ = RelationalProduct(H, c#)

H′ := H′ ⊔ {H ′}

return H′

Fig. 6. Context-sensitive Cartesian post

projects the unprimed predicates, and renames primed to unprimed predicates in the result-
ing Boolean heap. Note that the abstract transition relation only depends on commandc
and the context formulaΓ. This allows us to cache abstract transition relations and avoid
their recomputation in later fixpoint iterations ifΓ is unchanged.

Splitting. The Cartesian post operator maps each Boolean heap in a set ofBoolean heaps
to one Boolean heap. This means that in terms of precision theCartesian post does not
exploit the fact that the abstract domain is given bysetsof Boolean heaps. In the following
we describe an operation that splits a Boolean heap into a setof Boolean heaps. It is
similar to thefocusoperation in TVLA [47]. Splitting maintains important invariants of
Boolean heaps that result from best abstractions of concrete states. We split Boolean heaps
before applying the Cartesian post. This increases the precision of the analysis by carefully
exploiting that the abstract domain is disjunctive complete.

Traditional shape analyses precisely keep track of objectswhich are pointed to by stack
variables. This information is crucial for a precise analysis. In order to keep track of these
objects we use abstraction predicates of the form(x = v) wherex is some stack variable.
Since these predicates denote singleton sets, i.e. each of them is true for exactly one object
on the heap, we call themsingleton predicates. Consequently, if a Boolean heapH is the
the result of applying the best abstraction with respect toγ to some concrete state then for
every singleton predicatep it contains exactly one complete cube with a positive occurrence
of p. Boolean heaps resulting from the Cartesian post might not have this property. This
makes the analysis imprecise. Therefore we split each Boolean heap before application of
the Cartesian post into a set of Boolean heaps, such that the above property is reestablished.
Let P be the subset of abstraction predicates denoting singletons then thesplitting operator
is defined as follows:

Split(H) = split(P,H)

split(∅,H) = H

split({p} ∪ P ′,H) = let Cp = [p 7→ 1] and C¬p = [p 7→ 0] in
⋃

H∈H split(P ′, {H ⊓ {C¬p} ⊔ {C} | C ∈c (H ⊓ {Cp}) }).

The splitting operator takes a set of Boolean heapsH as arguments. For each singleton
predicatep and Boolean heapH it splits H into a set of Boolean heaps. Each of the
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abstract(F ) = let H = {C | C |= ¬F } in Clean(F,Split(H))

proc AbstractPost(c, context : AbsDom, H0 : AbsDom) : AbsDom =

let H = Clean(guard(c),Split(H0))

let Γ = κ(context ⊔H)

return CSCartesianPost(c,Γ,H)

Fig. 7. Bohne’s abstract post operator

resulting Boolean heaps corresponds toH, but contains only one of the complete cubes
in H that have a positive occurrence ofp. The splitting operator is sound, i.e. satisfies:
γ(Split(H)) = γ(H).

Cleaning. Splitting might introduce unsatisfiable Boolean heaps, because it is done propo-
sitionally without taking into account the semantics of predicates. Unsatisfiable Boolean
heaps potentially lead to spurious counterexamples and hence should be eliminated. The
same applies to cubes that are unsatisfiable with respect to other cubes within one Boolean
heap. We use acleaning operator1 to eliminate unsatisfiable Boolean heaps and unsatisfi-
able cubes within satisfiable Boolean heaps. At the same timewe strengthen the Boolean
heaps with the guard of the commands before the actual computation of the Cartesian post.
The cleaning operator is defined as follows:

Clean(F,H) = let H1 = {H ∈ H | F ∧ γ(H) 6|= false } in

{ {C ∈c H | F ∧ γ(H) ∧ γ(C) 6|= false } | H ∈ H1 }.

The operatorClean takes as arguments a formulaF (e.g. the guard of a command) and a
set of Boolean heaps. It first removes all Boolean heaps that are unsatisfiable with respect
to F . After that it removes from each remaining Boolean heapH all complete cubes which
are unsatisfiable with respect toF andH. The cleaning operator is sound, i.e. strengthens
H with respect toF :

F ∧ γ(H) |= γ(Clean(F,H)) |= γ(H) .

Obviously the cleaning and splitting operators bear the danger of an exponential blowup.
This can be avoided, e.g. by giving up precision and enforcing a polynomial bound by
only considering cubes up to a fixed length. However, in practice this does not seem to
be necessary, because Boolean heaps are relatively sparse and contain only few complete
cubes.

Abstract post operator. Figure7 defines the abstract post operator used in Bohne. It
is defined as the composition of the splitting, cleaning, andthe Cartesian post operator.
The functionκ is a context operator. A context operator is a monotone mapping from
sets of Boolean heaps to a context formula. It controls the trade-off between precision and
efficiency of the abstract post operator. Our choice ofκ is described in the next section.
Figure 7 also defines the abstraction function that is used to computethe initial set of
Boolean heaps. For abstracting a formulaF the functionabstract first computes a Boolean
heapH which is the complement of an under-approximation of¬F . It then splitsH with

1 The cleaning operator resembles thecoerceoperation in TVLA [47].
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Var − object-valued program variables

instantiate(H : Boolean heap) : formula=

let cube(x) =
⊔

(H ⊓ {[(x = v) 7→ 1]}) in
∧

x∈Var

γ(cube(x))[v := x]

κ(H) = let H =
⊔

H in instantiate(H)

Fig. 8. Context instantiation and the context operatorκ

respect to singleton predicates and strengthens the resultby the original formulaF . We
compute the abstraction indirectly because it allows us to reuse all the functionality that we
need for computing the abstract post operator. We also avoidcomputing the best abstraction
function for the abstract domain, because the computational overhead is not justified in
terms of the gained precision.

Assuming thatκ is in fact a context operator, soundness ofAbstractPost follows from
the soundness of all its component operators. Note that soundness is still guaranteed if the
underlying validity checker is incomplete.

4 Context Instantiation

The context information used to strengthen the abstractionis given by the set of Boolean
heaps that are already discovered at the respective programlocation. If we take into ac-
count all available context for the abstraction of a transition then we need to recompute
the abstract transition relation in every iteration of the fixed point computation. Otherwise
the analysis would be unsound. In order to avoid unnecessaryrecomputations we use the
operatorκ to abstract the context by a context formula that less likelychanges from one it-
eration to the next. For this purpose we introduce a domain-specific quantifier instantiation
technique. We use this technique not only in connection withthe context operator, but more
generally to eliminate any universal quantifier in a decision procedure query that originates
from the concretization of a Boolean heap. This eliminates the need for the underlying
decision procedures to deal with quantifiers.

We observed that the most valuable part of the context is the information available over
objects pointed to by program variables. This is due to the fact that transitions always
change the heap with respect to these objects. We therefore instantiate Boolean heaps to
objects pointed to by stack variables. Bohne automaticallyadds an abstraction predicate
of the form(x = v) for every object-valued program variablex. A syntactic backwards
analysis of the procedure’s assert statements and postcondition is used to determine which
of these predicates are relevant at each program point.

Figure8 defines the functioninstantiate. It uses the above mentioned predicates to
instantiate a Boolean heapH to a quantifier free formula (assuming predicates itself are
quantifier free). For every program variablex it computes the least upper bound of all
cubes inH which have a positive occurrence of predicate(x = v). The resulting cube
is concretized and the free variablev is substituted by program variablex. The function
κ maps a set of Boolean heapsH to a formula by taking the join ofH and instantiating
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the resulting Boolean heap. One can show thatκ is indeed a context operator, i.e.κ is
monotone and the resulting formula is a context formula forH.

5 Semantic Caching

Abstracting context does not avoid that abstract transition relations have to be recomputed
occasionally in later fixpoint iterations. Whenever we recompute abstract transition rela-
tions we would like to reuse the results from previous abstractions. We do this on the level
of decision procedure calls by caching the queries and the results of the calls. Syntactic
caching of decision procedure queries has been used before (e.g. [2] mentions its use in
the SLAM system [3]). The problem with simple syntactic caching of formulas inshape
analysis is that the context formulae are passed to the decision procedure as part of the
queries, so a simple syntactic approach is ineffective. However, the context consists of all
discovered abstract states at the current iteration. Therefore, the context changes monoton-
ically from one iteration to the next. The monotonicity of the context operatorκ guarantees
that context formulae, too, increase monotonically with respect to the entailment order. We
therefore cache formulas by keeping track of the partial order on the context. Since context
formulae occur in the antecedents of the queries, this allows us to reuse negative results
of entailment checks from previous fixpoint iterations. This method is effective because in
practice the number of entailments which are invalid exceeds the number of valid ones.

Furthermore, formulas are cached up to alpha equivalence. Since the cache is self-
contained, this enables caching results of decision procedure calls not only across different
fixpoint iterations for one procedure, but even across the analysis of different procedures.
This yields substantial improvements for procedures that exhibit some similarity, which
opens up the possibility of using our analysis in an interactive context. For example, we
verified a procedure inserting an element into a sorted list (seeSortedList.add in
Figure9) and repeated the analysis without erasing the cache on a modified version of the
same procedure where two commuting assignments were exchanged. About 90% of the
results to decision procedure calls were found in the cache,causing that running time went
down from 11s to 3s.

6 Propagation of Precondition Conjuncts

It often happens that parts of loop invariants literally come from the procedure’s precondi-
tions. A common situation where this occurs is that a procedure executes a loop to traverse
a data structure performing only updates on stack variablesand after termination of the loop
the data structure is manipulated. In such a case the data structure invariants are trivially
preserved while executing the loop. Using an expansive symbolic shape analysis to infer
such invariants is inappropriate. We therefore developed afast but effective analysis that
propagates conjuncts from the precondition across the procedure’s control-flow graph. This
propagation precedes the symbolic shape analysis, such that the latter is able to assume the
previously inferred invariants.

The propagation analysis works as follows: it first splits the procedure’s precondition
into a conjunction of formulas and assumes all conjuncts at all program locations. It then
recursively removes a conjunctF at program locations that have an incoming control flow
edge from some location where either (1)F has been previously removed or (2) whereF
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benchmark used DP # predicates total # validity checker calls running time

(manually supplied) total (cache hits) total (DP)

DLL.addLast MONA 7 (0) 118 (19%) 2s (69%)

List.reverse MONA 7 (2) 371 (22%) 4s (72%)

SortedList.add MONA, CVC lite 16 (1) 368 (40%) 11s (65%)

Skiplist.add MONA 20 (0) 787 (44%) 26s (57%)

Tree.add MONA 13 (0) 358 (31%) 31s (92%)

ParentTree.add MONA 13 (0) 362 (32%) 33s (91%)

Linear.arrayInv CVC lite 7 (5) 882 (52%) 57s (97%)

Fig. 9. Results of Experiments

is not preserved under post of the associated command. Aftertermination of the analysis
(none of the rules for removal applies anymore) the remaining conjuncts are guaranteed to
be invariants at the corresponding program points.

The preservation of conjuncts is checked by discharging a verification condition (via
decision procedure calls). The use of decision procedures makes this analysis more general
than the syntactic approach for computing frame conditionsfor loops used in ESC/Java-like
desugaring of loops [15]. In particular, the propagation is still applicable in thepresence
of heap manipulations that preserve the invariants in each loop-free code fragment. Unlike
the Houdini tool [13], precondition conjunct propagation does not attempt to invent new
predicates.

7 Experiments

We applied Bohne to verify operations on various data structures. Our experiments cover
data structures such as singly-linked lists, doubly-linked lists, two-level skip lists, trees,
trees with parent pointers, sorted lists, and arrays. The verified properties include: (1)
absence of run-time errors, such as null pointer dereferences and array bound violations;
(2) complex data structure consistency properties, such aspreservation of the tree structure,
array invariants, as well as sortedness; and (3) procedure contracts, stating e.g. how the set
of elements stored in a data structure is affected by the procedure.

Figure9 shows the results for a collection of benchmarks running on a2 GHz Pentium
M with 1 GB memory. The Jahob system is implemented in Objective Caml and compiled
to native code. Running times include inference of loop invariants. This time dominates
the time for a final check (using verification-condition generator) that the resulting loop
invariants are sufficient to prove the postcondition. The benchmarks can be found on the
Jahob project web page [27]. The version of Bohne used to generate these results uses a
simple analysis of the source code to determine most of the abstraction predicates auto-
matically; the number of predicates in parentheses indicates the additional predicates that
we needed to specify to make the symbolic shape analysis sufficiently precise. Note that
we did not need to specify how these predicates change in response to program statements;
this is computed automatically by Bohne. Note also that our examples are not stand-alone
programs that build and then traverse their own data structures. Instead, our examples use
assume-guarantee reasoning of Jahob to verify procedures with non-trivial preconditions,
postconditions and representation invariants. As a result, these examples can be used in the
context of larger programs that are verified by more scalableanalysis, as demonstrated in
the Hob project [33].
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benchmark DLL.addLast SortedList.add Skiplist.add Tree.add

no context (Γ = true)

running time 2s 14s 29s 71s

DP calls (cache hits) 118 (20%) 457 (32%) 1110 (51%) 1024 (51%)

context-sensitive without instantiation (κ = id)

running time 4s 24s 72s 473s

DP calls (cache hits) 178 (23%) 445 (22%) 1031 (38%) 742 (13%)

context-sensitive with instantiation

running time 2s 11s 26s 32s

DP calls (cache hits) 118 (19%) 368 (40%) 787 (44%) 358 (31%)

Fig. 10. Effect of context-sensitive abstraction and context instantiation

We also examined the impact of context-sensitive abstraction and context instantiation
on the running time of the analysis. The results are shown in Table 10. As expected,
running times for context-sensitive abstraction with instantiation disabled are significantly
higher (2-8 times) than with instantiation enabled. Without context instantiation abstract
transition relations have to be recomputed many times and caching of decision procedure
calls is less effective. If context-sensitive abstractionis disabled completely the analysis
not only becomes less precise (e.g. the analysis failed to verify the SortedList and SkipList
examples without context) but also in many cases slower. Most likely the less precise
analysis needs to explore a larger part of the abstract statespace.

Note that our implementation of the algorithm is not highly tuned in terms of aspects
orthogonal to Bohne’s algorithm, such as type inference forinternally manipulated Isabelle
formulas. We expect that the running times would be notably improved using more effi-
cient implementation of Hindley-Milner type reconstruction. In previous benchmarks with-
out type reconstruction in average 97% of the time was spent in the decision procedures.
The most promising directions for improving the analysis performance are therefore 1) de-
ploying more efficient decision procedures, and 2) further reducing the number of decision
procedure calls.

In addition to the presented examples, we have used the verification condition generator
to verify examples such as array-based implementations of containers and implementations
of association lists. Bohne can also infer loop invariants in such examples.

8 Conclusions

We described Bohne, a data structure verification algorithmbased on symbolic shape anal-
ysis that infers invariants about sets given by predicates on objects. We showed how to
fruitfully combine this abstraction with a collection of decision procedures that operate on
independent subgoals of the same proof obligation. We deployed a range of techniques
that improve the running time of the analysis and the level ofautomation compared to di-
rect application of the algorithm. These techniques include context-dependent abstraction,
semantic caching of formulas, propagation of conjuncts, and domain-specific quantifier in-
stantiation. Our experience with the Bohne analysis in the context of the Hob and Jahob
data structure verification systems suggests that it is effective for verifying a wide range
of data structures with user-defined procedure contracts. The verified properties go be-
yond traditional shape properties such as treeness and include the characterization of data
structure operations in terms of changes to their content.

16



Wies et al: Verifying Complex Properties using Symbolic Shape Analysis

References

[1] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. InVMCAI’05, 2005.

[2] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving for predicate abstraction refinement.
In Tool Paper, CAV, 2004.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs. InProc. ACM
PLDI, 2001.

[4] C. Barrett and S. Berezin. CVC Lite: A new implementationof the cooperating validity checker. InProc. 16th Int.
Conf. on Computer Aided Verification (CAV ’04), volume 3114 ofLecture Notes in Computer Science, pages 515–518,
2004.

[5] Y. Bertot and P. Castéran.Interactive Theorem Proving and Program Development–Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[6] D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In T. Ball and R. Jones, editors,Proceedings of the
18th International Conference on Computer Aided Verification (CAV 2006, Seattle, WA, August 16-20), LNCS 4144,
pages 532–546. Springer-Verlag, Berlin, 2006.
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