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Abstract

One of the main challenges in the verification of softwaregesys is the analysis of statically unbounded data strustuitn
dynamic memory allocation, such as linked data structundsaarays. We describe Bohne, a new analysis for verifyirig da
structures. Bohne verifies data structure operations andssthat 1) the operations preserve data structure intaramd

2) the ogerations satisfy their specifications expresseerins of changes to the set of objects stored in the datasteuc
During the analysis, Bohne infers loop invariants in therfaf disjunctions of universally quantified Boolean comlios

of formulas, represented as sets of binary decision diagraho synthesize loop invariants of this form, Bohne uses a
combination of decision procedures for Monadic Seconde®tagic over trees, SMT-LIB decision procedures (curgentl
CVC Lite), first-order provers such as SPASS and E, and thenaated reasoner within the Isabelle interactive theorem
prover. This architecture shows that synthesized loopriewts can serve as a useful communication mechanism betwee
different decision procedures. In addition, Bohne used fiehstraint analysis, a combination mechanism that esndbhée

use of uninterpreted function symbols within formulas ofrMdic Second-Order Logic over trees. Using Bohne, we have
verified operations on data structures such as linked ligts iterators and back pointers, trees with and without piare
pointers, two-level skip lists, array data structures, soded lists. We have deployed Bohne in the Hob and Jahob data
structure analysis systems, enabling us to combine Bohtieanalyses of data structure clients and apply it in theesant

of larger programs. This paper describes the Bohne algorithe techniques that Bohne uses to reduce the amount of
annotations and the running time of the analysis.

1 Introduction

Complex data structure invariants are one of the main ahgdle in verifying software
systems. Unbounded data structures such as linked dataus&si and dynamically allo-
cated arrays make the state space of software artifacti#ténéind require new reasoning
techniques (such as reasoning about reachability) that traditionally not been part of
theorem provers specialized for program verification. Thilita of linked structures to
change their shape makes them a powerful programming cohsbut at the same time
makes them difficult to analyze, because the appropriatysasaepresentation is depen-
dent on the invariants that the program maintains. It isefoge not surprising that the
most successful verification approaches for analysis & gttictures use parameterized
abstract domains; these analyses include parametric stmabgsis #7] as well as predi-
cate abstraction3] 23] and its generalizationslfl, 31].

This paper presenBohne an algorithm for inferring loop invariants of programsttha
manipulate heap-allocated data structures. Like prezl@lstraction, Bohne is parameter-
ized by the properties to be verified. What makes the Bohnarittign unique is the use
of a precise abstraction domain that can express detaitgubgres of different regions of
a program’s infinite memory, and a range of techniques foloeixy this analysis domain
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using decision procedures. The algorithm was initiallyedeped as a symbolic shape anal-
ysis [63,43] for linked data structures and uses the key idea of manyeshaplyses, made
explicit in the TVLA analyzer 47, 36]: the partitioning of objects according to certain
unary predicates. One of the observations of our paper ighbasynthesis of heap parti-
tions is not only useful for analyzing shape properties @hhinvolve transitive closure),
but also for combining such shape properties with sortirgerties of data structures and
properties expressible using linear arithmetic and firdeplogic.

1.1 Related Work

We next put the Bohne algorithm in the context of two abstratgrpretation 11] ap-
proaches that are closest to symbolic shape analysis:cptedibstraction and parametric
shape analysis. We then discuss the work on decision proeethecause Bohne uses a
validity checker for an expressive logic to perform the gsial

Predicate abstraction. Bohne builds on predicate abstraction but introduces itapor
new techniques that make it applicable to the domain of shaplysis. There are two main
sources of complexity of loop invariants in shape analyBlg first source of complexity is
the fact that the invariants contain reachability predisaflo address this problem, Bohne
uses a decision procedure for monadic second-order logictmes $0,25], and combines

it with uninterpreted function symbols in a way that pressreompleteness in important
cases$4]. The second source of complexity is that the invariantdaiaruniversal quanti-
fiers in an essential way. Among the main approaches forrdgalith quantified invariants
in predicate abstraction is the use of Skolem constddisihdexed predicates[l] and the
use of abstraction predicates that contain quantifiers. Kelgedifficulty in using Skolem
constants for shape analysis is that the properties ofichaa objects depend on the “con-
text”, given by the properties of surrounding objects, viahiceans that it is not enough to
use a fixed Skolem constant throughout the analysis; it iedgsnecessary to instantiate
universal quantifiers from previous loop iterations, in sarases multiple times. Compared
to indexed predicates3]] the domain used by Bohne is more general because it contains
disjunctions of universally quantified statements. The@nee of disjunctions is not only
more expressive in principle, but allows Bohne to keep fdanwunder the universal quan-
tifiers more specific. This enables the use of less preciganbre efficient algorithms for
computing changes to properties of objects without losimgmiuch precision in the overall
analysis. Finally, the advantage of using abstractiomrad to shape analysis compared
to using quantified global predicates is that the parameétesbape-analysis-oriented ab-
straction are properties of objects in a state, as opposgldlval properties of a state, and
the number of global predicates needed to emulate statécptes! is exponential in the
number of properties3p, 53).

The advantages of combining predicate abstraction witlpestanalysis are clearly
demonstrated in lazy shape analy§g [azy shape analysis performs independent runs of
a shape analysis algorithm, whose results are then usedtowmthe precision of predi-
cate abstraction. In contrast, our symbolic shape anaigsisralizes predicate abstraction
technique to the point where it itself becomes effective ahape analysis. We note that
Bohne has also been extended to perform the automated digaofvpredicates; the dis-
cussion of this extension is beyond the scope of this paper.

Shape analysisShape analyses are precise analyses for linked data s&siclthey were
2
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originally used for compiler optimization24, 19, 18] and lacked the precision needed to
establish invariants that Bohne is analyzing. Precise staiature analyses for verification
include 9, 16, 26, 35,41, 20,47] and have recently also been applied to verify set imple-
mentations 45]. Unlike Bohne, most shape analyses that synthesize lo@iamts are
based on precomputed transfer functions and a fixed (thoaigineterized) set of proper-
ties to be tracked; recent approaches enable automatiaictot®mputation using decision
proceduresq7, 56,58, 43,54] or finite differencing §46]. Our approach differs from3]

in using complete reasoning about reachability in botls léstd trees, and using a differ-
ent architecture of the reasoning procedure. Our reas@rimgedure uses a coarse-grain
combination of reachability reasoning with decision pahaes and theorem provers for
numerical and first-order properties, as opposed to usinglaoN-Oppen style theorem
prover. This allowed us to easily combine several tools\eat developed completely in-
dependently25,4,42]. Shape analysis approaches have also been used to vetddrsess
properties 38] relying on manually abstracting a sortedness relation.

Decision procedures. Our symbolic shape analysis algorithm relies on decisiater
dures for expressive logics to perform synthesis of loopriants. The system then verifies
that the synthesized invariants are sufficient to prove tisetace of errors and to prove the
postcondition. During the invariant synthesis, the arialggmarily uses the MONA deci-
sion procedured5] with field constraint analysis@] to reason about expressive invariants
involving reachability in tree-like linked structures. analysis also uses CVC Litd]
via the SMT-LIB interface to reason about array data stmestulocal properties in non-
tree data structures, and linear arithmetic. These twsigcprocedures are most relevant
for the present paper. In our system (Figdjewe also use interactive theorem provers
Isabelle 2] and Coq p] to debug the proof obligations and translations into denigro-
cedures, as well as to automatically discharge some prdfations using simplication
and proof search built into these provers. We have also haxkss using first-order theo-
rem provers Vampired1], E [48] (via the TPTP interfaced9]) as well as SPASIHP]. We
used first-order theorem provers in Jahob to verify impleaténs of data structures§]|
avoiding the use of reachability using specification vddalsimilarly to the approaches
taken in R9,40] and automated to some extent 8Y]. Finally, to reason about the sizes of
data structures, we used a new decision procedd&8] with a reduction to Presburger
arithmetic.

Several recent decision procedures address specificakgdilists [L, 12, 39, 7, 44],
where the emphasis is on the predictability (decision pioces for well-defined classes of
properties of linked lists), the efficiency (membership iB)Nhe ability to interoperate with
other reasoning procedures, and modularity. Although tblen® approach is not limited
to lists, it can take advantage of decision procedures $t8 by applying such specialized
procedures when they are applicable and using more gemasdming otherwise. In our
current experience, the MONA decision proced®® proved to be effective for verifying
reachability in both list and tree structures.

Bohne could also take advantage of logics for reasoning tatemechability, such as
the logic of reachable shapesd]. Existing logics, such as guarded fixpoint logi&l] and
description logics with reachabilityl D, 17] are attractive because of their expressive power,
but so far no decision procedures for these logics have imegleinented.
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1.2 Contributions

We have previously described the general idea of symbolipestanalysis43] as well as

the field constraint analysis decision procedure for comgimeachability reasoning with
uninterpreted function symbol84]. These previous techniques are our starting point. The
main contributions of this paper are the following:

() We describe a method for synthesis of Boolean heap pnogrthat improves the
efficiency of fixpoint evaluation by precomputing abstraeinsition relations and
can control the precision/efficiency trade-off by reconmumitransition relations on-
demand during fixpoint computation.

(i) We introduce semantic caching of decision procedurerigs across different fixpoint
iterations and even different analyzed procedures. Theinggyields substantial im-
provements for procedures that exhibit some similarityictvlopens up the possibility
of using our analysis in an interactive context.

(i) We describe a static analysis that propagates prationdconjuncts and quickly finds
many true facts, reducing the running time and the numbereefied abstraction
predicates for the subsequent symbolic shape analysis.

(iv) We present a domain-specific quantifier instantiatiechhique that significantly im-
proves the running time of the analysis. Furthermore, @roftliminates the need for
the underlying decision procedures to deal with quantifiers

Together, these new techniques allowed us to verify a rafghata structures without
specifying loop invariants and without specifying a largener of abstraction predicates.
Our examples include implementations of lists (with iteratand with back pointers), trees
with parent pointers, two-level skip lists, sorted listsyeell as combinations of these data
structures. What makes these results particularly irtieges a higher level of automation
than in previous approaches: Bohne synthesizes loop amtarihat involve reachability
expressions and numerical quantities, yet it does not hee@mputed transfer functions
for a particular set of abstraction predicates. Bohne ausigses decision procedures to
reason about arbitrary predicates definable in a given |ddiareover, in our system the
developer is not required to manually specify the changanerhbership of elements in
sets because such changes are computed by the system. tear gges such synthesized
invariants to communicate the information between diffiedecision procedures.

Bohne as a component of Jahob.Bohne is part of the data structure verification frame-
works Jahob27,28] and Hob B4,33]. The goal of these systems is to verify data structure
consistency properties in the context of non-trivial peygs. To achieve this goal, these
tools combine multiple static analyses, theorem provimg, @ecision procedures. In this
paper we present our experience in deploying Bohne in thebJ&dlamework. The in-
put language for Jahob is a subset of Java extended with atiom® written as special
comments. Therefore, Jahob programs can be compiled acdtegeusing existing Java
compilers and virtual machines.

Figure 1 illustrates the integration of Bohne into the Jahob franmbwddohne uses
Jahob’s facilities for symbolic execution of program sta¢sits and the validity checker to
compute the abstraction of the source program. The out@iblofie is the source program
annotated with the inferred loop invariants. The annotategram serves as an input to a
verification condition generator. The generated verifozationditions are verified using an

4
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approach 28] that combines special purpose decision procedures, glgnapose theorem
provers, and reasoning techniques such as field constrahtsis p4].

2 Motivating Example

We illustrate our technique on the proced®@ t edLi st. i nsert shown in Figure2.
This procedure inserts ldode object into a global sorted list. The annotation given by
special commenté*: ... =/ consists of data structure invariants, pre- and postcon-
ditions, as well as hints for the analysis. Formulas areesgwd in a subset of the language
used in the Isabelle interactive theorem provi].[ The specification uses an abstract set
variablecont ent which is defined as the set of non-null objects reachable frenglobal
variablef i r st by following the fieldnext . The data structure invariants are specified
by the annotatiom nvari ant "...". Forinstance, the first invariant expresses the fact
that the fieldhext forms trees in the heap, i.e. thag¢xt is acyclic and injective; the third
invariant expresses the fact that the elements stored iistlae sorted in increasing order
according to fielddat a. The precondition of the proceduregqui res "...", states
that the object to be inserted is non-null and not yet coetiin the list. The postcondition,
ensures "...", expresses that the argument is properly inserted intashe |

The loop in the procedure body traverses the list until itditite proper position for
insertion. It then inserts the argument such that the rieguitata structure is again a sorted
list. Our analysis, Bohne, is capable of verifying that tlstpondition holds at the end
of the proceduré nsert, that data structure invariants are preserved, and thet tre
no run-time errors such as null pointer dereferences. lardalestablish these properties,
Bohne derives a complex loop invariant shown in Bg.

The main difficulties for inferring this invariant are: (1)dontains universal quantifiers
over an unbounded domain and (2) it contains constructs asickachability, hnumerical
properties, and uninterpreted function symbols.

Bohne infers universally quantified invariants using syticbshape analysis based on
Boolean heaps5@, 43]. This approach can be viewed as a generalization of predica
abstraction or a symbolic approach to parametric shapgsisalAbstraction predicates
can be Boolean-valued state predicates (which are eitieioirfalse in a given state, such
asprev_| e _n) or predicates denoting sets of heap objects in a given Gtdtieh are
true of agiven objecin agiven statesuch ag each_cur r). The latter serve as building

5
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class Node {
public int data;
public Node next;

class SortedList {
private static Node first ;
/x: public static specvar content :: objset;
vardefs "content == {v. v # null A next* first v}";

invariant "tree [next]";
invariant " first = null Vv (¥ n. n.next# first)";
invariant "V v. v € contentA v.next# null — v..Node.date< v.next.data,’
invariant "V v. v # null A v.next# null — v.nexte content
*/
public static void insert (Node n)
/«: requires "n # null A n ¢ content"
modifies content
ensures”content = old contentU {n}" =/
{/x: specvar reach_curr : objset;
vardefs "reach_curr =={v. next curr v}";
specvar prev_le_n :: bool;
vardefs “prev.data <=n.datg" */
Node prev = null;
Node curr = first ;
while ((curr !'= null) && (curr.data < n.data)) {

// : track (reach_curr );track (prev_le_n);
prev = curr;
Curr = curr.next;

n.next = curr;
if (prev != null) prev.next =n;
else first =n;

}
}

Fig. 2. Insertion into a sorted list

tree [next] A (first = null Vv (V n. n.next# first)) A

(V v. v € contentA v.next# null — v.data <= v.next.data)

(Vvw.v#null &w # null & v.next =w — w € content)A

n A null A n ¢ contentA content = old conteni\

(curr A null — curr € content)A (prev = null— first = curr) A

(prev A null — prev € contentA prev ¢ reach_curin
prev.next = currA prev_le_n)

Fig. 3. Loop invariant for procedurgor t edLi st. i nsert

blocks of the inferred universally quantified invariantshef r ack(. . .) annotation is
used as a hint on which predicates the analysis should utfesfabstraction of which code
fragments.

To reduce the annotation burden we use a syntactic anadyBsifetr abstraction predi-
cates automatically. Furthermore, parts of the invaridignaliterally come from the pro-
cedure’s precondition. In particular, data structureliilrgs are often preserved as long as
the heap is not mutated. We therefore precede the symbalmesinalysis phase with an
analysis that propagates precondition conjuncts acressahitrol-flow graph of the proce-
dure’s body. Using this propagation technique we are ahlef¢o the first six conjuncts of
the invariant. The symbolic shape analysis phase maked tisie partial invariant to infer
the full invariant shown in Fig3.

Bohne’s symbolic shape analysis enables the combinatialiffefent decision proce-
dures. Thereby the inferred invariants communicate in&dionm between the individual
decision procedures, as illustrated with the followingragée. Figure4 shows one of the
generated verification conditions for thesert procedure. It expresses the fact that the
sortedness property is reestablished after executingattiefipm the exit point of the loop

6
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I A —(curr.data < n.datay\ prevz null A

next_1 = next[n:= curr][prev:= n] A

content_1 = {v. v# null A next_Z* first v} A

v € content_1A v.next_1# null — v.data< v.next_1.data

Fig. 4. Verification condition for preservation of sortedae

through the if-branch of the conditional to the procedure®irn point. The symboll*”
denotes the loop invariant given in Fig. This verification condition is valid. Its proof
requires the factont ent’ = cont ent U {n}; denote this facP. P follows from the
given assumptions. The MONA decision procedure is abletolade P by expanding the
definitions of the abstract sat®nt ent andcont ent ' . However, MONA is not able to
prove the verification condition, because proving its cosicin requires reasoning over in-
tegers. On the other hand, the CVC Lite decision proceduablésto prove the conclusion
given the factP by reasoning over the abstract sets without expanding teinitions,
but it is not able to conclud® from the assumptions, because this deduction step requires
reasoning over reachability. In order to communicEtbetween the two decision proce-
dures, Bohne infers, in addition to the loop invaridntan invariant for the procedure’s
return point that includes the missing faet This invariant enables CVC Lite to prove the
verification condition.

3 Context-Sensitive Abstraction

We next describe the symbolic shape analysis algorithmamphted in Bohne. What
makes this algorithm unique is the fact that abstract ttiamsrelations are computed on-
demand in each fixpoint iteration taking into account toatextthat approximates pre-
viously explored abstract states. This approach allowsatperithm to take advantage
of precomputed abstract transition relations from prewvifixpoint iterations, while main-
taining sufficient precision for the analysis of linked dateuctures by recomputing the
transitions when the context changes in a significant way.

3.1 Reachability Analysis

The input of Bohne is the procedure to be analyzed, predonditspecifying the initial
states of the procedure, and a set of abstraction predidBtsie converts the procedure
into a set of guarded commands that correspond to the l@apgfaths in the control-flow
graph.

The pseudo code of Bohne's top-level fixpoint computati@ples shown in Figuré.
The analysis first abstracts the conjunction of the proaEsiygreconditions obtaining an
initial set of abstract states. It then computes an absteacthability tree. Each node in
this tree is labeled by a program location and a set of altsttaies, the root being labeled
by the initial location and the abstraction of the precdndi&. The edges in the tree are
labeled by guarded commands. The reachability tree keapk tf abstract traces which
are used for the analysis of abstract counterexamples.

For each unprocessed node in the tree, the analysis compatabkstract postcondition
for the associated abstract states and all outgoing tiamsiof the corresponding program
location. Transitions are abstracted context-sensjtitaking into account the previously
discovered reachable abstract states for the associaigrhpr location. Whenever the dif-

7



WiEs et al VERIFYING COMPLEX PROPERTIES USING SYMBOLIC SHAPE ANALYSIS

proc Reach(init : precondition formula
Linit - initial program location
T : set of guarded commanys-
let init” = abstract(init)
let root = (location = fji¢; states = init; sons = ()
let unprocessed = {root}
while unprocessed # () do
choosen € unprocessed
for all (n.location, ¢, ¢') € T do
let context = { m.states | m.location = n.location }
let old = { m.states | m.location = ¢ }
let new = AbstractPost(c, context, n.states) — old
if new # () then
let n’ = (location = ¢; states = new;sons = ()
n.sons := n.sons U {(c,n’)}
unprocessed := unprocessed U {n’}
unprocessed := unprocessed — {n}
return root

Fig. 5. Reachability analysis in Bohne

ference between the already discovered abstract states pbst location and the abstract
post states of the processed transition is non-empty, a ngwocessed node is added to
the tree. The analysis stops after the list of unprocessddsibecomes empty, indicating
that the fixpoint is reached. After termination of the redwlitst analysis, Bohne anno-
tates the original procedure with the computed loop invasiand passes the result to the
verification condition generator.

Focusing on algorithmic aspects, we next give a descriptiothe abstract domain,
abstraction function, and the abstract post operator.

3.2 Symbolic Shape Analysis

Following the framework of abstract interpretatiobl], a static analysis is defined by
lattice-theoretic domains and by fixpoint iteration ovex tomains. Symbolic shape anal-
ysis can be seen as a generalization of predicate abstrd2#p For predicate abstraction
the analysis computes an invariant; the fixpoint operataniabstraction of thpostopera-
tor; the concrete domain consists of sets of states (rapexb®y closed formulas), and the
abstract domain of a finite lattice of closed formulas.

Abstract Domain. Let Pred be a finite set of abstraction predicajg®) with an implicit

free variablev ranging over heap objects. éubeC is a partial mapping fron®red to

{0,1}. We call a total cubeomplete We say that predicate occurs positively (occurs

negatively, does not occur) @i if C(p) = 1 (C(p) = 0, C(p) is undefined). We denote by

Cubes the set of all cubes. An abstract state is a subset of cubesh wie call aBoolean

heap The abcsEract domain is given by sets of Boolean heaps, és. of sets of cubes:
oCubes

AbsDom = 2 .
Meaning Function. The meaning functiory is defined on cubes, Boolean heaps, and sets
8



WiEs et al VERIFYING COMPLEX PROPERTIES USING SYMBOLIC SHAPE ANALYSIS

of Boolean heaps as follows:

wey= N\ P, ) =\ AC), () =\ y(H)

pEPredNdom(C) CeH HeH
wherep! = p andp® = —p

The meaning of a cub€' is the conjunction of the properly signed predicate®iad. A
Boolean heapd describes all concrete states whose heap is partitionemdiag to the
cubes inH. The meaning of a séf of Boolean heaps is the disjunction of the meaning of
all its elements.

Lattice Structure. Define a partial ordeC on cubes by:

oo £ e Pred C'(p) = Cp) v (C'(p)is undefined

For a cubeC' and Boolean heap/ we writeC' €. H as a short notation for the fact that
C'is complete and there exist§ € H such thatC' C C’. The partial ordeE is extended
from cubes to a preorder on Boolean heaps:

HCH & voen acern ccc.

For notational convenience we identify Boolean heaps uplbswmption of cubes, i.e. up
to equivalence under the relationm (" C~1). We then identifyC with the partial order on
the corresponding quotient of Boolean heaps. In the samemgagxtend= from Boolean
heaps to a partial order on the abstract domain. Theselgaders induce Boolean algebra
structures. We denote by, LI and™ the meet, join and complement operations of these
Boolean algebras. Bohne usees binary decision diagramid¢BP] to implement Boolean
heaps, the abstract domain, and operations of the Boolgabrak.

Context-sensitive Cartesian post.The abstract post operator implemented in Bohne is a
refinement of the abstract post operator presentedi3n [ts core is given by th€artesian
post operator This operator maps a guarded commanand a set of Boolean heapésto

a set of Boolean heaps as follows:

CartesianPost(c, H) =
let cpost(c, C) = [{ C" | Vp € Pred. C' C wip™ (¢, p® )}
in {{cpost(c,C)|Ce. H} | HeH}.

The actual abstraction occurs in the computatiowlpf” (¢, F') which is defined by:

wip (¢, F) = {C | 1(C) = wip(e, F) } .

The Cartesian post maps each Boolean hHajm H to a new Boolean heafi’. For a
given states satisfying~y(H), a cubeC in H represents a set of heap objectssinThe
Cartesian post computes the local effect of commarh each set of objects which is
represented by some complete cubedin each complete cub€ in H is mapped to the
smallest cubepost(c, C') that represents at least the same set of objects in the jpess$ st
under command. Consequently, each object in a given post state is refezsby some

9
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cube in the resulting Boolean heaf, i.e. all post states satisfy( H'). The effect ofc on
the objects represented by some cube is expressed in temwesakést preconditionslp
of abstraction predicates. These are abstractad! 5.

Computing the effect of for each cube in{ locally implies that we do not take into
account the full information provided b§. This becomes an inherent problem if updated
predicates express non-local properties such as reaithalfis an example, consider a
Boolean heag that contains two cubes

Ci=[(z=v)—1,(y=v)—0,(next*z v) — 1] and
Cy=[(z=v)—0,(y=v)—1,(next*z v) — 0] .

Cube( describes an object which is pointed to by a stack variatded reachable from
some other stack variablefollowing field next. CubeC> describes a second object which
is pointed to by stack variablg but which is not reachable from If we consider a field
update ¢ = (z.next := y)) then after the updatgis reachable fromz. However we have

cpost(c, Co) £ [(next™z v) — 1]

becaus&’; is updated independently 6f,. In principle one can strengthen the abstraction
of weakest preconditions by taking into account the BoolesapH for which the post is
computed. In fact we have

v(H) A (y =v) = wlp(e,next™z v) .

This strengthening would result in a more precise Carteg@st, but as a consequence
abstract weakest preconditions would have to be recomgotedach Boolean heap to
which the Cartesian post is applied. This would make theyaisinfeasible. Nevertheless,
such global context information is valuable when updatedlisates describe global prop-
erties such as reachability. Therefore, we would like tergjthen the abstraction using
some global information, accepting that abstract weakestgmditions have to be recom-
puted occasionally. We introduce thentext-sensitive Cartesian pdstallow this kind of
strengthening:

CSCartesianPost(c,I', H) =
let cpost(c, C') = [{ C" | ¥p € Pred. C T wip™ (¢, T, p¢ ®)) }
in { {cpost(c,C) |Ce. H} | HeH}

where  wlp” (¢,T,F) = {C | T A~(C) |= wip(c, F) } (1)

The formulal’ is the key tuning parameter that controls the tradeoff betw&ecision and
efficiency of the analysis. We impose a restrictionflorwe say thal" is acontext formula
for a set of Boolean heags if () impliesT'. In order to ensure soundness, we require
that for all application€SCartesianPost(c, I', H) of the context-sensitive Cartesian pbst

is a context formula fofH.

Figure6 gives an implementation of the context-sensitive Cantepiast operator that
exploits the representation of Boolean heaps as BDDs. fFipgecomputes an abstract
transition relation=* which is expressed in terms of cubes over primed and unprabed
straction predicates. After that it computes the relatipmaduct ofc# and each Boolean
heap. The relational product conjoins a Boolean heap weélatistract transition relation,

10
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proc CSCartesianPost(c, I' : context formula H : AbsDom) : AbsDom =

let ¢ = Cubes
if ¢ is precomputed fofe, I') then ¢# := lookup(c, ')
else foreachp € Pred do

o [ P N we" (e T, —p) U)

[p' — 0] Mwlp” (¢, T, p)

let H' =0
foreach H € H do

let H' = RelationalProduct(H, ¢*)

H =H U{H'}
return H’

Fig. 6. Context-sensitive Cartesian post

projects the unprimed predicates, and renames primed timenb predicates in the result-
ing Boolean heap. Note that the abstract transition relaticly depends on commarnd
and the context formul&. This allows us to cache abstract transition relations andia
their recomputation in later fixpoint iterationslifis unchanged.

Splitting. The Cartesian post operator maps each Boolean heap in aBeblelan heaps
to one Boolean heap. This means that in terms of precisiofCHresian post does not
exploit the fact that the abstract domain is giversbysof Boolean heaps. In the following
we describe an operation that splits a Boolean heap into afdgbolean heaps. It is
similar to thefocusoperation in TVLA |7]. Splitting maintains important invariants of
Boolean heaps that result from best abstractions of canstates. We split Boolean heaps
before applying the Cartesian post. This increases théspraof the analysis by carefully
exploiting that the abstract domain is disjunctive conmglet

Traditional shape analyses precisely keep track of objeleish are pointed to by stack
variables. This information is crucial for a precise analyfn order to keep track of these
objects we use abstraction predicates of the farm- v) wherex is some stack variable.
Since these predicates denote singleton sets, i.e. ealsarofis true for exactly one object
on the heap, we call thesingleton predicatesConsequently, if a Boolean hedpis the
the result of applying the best abstraction with respeet tim some concrete state then for
every singleton predicateit contains exactly one complete cube with a positive o@nre
of p. Boolean heaps resulting from the Cartesian post might ae¢ this property. This
makes the analysis imprecise. Therefore we split each Bodleap before application of
the Cartesian post into a set of Boolean heaps, such thabdive aroperty is reestablished.
Let P be the subset of abstraction predicates denoting singidt@m thesplitting operator
is defined as follows:

Split(H) = split(P, H)
split(0, H) = H
split({p} UP",H) =letC, = [p— 1]and C-, = [p — 0] in
Unen split(P, { HM{C-,} U{C} | C €. (HT{Cp}) }).

The splitting operator takes a set of Boolean helpas arguments. For each singleton
predicatep and Boolean heap it splits H into a set of Boolean heaps. Each of the
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abstract(F') =let H = {C | C = —~F } in Clean(F,Split(H))

proc AbstractPost(c, context : AbsDom, Hj : AbsDom) : AbsDom =
let H = Clean(guard(c), Split(Ho))
letT' = k(context LI 'H)
return CSCartesianPost(c, I, H)

Fig. 7. Bohne’s abstract post operator

resulting Boolean heaps correspondsHo but contains only one of the complete cubes
in H that have a positive occurrence jaf The splitting operator is sound, i.e. satisfies:

v(Split(H)) = v(H).

Cleaning. Splitting might introduce unsatisfiable Boolean heapsabse it is done propo-
sitionally without taking into account the semantics ofdicates. Unsatisfiable Boolean
heaps potentially lead to spurious counterexamples anceh&mould be eliminated. The
same applies to cubes that are unsatisfiable with respetiido cubes within one Boolean
heap. We use eleaning operatof to eliminate unsatisfiable Boolean heaps and unsatisfi-
able cubes within satisfiable Boolean heaps. At the sameviienstrengthen the Boolean
heaps with the guard of the commands before the actual catipubf the Cartesian post.
The cleaning operator is defined as follows:

Clean(F,H) =letHy ={H e H | F Avy(H) £ false } in
{{Ce.H|FAN~y(H)Nv(C) [ false} | H € Hy }.

The operatoiClean takes as arguments a formuta(e.g. the guard of a command) and a
set of Boolean heaps. It first removes all Boolean heaps thatresatisfiable with respect
to F'. After that it removes from each remaining Boolean h&agll complete cubes which
are unsatisfiable with respect #band H. The cleaning operator is sound, i.e. strengthens
‘H with respect toF":

F'Av(H) |=~(Clean(F,H)) = v(H) .

Obviously the cleaning and splitting operators bear thegdaonf an exponential blowup.
This can be avoided, e.g. by giving up precision and enfgreirpolynomial bound by
only considering cubes up to a fixed length. However, in jadhis does not seem to
be necessary, because Boolean heaps are relatively spdrsergain only few complete
cubes.

Abstract post operator. Figure 7 defines the abstract post operator used in Bohne. It
is defined as the composition of the splitting, cleaning, el Cartesian post operator.
The functionk is a context operatar A context operator is a monotone mapping from
sets of Boolean heaps to a context formula. It controls #metioff between precision and
efficiency of the abstract post operator. Our choice: @ described in the next section.
Figure 7 also defines the abstraction function that is used to comimatenitial set of
Boolean heaps. For abstracting a formalghe functionabstract first computes a Boolean
heapH which is the complement of an under-approximation-@f. It then splitsH with

1 The cleaning operator resembles theerceoperation in TVLA B7].
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Var — object-valued program variables
instantiate(H : Boolean heap: formula=

let cube(z) = | |(H N {[(z =v) — 1]})in
/\ ~(cube(x))[v := x]

r€Var

k(H) =letH = |_|H in instantiate(H)

Fig. 8. Context instantiation and the context operator

respect to singleton predicates and strengthens the kpstiite original formulaF'. We
compute the abstraction indirectly because it allows ususe all the functionality that we
need for computing the abstract post operator. We also aenighuting the best abstraction
function for the abstract domain, because the computdtioverhead is not justified in
terms of the gained precision.

Assuming that is in fact a context operator, soundnes\bstractPost follows from
the soundness of all its component operators. Note thatdsess is still guaranteed if the
underlying validity checker is incomplete.

4 Context Instantiation

The context information used to strengthen the abstradsigiven by the set of Boolean
heaps that are already discovered at the respective prdgeation. If we take into ac-
count all available context for the abstraction of a traosithen we need to recompute
the abstract transition relation in every iteration of thedi point computation. Otherwise
the analysis would be unsound. In order to avoid unnecessapmputations we use the
operatorx to abstract the context by a context formula that less likblgnges from one it-
eration to the next. For this purpose we introduce a domaétific quantifier instantiation
technique. We use this technique not only in connection thigtcontext operator, but more
generally to eliminate any universal quantifier in a decigioocedure query that originates
from the concretization of a Boolean heap. This eliminatesneed for the underlying
decision procedures to deal with quantifiers.

We observed that the most valuable part of the context igtfleenation available over
objects pointed to by program variables. This is due to tloe tfaat transitions always
change the heap with respect to these objects. We therefstiantiate Boolean heaps to
objects pointed to by stack variables. Bohne automaticadigs an abstraction predicate
of the form (z = v) for every object-valued program variable A syntactic backwards
analysis of the procedure’s assert statements and po#tioand used to determine which
of these predicates are relevant at each program point.

Figure 8 defines the functiorinstantiate. It uses the above mentioned predicates to
instantiate a Boolean hed to a quantifier free formula (assuming predicates itself are
quantifier free). For every program variahteit computes the least upper bound of all
cubes inH which have a positive occurrence of predicéte= v). The resulting cube
is concretized and the free variahlds substituted by program variable The function
k maps a set of Boolean heapsto a formula by taking the join off and instantiating
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the resulting Boolean heap. One can show thé& indeed a context operator, i.&. is
monotone and the resulting formula is a context formulaHor

5 Semantic Caching

Abstracting context does not avoid that abstract tramsit@tations have to be recomputed
occasionally in later fixpoint iterations. Whenever we rapote abstract transition rela-
tions we would like to reuse the results from previous abtitas. We do this on the level
of decision procedure calls by caching the queries and thdtseof the calls. Syntactic
caching of decision procedure queries has been used befgrel] mentions its use in
the SLAM system 3]). The problem with simple syntactic caching of formulasshmape
analysis is that the context formulae are passed to theidegsocedure as part of the
queries, so a simple syntactic approach is ineffective. él@w the context consists of all
discovered abstract states at the current iteration. Tdverghe context changes monoton-
ically from one iteration to the next. The monotonicity ogtbontext operator guarantees
that context formulae, too, increase monotonically witpext to the entailment order. We
therefore cache formulas by keeping track of the partiadiooth the context. Since context
formulae occur in the antecedents of the queries, this allgsvto reuse negative results
of entailment checks from previous fixpoint iterations. Striethod is effective because in
practice the number of entailments which are invalid exsébd number of valid ones.

Furthermore, formulas are cached up to alpha equivalenggce $he cache is self-
contained, this enables caching results of decision proeethlls not only across different
fixpoint iterations for one procedure, but even across tlayais of different procedures.
This yields substantial improvements for procedures tkhtbit some similarity, which
opens up the possibility of using our analysis in an intévaatontext. For example, we
verified a procedure inserting an element into a sorted diseé$or t edLi st. add in
Figure9) and repeated the analysis without erasing the cache on diedogersion of the
same procedure where two commuting assignments were egathabout 90% of the
results to decision procedure calls were found in the cazdesing that running time went
down from 11s to 3s.

6 Propagation of Precondition Conjuncts

It often happens that parts of loop invariants literally efrom the procedure’s precondi-
tions. A common situation where this occurs is that a proeeduecutes a loop to traverse
a data structure performing only updates on stack variasldsfter termination of the loop
the data structure is manipulated. In such a case the datdwst invariants are trivially
preserved while executing the loop. Using an expansive slimbhape analysis to infer
such invariants is inappropriate. We therefore developtabtabut effective analysis that
propagates conjuncts from the precondition across theedtoe’s control-flow graph. This
propagation precedes the symbolic shape analysis, sucthéiatter is able to assume the
previously inferred invariants.

The propagation analysis works as follows: it first splits gfrocedure’s precondition
into a conjunction of formulas and assumes all conjunctdl gragram locations. It then
recursively removes a conjunét at program locations that have an incoming control flow
edge from some location where either {@has been previously removed or (2) whéfe
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benchmark used DP # predicates total # validity checker calls| running time

(manually supplied) total (cache hits) total (DP)
DLL.addLast MONA 7(0) 118 (19%) 2s (69%)
List.reverse MONA 7(2) 371 (22%) 4s (72%)
SortedList.add | MONA, CVC lite 16 (1) 368 (40%) 11s (65%)
Skiplist.add MONA 20 (0) 787 (44%) 26s (57%)
Tree.add MONA 13 (0) 358 (31%) 31s (92%)
ParentTree.add) MONA 13 (0) 362 (32%) 33s (91%)
Linear.arraylnv| CVC lite 7 (5) 882 (52%) 57s (97%)

Fig. 9. Results of Experiments

is not preserved under post of the associated command. tafteination of the analysis
(none of the rules for removal applies anymore) the remginonjuncts are guaranteed to
be invariants at the corresponding program points.

The preservation of conjuncts is checked by dischargingrification condition (via
decision procedure calls). The use of decision proceduegesthis analysis more general
than the syntactic approach for computing frame conditfonkops used in ESC/Java-like
desugaring of loopslp]. In particular, the propagation is still applicable in thesence
of heap manipulations that preserve the invariants in eamb-free code fragment. Unlike
the Houdini tool [L3], precondition conjunct propagation does not attempt wenh new
predicates.

7 Experiments

We applied Bohne to verify operations on various data strest Our experiments cover
data structures such as singly-linked lists, doubly-lihkists, two-level skip lists, trees,
trees with parent pointers, sorted lists, and arrays. Thidiack properties include: (1)
absence of run-time errors, such as null pointer derefeseaad array bound violations;
(2) complex data structure consistency properties, suphegervation of the tree structure,
array invariants, as well as sortedness; and (3) procedunteacts, stating e.g. how the set
of elements stored in a data structure is affected by theegioe.

Figure9 shows the results for a collection of benchmarks running 21Gddz Pentium
M with 1 GB memory. The Jahob system is implemented in Ohjec@iam| and compiled
to native code. Running times include inference of loopriavds. This time dominates
the time for a final check (using verification-condition gexier) that the resulting loop
invariants are sufficient to prove the postcondition. Thedhenarks can be found on the
Jahob project web pag@T7]. The version of Bohne used to generate these results uses a
simple analysis of the source code to determine most of teraaion predicates auto-
matically; the number of predicates in parentheses inglictite additional predicates that
we needed to specify to make the symbolic shape analysigisuffy precise. Note that
we did not need to specify how these predicates change inmssgo program statements;
this is computed automatically by Bohne. Note also that @angles are not stand-alone
programs that build and then traverse their own data stregtunstead, our examples use
assume-guarantee reasoning of Jahob to verify proceduties@n-trivial preconditions,
postconditions and representation invariants. As a regise examples can be used in the
context of larger programs that are verified by more scalabysis, as demonstrated in
the Hob project 33].
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| benchmark | DLL.addLast || SortedList.add” Skiplist.add || Tree.add |
no context " = true)

running time 2s 14s 29s 71s

DP calls (cache hits)| 118 (20%) 457 (32%) 1110 (51%) || 1024 (51%)
context-sensitive without instantiatior & id)

running time 4s 24s 72s 473s

DP calls (cache hits) 178 (23%) 445 (22%) 1031 (38%) || 742 (13%)

context-sensitive with instantiation
running time 2s 11s 26s 32s
DP calls (cache hits) 118 (19%) 368 (40%) 787 (44%) 358 (31%)

Fig. 10. Effect of context-sensitive abstraction and cxnitgstantiation

We also examined the impact of context-sensitive abstmaeihd context instantiation
on the running time of the analysis. The results are shownalpleTL0. As expected,
running times for context-sensitive abstraction withamstation disabled are significantly
higher (2-8 times) than with instantiation enabled. Withoontext instantiation abstract
transition relations have to be recomputed many times ackig of decision procedure
calls is less effective. If context-sensitive abstractioulisabled completely the analysis
not only becomes less precise (e.g. the analysis failedrify ¥ee SortedList and SkipList
examples without context) but also in many cases slower. t Mialy the less precise
analysis needs to explore a larger part of the abstractspatee.

Note that our implementation of the algorithm is not highiped in terms of aspects
orthogonal to Bohne’s algorithm, such as type inferencénternally manipulated Isabelle
formulas. We expect that the running times would be notamlgroved using more effi-
cientimplementation of Hindley-Milner type reconstracti In previous benchmarks with-
out type reconstruction in average 97% of the time was spetite decision procedures.
The most promising directions for improving the analysigq@nance are therefore 1) de-
ploying more efficient decision procedures, and 2) furtieelucing the number of decision
procedure calls.

In addition to the presented examples, we have used thecatigin condition generator
to verify examples such as array-based implementationsrdfimers and implementations
of association lists. Bohne can also infer loop invariantsuch examples.

8 Conclusions

We described Bohne, a data structure verification algorithsed on symbolic shape anal-
ysis that infers invariants about sets given by predicateshjects. We showed how to
fruitfully combine this abstraction with a collection ofdsion procedures that operate on
independent subgoals of the same proof obligation. We glegl@a range of techniques
that improve the running time of the analysis and the leveluwbmation compared to di-
rect application of the algorithm. These techniques inelodntext-dependent abstraction,
semantic caching of formulas, propagation of conjunctd,domain-specific quantifier in-
stantiation. Our experience with the Bohne analysis in thraext of the Hob and Jahob
data structure verification systems suggests that it ictafefor verifying a wide range
of data structures with user-defined procedure contracte VErified properties go be-
yond traditional shape properties such as treeness andlathe characterization of data
structure operations in terms of changes to their content.
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