
Heap Analysis and Verification

HAV 2007

Informal Proceedings

March 25, 2007

Braga, Portugal

Contents

James Brotherston

Proof Systems for Inductive Reasoning in the Logic of Bunched Implica-
tions . 1

Thomas Wies, Viktor Kuncak, Karen Zee, Martin Rinard,

Andreas Podelski

Verifying Complex Properties using Symbolic Shape Analysis 16

Yannick Moy, Claude Marché

Inferring Local (Non-)Aliasing and Strings for Memory Safety 35

Rémi Brochenin, Stéphane Demri, Etienne Lozes

Reasoning about sequences of memory states (preliminary version) . . . 52

Amey Karkare, Uday Khedker, Amitabha Sanyal

Liveness of Heap Data for Functional Programs . 64

Thierry Hubert, Claude Marché

Separation Analysis for Deductive Verification . 81

Joost–Pieter Katoen, Thomas Noll, Stefan Rieger

Verifying Concurrent List-Manipulating Programs by LTL Model Check-
ing . 94

ii

Proof Systems for Inductive Reasoning in the

Logic of Bunched Implications

James Brotherston1 ,2

Dept of Computing
Imperial College

London, UK

Abstract

We report on our early progress in developing suitable frameworks for inductive reasoning in separation
logic and related logics for low-level program verification, following the approach of our previous work on
sequent proof systems for first-order logic with inductive definitions. We extend a first-order predicate
version of the logic of bunched implications, BI — of which separation logic is a special instance — with
a framework for inductively defined predicates in which both the additive and multiplicative conjunctions
of BI may occur in the premises of definitions. We then formulate two Gentzen-type proof systems for this
logic: a traditional finitary system incorporating explicit induction rules; and a system for cyclic proof in
which the induction rules are replaced by weaker case-split rules, and proofs are derivation trees with “back
edges”, satisfying a global syntactic condition ensuring soundness. We illustrate our framework and proof
systems with simple examples that indicate that, in our setting, cyclic proof may enjoy certain advantages
over the traditional induction approach.

Keywords: inductive definitions, cyclic proof, logic of bunched implications, separation logic,
substructural logics

1 Introduction

The mechanised verification of properties of computer programs — for example,

properties expressing safety, liveness, or correctness — is an important and very

challenging problem currently attracting considerable interest amongst researchers

in computer science. A major source of inconvenience, though, is the fact that

real-life computer programs tend to be written in low-level languages employing

pointer arithmetic and similar operations that directly alter data stored in shared

mutable structures, such as the heap. Because the (potentially dangerous) effects of

these operations are hard to analyse, programs written using such languages have so

far proven very much less amenable to formal reasoning than those written in, e.g.,

high-level functional programming languages, which are typically more well-behaved

from a mathematical standpoint.

1 This research is supported by EPSRC grant EP/E002536/1. My thanks also to Richard Bornat, Cristiano
Calcagno, Peter O’Hearn, David Pym, and Hongseok Yang for helpful discussions, references and advice.
2 Email: J.Brotherston@imperial.ac.uk

mailto:J.Brotherston@imperial.ac.uk

Brotherston

Inductive definitions are a well-established tool for representing many structures

commonly used in the specification of computer programs, such as linked lists and

binary trees. For any inductively defined structure, there are naturally associated

inductive proof principles allowing us to reason about the structure by exploiting

the recursion in its definition. Most often, these principles are encoded as inference

rules or axioms in the native reasoning framework; but one can also reason with

inductive definitions via a natural mode of cyclic proof [8,9]. In contrast to the usual

finite tree proofs, cyclic proofs are regular infinite trees — represented as a finite

(cyclic) graph — satisfying a global condition ensuring soundness. For inductively

defined relations, this soundness condition is manifested as a generalisation of the

principle of infinite descent à la Fermat. This paper reports on work in progress to

develop suitable frameworks for reasoning about inductive definitions in low-level

program specifications, including appropriate notions of cyclic proof.

The logic of bunched implications (BI), formulated by O’Hearn and Pym [18],

offers a convenient formalism for expressing properties of programs that access and

modify some shared, mutable resource or data structure [14]. The main feature of

BI is that, as well as the usual additive conjunction (∧), it includes a multiplicative

(or linear) conjunction, ∗, which is used to state that the current resource state can

be decomposed into two disjoint parts in which its conjuncts respectively hold. This

conjunction is accompanied by a suitably adjunctive implication —∗, which expresses

properties involving the addition of fresh resource to the current state. Because ∗
admits neither weakening (P ∗Q 6⇒ Q) nor contraction (P ∗ P 6⇒ P), the logic BI

belongs to the general class of substructural logics (see e.g. [20]).

By considering particular models of BI, one can obtain logics suitable for car-

rying out verification in specific programming languages. One useful such logic is

Reynolds’ separation logic — essentially obtained by taking a model of BI in which

the domain of interpretation is given by a model of stacks and the resource states

are given by a model of heaps — which is suitable for reasoning about C-like lan-

guages [21]. Separation logic has to date been used in the verification of several

non-trivial programs involving pointer arithmetic, including (but not limited to)

a copying garbage collector [6], a DAG duplication program [7] and the Schorr-

Waite graph marking algorithm [23]. It has also fruitfully been employed in local

shape analysis [12,13], program termination analysis [4], and automated program

verification (see e.g. [3,2]).

As has already been noted by Biering et al [5], existing formal developments in

separation logic have typically relied upon ad hoc extensions of the core logic by

the inductive definitions needed for the development. It is thus of clear interest

to develop a formal framework for separation logic in which one can define and

reason about inductive structures. However, it is not desirable merely to add some

sufficiently powerful principle (e.g. full second-order quantification) to the logic;

our eventual goal is automated proof search, which is known to be already very

difficult in the presence of induction even in elementary settings such as first-order

arithmetic (see e.g. [11]), and so our aim will be to produce proof calculi that are

amenable to proof search.

In Section 2, we extend a version of first-order predicate BI with a framework

for (possibly mutual) inductively defined relations, based on simple “productions”

2

Brotherston

in the style of Martin-Löf [15], in which the multiplicative conjunction and identity

may occur in the premises of definitions. This framework, though relatively simple,

appears nonetheless powerful enough to express the inductive definitions that have

arisen in practice in existing applications of separation logic to program verifica-

tion. In Section 3 we extend the usual Gentzen-style proof system for BI to obtain

a proof system supporting induction in the extended logic BIID by adding left- and

right-introduction rules for atomic formulas involving the inductive predicates of

the theory. Following the approach taken in [8,9,15], the right introduction rules

for an inductive predicate P are merely sequent versions of the productions defin-

ing P , while the left-introduction rule for P embodies the natural principle of rule

induction over the definition of P . However, there is also a natural notion of cyclic

proof for the logic, for which we introduce a second proof system in Section 4. In

this system, the induction rules of the first system are replaced by simple case-split

rules. Proofs in the system are “unfinished” derivation trees together with a func-

tion identifying every bud — nodes to which no proof rule has been applied — with

an identical interior node called its companion; such proofs can straightforwardly be

understood as cyclic graphs by identifying buds with their companions. In general,

such proofs are not sound, so to ensure correctness we impose a condition stipulat-

ing, essentially, that for each infinite path in the proof, some inductive definition

is unfolded infinitely often along the path. By a generalisation of Fermat’s infinite

descent principle to inductively defined relations, all such paths can be disregarded,

whereby the remaining portion of proof is well-founded and hence sound. Finally,

in Section 5, we identify the main directions for future work.

2 First-order predicate BI with inductive definitions

In this section we give the syntax and semantics of our logic, BIID, obtained by

extending first-order predicate BI à la Biering et al [5] with a framework for (possibly

mutual) inductive definitions. The latter is based on the framework from [8,9],

which in turn is based on Martin-Löf’s “ordinary productions” [15], except that we

allow the multiplicative conjunction and identity of BI to occur in the premises of

definitions.

A brief comment on some of our mathematical and notational conventions is in

order. We often use vector notation to abbreviate sequences, e.g. x for (x1, . . . , xn);

for any n ∈ N and i ≤ n we define the ith projection function πn
i on n-tuples of

sets by pn
i (X1, . . . ,Xn) = Xi; for any n ∈ N we extend set union, intersection and

inclusion to n-tuples of sets by their corresponding pointwise definitions.

Our languages are the standard (countable) first-order languages — containing

arbitrarily many constant, function, and predicate symbols — except that we desig-

nate finitely many of the predicate symbols as inductive. A predicate symbol that is

not inductive is called ordinary. For the rest of this paper, we shall consider a fixed

language Σ containing exactly n inductive predicates P1, . . . , Pn. We also assume

the existence of a denumerably infinite set V of variables, each of which is distinct

from any symbol in Σ.

The elements of Σ are as usual interpreted by a structure, with the difference

here that our structures include a notion of a set of possible resource states or

3

Brotherston

“worlds”, given by a partial commutative monoid. The interpretation of predicates

is parameterised by the elements of this monoid: in other words, the set of (tuples

of) objects in the domain of which a given predicate is true depends on the current

resource state. (However, the interpretations of the constant and function symbols

are independent of the resource state.)

Definition 2.1 [BI-structure] A BI-structure for Σ is a tuple:

M = (D, 〈R, ◦, e〉, cM1 , cM2 , . . . , f
M
1 , fM

2 , . . . , QM
1 , Q

M
2 , . . . , PM

1 , . . . , PM
n)

where D is a set (called the domain of M), 〈R, ◦, e〉 is a partial commutative monoid

and:

• each cMi ∈ D;

• each fM
i : Dk → D, where k is the arity of the function symbol fi;

• each QM
i ⊆ R×D

k, where k is the arity of the ordinary predicate symbol Qi;

• each PM
i ⊆ R×D

k, where k is the arity of the inductive predicate symbol Pi;

Although our structures interpret the inductive predicate symbols of Σ, this is

purely for technical convenience: we shall only be interested later in those structures

in which the interpretation of the inductive predicates coincides with our intended

interpretation, given by a fixed set of inductive definitions.

The terms of Σ are defined as usual;we write t[u/x] to denote the term obtained

by substituting the term u for all occurrences of the variable x in the term t. We

write V ar(t) for the set of variables appearing in the term t, and write t(x1, . . . , xn)

for a term t such that V ar(t) ⊆ {x1, . . . , xn}, where x1, . . . , xn are distinct. In

this case we may write t(t1, . . . , tn) to denote the term obtained by substituting

t1, . . . , tn for x1, . . . , xn respectively in t. Also, tM (x1, . . . , xk) : Dk → D is obtained

by replacing every constant symbol c by cM and every function symbol f by fM in

t(x1, . . . , xn).

The formulas of BIID are just the standard formulas of predicate BI 3 , given by

the following definition:

Definition 2.2 [BI-formulas] The set of Σ-formulas of BI is the smallest set of

expressions closed under the following rules:

• ⊤, ⊥ and I are atomic formulas;

• if t1, . . . , tk are terms of Σ, and Q is a predicate symbol in Σ of arity k, then

Q(t1, . . . , tk) is an atomic formula;

• if t and u are terms of Σ then t = u is an atomic formula;

• if F1 and F2 are formulas then F1 ∧ F2, F1 ∨ F2, F1 → F2, F1 ∗ F2 and F1 —∗ F2

are (non-atomic) formulas;

• if F is a formula and x ∈ V is a variable, then ∃xF and ∀xF are (non-atomic)

formulas.

We use the standard precedences on the logical connectives — with ∗ and —∗ having

the same logical precedence as ∧ and → respectively — and use parentheses to

3 As in [5], our “predicate BI” is propositional BI extended with the usual additive quantifiers ∀ and ∃, as
opposed to propositional BI extended with both additive and multiplicative versions of the quantifiers, as
in e.g. [18].

4

Brotherston

disambiguate where necessary. Also, we write F ↔ G to abbreviate (F → G)∧(G→
F), and ¬F to abbreviate F → ⊥.

As in first-order logic, we interpret variables as elements of the domain D of a

BI-structure using environments ρ : V → D; we extend environments to all terms

of Σ in the usual way and write ρ[x 7→ d] for the environment defined exactly as ρ

except that ρ(x) = d. The formulas of BIID are then interpreted by the following

satisfaction (a.k.a. “forcing”) relation:

Definition 2.3 [Satisfaction relation for BI] Let M = (D, 〈R, ◦, e〉, . . .) be a BI-

structure for the language Σ, let r ∈ R and let ρ be an environment for M . We

define the satisfaction relation M, r |=ρ F on formulas by:

M, r |=ρ ⊤ ⇔ true

M, r |=ρ ⊥ ⇔ false

M, r |=ρ I ⇔ r = e

M, r |=ρ Qt ⇔ QM (r, ρ(t)) (Q ordinary or inductive)

M, r |=ρ t = u ⇔ ρ(t) = ρ(u)

M, r |=ρ F1 ∧ F2 ⇔ M, r |=ρ F1 and M, r |=ρ F2

M, r |=ρ F1 ∨ F2 ⇔ M, r |=ρ F1 or M, r |=ρ F2

M, r |=ρ F1 → F2 ⇔ M, r |=ρ F1 implies M, r |=ρ F2

M, r |=ρ F1 ∗ F2 ⇔ r = r1 ◦ r2 and M, r1 |=ρ F1 and M, r2 |=ρ F2

for some r1, r2 ∈ R

M, r |=ρ F1 —∗ F2 ⇔ M, r′ |=ρ F1 implies M, r′ ◦ r |=ρ F2 for all r′ ∈ R

M, r |=ρ ∀xF ⇔ M, r |=ρ[x 7→d] F for all d ∈ D

M, r |=ρ ∃xF ⇔ M, r |=ρ[x 7→d] F for some d ∈ D

(Informally, M, r |=ρ F means: “the formula F is true in M in the resource state r

and under the environment ρ”.)

We now give our schema for (possibly mutual) inductive definitions, which is

based on Martin-Löf’s schema for “ordinary productions” [15]. However, here our

premises are not merely lists of atomic formulas, but clauses in which atomic for-

mulas and the multiplicative identity formula I may freely be combined using the

additive and multiplicative conjunctions of BI:

Definition 2.4 [Inductive definition set] An inductive definition set for Σ is a set

of productions, which are rules of the form:

C(x)
i ∈ {1, . . . , n}

Pit(x)

where C(x) is a combinative inductive clause given by the following grammar:

C(x) ::= I | Qt(x) | Pit(x) (i ∈ {1, . . . , n}) | C(x) ∧ C(x) | C(x) ∗ C(x)

5

Brotherston

where Q ranges over the ordinary predicate symbols of Σ.

The productions whose conclusions feature an inductive predicate P should be

considered as disjunctive clauses of the definition of P . For some readers the fol-

lowing, equivalent notation for definitions may be more familiar:

Px =def (x = t1(y) ∧C1(y)) ∨ . . . ∨ (x = tk(y)) ∧ Ck(y))

where C1(y), . . . , Ck(y) are combinative inductive clauses. It is trivial to convert

from either form to the other.

As usual, the intended interpretation of the inductive predicate symbols of Σ is

obtained by taking the least fixed point of a monotone operator constructed from

the definition set Φ. Our parameterisation of predicate interpretations by resource

states, and the corresponding use of ∗ and I in our inductive definitions, entails

some extra complication in the construction of this operator, so we spell out the

details:

Definition 2.5 [Definition set operator] Let Σ be a language with exactly n in-

ductive predicates P1, . . . , Pn, let M = (D, 〈R, ◦, e〉, . . .) be a BI-structure for Σ,

let Φ be an inductive definition set for Σ and, for each i ∈ {1, . . . , n}, let ki be

the arity of the inductive predicate symbol Pi. We partition Φ into disjoint subsets

Φ1, . . . ,Φn ⊆ Φ by: Φi = {Prod ∈ Φ | Pi occurs in the conclusion of Prod}. We

let each definition set Φi be indexed by j with j ∈ {1, . . . , |Φi|}, and from each

production Φi,j ∈ Φi, say:

C(x)

Pit(x)

we obtain a corresponding function ϕi,jas follows:

ϕi,j(X1, . . . ,Xn) = {(r, tM (d)) | T r(C(d))(X1, . . . ,Xn)}

where the relation T r is defined inductively on the structure of combinative inductive

clauses as follows:

T r(I)(X1, . . . ,Xn) ⇔ r = e

T r(Qt(d))(X1, . . . ,Xn) ⇔ QMtM(d)

T r(Pit(d))(X1, . . . ,Xn) ⇔ tM (d) ∈ Xi

T r(C1(d) ∧ C2(d))(X1, . . . ,Xn) ⇔ T r(C1(d))(X1, . . . ,Xn)

and T r(C2(d))(X1, . . . ,Xn)

T r(C1(d) ∗ C2(d))(X1, . . . ,Xn) ⇔ ∃r1, r2. (r = r1 ◦ r2 and

T r1(C1(d))(X1, . . . ,Xn) and

T r2(C2(d))(X1, . . . ,Xn))

(Note that any variables occurring in the right hand side but not the left hand

side of the set expression in the definition of ϕi,j above are, implicitly, existentially

quantified over the entire right hand side of the expression.) Then the definition

set operator for Φ is the operator ϕΦ, with domain and codomain Pow(R×Dk1)×

6

Brotherston

. . . × Pow(R ×Dkn), defined by:

ϕΦ(X1, . . . ,Xn) = (
⋃

j

ϕ1,j(X1, . . . ,Xn), . . . ,
⋃

j

ϕn,j(X1, . . . ,Xn))

Proposition 2.6 The operator ϕΦ is monotone (with respect to ⊆).

Example 2.7 Let ΦN be the inductive definition set consisting of the following

productions for a unary inductive predicate N :

N0

Nx

Nsx

Then the definition set operator for ΦN is defined by:

ϕΦN
(X) = {(r, 0M) | r ∈ R} ∪ {(r, sMd) | (r, d) ∈ X}

In structures M in which all “numerals” (sM)k0M for k ≥ 0 are distinct, the predi-

cate N corresponds to the property of being a natural number.

Example 2.8 Let 7→ be a ordinary, binary predicate symbol (written infix), and

let Φls be the inductive definition set consisting of the following productions for a

binary inductive predicate ls:

I

lsxx

x 7→ x′ ∗ lsx′ y

lsx y

Then the definition set operator for Φls is defined by:

ϕΦls
(X) = {(e, (d, d)) | d ∈ D}

∪{(r1 ◦ r2, (d, d
′)) | (r1, (d, d

′′)) ∈ 7→M and (r2, (d
′′, d′)) ∈ X}

where d′′ in the second set comprehension is, implicitly, existentially quantified. In

separation logic, where the resource states are heaps and x 7→ y means “x is a

pointer to y”, the predicate ls is used to represent list segments, so that lsx y is

true of a particular heap h if h represents a linked list whose first element is pointed

to by x and whose last element contains a dangling pointer y.

It is a standard result for inductive definitions that the least n-tuple of sets

closed under the productions in Φ is the least prefixed point of the operator ϕΦ

(see e.g. [1,16]), and that this least prefixed point can be approached in iterative

approximant stages, as follows:

Definition 2.9 [Approximants] Let Φ be an inductive definition set for Σ, .and

define a chain of ordinal-indexed sets (ϕα
Φ)α≥0 by transfinite induction: ϕα

Φ =
⋃

β<α ϕΦ(ϕβ
Φ) (note that this implies ϕ0

Φ = (∅, . . . , ∅)). Then for each i ∈ {1, . . . , n},

the set πn
i (ϕα

Φ) is called the αth approximant of Pi, written as Pα
i .

Definition 2.10 [Standard model] Let Φ be an inductive definition set for Σ. Then

a BI-structure M for Σ is said to be a standard model for (Σ,Φ) if PM
i =

⋃

α P
α
i

for all i ∈ {1, . . . , n}.

Definition 2.10 thus fixes within a BI-structure a standard interpretation of

the inductive predicate symbols of Σ that is uniquely determined by the other

components of the structure.

7

Brotherston

3 A proof system for induction in BIID

In this section we give a Gentzen-style proof system suitable for formalising tradi-

tional proof by induction in our logic BIID. Our starting point will be the standard

sequent calculus for BI (cf. [19]).

We write sequents of the form Γ ⊢ F , where F is a formula and Γ is a bunch,

given by the following definition:

Definition 3.1 [Bunch] A bunch is a tree whose leaves are labelled by formulas

of BIID and whose internal nodes are labelled by ‘;’ or ‘,’ (denoting respectively

additive and multiplicative combination 4)

As our sequents have at most one formula occurring on the right hand side, our

proof system is intuitionistic. This is not for ideological reasons but for technical

convenience; the formulation of a classical (multiple-conclusion) sequent calculus

for BI would necessitate the use of a multiplicative disjunction (for details see [19]).

We write Γ(∆) to mean that Γ is a bunch of which ∆ is a subtree (called a

“sub-bunch”), and write Γ(∆′) for the bunch obtained by replacing ∆ by ∆′ in

Γ(∆).

Definition 3.2 [Coherent equivalence for bunches] Define ≡ to be the least relation

on bunches satisfying:

(i) commutative monoid equations for ‘;’ and ⊤ (i.e., equations expressing that ‘;’

is associative and commutative with respect to ≡, and that ⊤ is the unit of ‘;’

with respect to ≡);

(ii) commutative monoid equations for ‘,’ and I;

(iii) congruence: if ∆ ≡ ∆′ then Γ(∆) ≡ Γ(∆′).

The usual sequent calculus rules for our version of predicate BI, plus rules for

equality and an explicit substitution rule, are given in Figure 1. Our proof system,

called LBIID, is obtained from this system by adding rules for introducing atomic

formulas of the form Pit, where Pi is an inductive predicate symbol, on the left and

right of sequents.

First, for each production Φi,j ∈ Φ, we obtain a right-introduction rule (PiRj)

for the predicate Pi as follows:

C(x)

Pit(x)
=⇒

Γ ⊢ C(u)
(PiRj)

Γ ⊢ Pit(u)

Before giving the rules for introducing inductive predicates on the left of se-

quents, we first give a formal definition of what it means for two inductive predicates

to have a mutual definition in Φ (repeated from [8]):

Definition 3.3 [Mutual dependency] Define the binary relation Prem on the in-

ductive predicate symbols {P1, . . . , Pn} of Σ as the least relation satisfying: when-

ever Pi occurs in the conclusion of some production Φi,r ∈ Φ, and Pj occurs in the

4 Confusingly, although ‘,’ is standardly used for additive combination in traditional sequent calculus,
it is used to mean multiplicative combination in substructural logic, and we retain the latter usage for
consistency with other formulations of BI. The original definition of a bunch also allowed an additive unit
{}a, equivalent to the formula ⊤, and a multiplicative unit {}m, equivalent to the formula I, to occur in
leaf positions; for our present purposes, this is an obvious redundancy.

8

Brotherston

Structural rules:

(Id)
Γ;F ⊢ F

Γ(∆) ⊢ F
(Weak)

Γ(∆; ∆′) ⊢ F

Γ(∆; ∆) ⊢ F
(Contr)

Γ(∆) ⊢ F

Γ′ ⊢ F
Γ ≡ Γ′ (Equiv)

Γ ⊢ F

∆ ⊢ G Γ(G) ⊢ F
(Cut)

Γ(∆) ⊢ F

Γ ⊢ F
(Subst)

Γ[θ] ⊢ F [θ]

Propositional rules:

(⊥L)
⊥ ⊢ F

Γ(F1;F2) ⊢ F
(∧L)

Γ(F1 ∧ F2) ⊢ F

Γ(F1) ⊢ F Γ(F2) ⊢ F
(∨L)

Γ(F1 ∨ F2) ⊢ F

(⊤R)
Γ ⊢ ⊤

Γ ⊢ F1 Γ ⊢ F2

(∧R)
Γ ⊢ F1 ∧ F2

Γ ⊢ Fi

i ∈ {1, 2} (∨R)
Γ ⊢ F1 ∨ F2

∆ ⊢ F1 Γ(∆′, F2) ⊢ F
(—∗L)

Γ(∆,∆′, F1 —∗ F2) ⊢ F

∆ ⊢ F1 Γ(∆; F2) ⊢ F
(→L)

Γ(∆; F1 → F2) ⊢ F

Γ(F1, F2) ⊢ F
(∗L)

Γ(F1 ∗ F2) ⊢ F

Γ, F1 ⊢ F2

(—∗R)
Γ ⊢ F1 —∗ F2

Γ; F1 ⊢ F2

(→R)
Γ ⊢ F1 → F2

Γ ⊢ F1 ∆ ⊢ F2

(∗R)
Γ,∆ ⊢ F1 ∗ F2

Quantifier rules:

Γ(G[t/x]) ⊢ F
(∀L)

Γ(∀xG) ⊢ F

Γ ⊢ F
x /∈ FV (Γ ∪ {F}) (∀R)

Γ ⊢ ∀xF

Γ(G) ⊢ F
x 6∈ FV (Γ ∪ {F}) (∃L)

Γ(∃xG) ⊢ F

Γ ⊢ F [t/x]
(∃R)

Γ ⊢ ∃xF

Equality rules:

(=R)
Γ ⊢ t = t

Γ[u/x, t/y] ⊢ F [u/x, t/y]
(=L)

Γ(t = u)[t/x, u/y] ⊢ F [t/x, u/y]

Fig. 1. Sequent calculus proof rules for predicate BI with equality.

premise of that production, then Prem(Pi, Pj) holds. Also define Prem∗ to be the

reflexive-transitive closure of Prem. Then we say two predicate symbols P and Q

are mutually dependent if both Prem∗(P,Q) and Prem∗(Q,P) hold.

Now to obtain an instance of the induction rule for any inductive predicate

Pj , we first associate with every inductive predicate Pi a tuple zi of ki distinct

variables (called induction variables), where ki is the arity of Pi. Furthermore, we

associate to every predicate Pi that is mutually dependent with Pj a formula (called

an induction hypothesis) Hi, possibly containing some of the induction variables.

Next, define the formula Gi for each i ∈ {1, . . . , n} by: Gi = Hi if Pi and Pj are

mutually dependent, and Gi = Pizi otherwise. For convenience, we shall write Git

for Gi[t/zi], where t is a tuple of ki terms. Then an instance of the induction rule

(Ind Pj) for Pj has the following schema:

minor premises Γ(∆;Hjt) ⊢ F
(Ind Pj)

Γ(∆;Pjt) ⊢ F

where the premise Γ,Hjt ⊢ ∆ is called the major premise of the rule, and for each

production of Φ having in its conclusion a predicate Pi that is mutually dependent

9

Brotherston

with Pj , we obtain a minor premise as follows:

C(x)

Pit(x)
=⇒ ∆;CH(x) ⊢ Hit(x) (∀x ∈ x. x 6∈ FV (∆))

where CH(x) is the formula obtained by replacing every formula of the form Pkt(x)

(for Pk an inductive predicate) by Gkt(x) in the combinative inductive clause C(x).

Example 3.4 The induction rule for the predicate N from example 2.7 is:

∆ ⊢ H0 ∆;Hx ⊢ Hsx Γ(∆;Ht) ⊢ F
(Ind N)

Γ(∆;Nt) ⊢ F

where H is the induction hypothesis associated with N and x is suitably fresh.

Example 3.5 The induction rule for the predicate ls from example 2.8 is:

∆; I ⊢ Hxx ∆;x 7→ x′ ∗Hx′y ⊢ Hxy Γ(∆;Htu) ⊢ F
(Ind ls)

Γ(∆; ls t u) ⊢ F

where H is the induction hypothesis associated with ls and x, x′, y are fresh.

Definition 3.6 (Validity) Let M be a standard model for (Σ,Φ). Then a sequent

Γ ⊢ F is said to be true in M if for all environments ρ and resource states r,

M, r |=ρ φΓ implies M, r |=ρ F , where φΓ is the formula obtained by replacing every

occurrence of ‘;’ by ∧ and every occurrence of ‘,’ by ∗ in the bunch Γ. Γ ⊢ F is said

to be valid if it is true in all standard models of (Σ,Φ).

By a derivation tree, we mean a finite tree of sequents in which each parent se-

quent is obtained as the conclusion of an inference rule with its children as premises.

We distinguish between “leaves” and “buds” in the tree. By a leaf we mean an ax-

iom, i.e. the conclusion of a 0-premise inference rule. By a bud we mean any sequent

occurrence in the tree that is not the conclusion of a proof rule. An LBIID proof

is then, as usual, a finite derivation tree constructed according to the proof rules

that contains no buds. The following proposition is a straightforward consequence

of the local soundness of our proof rules.

Proposition 3.7 (Soundness of LBIID) If there is an LBIID proof of Γ ⊢ ∆

then Γ ⊢ ∆ is valid.

Example 3.8 We give an LBIID proof that the predicate N from Example 2.7

admits multiplicative weakening, i.e. that F,Nx ⊢ Nx:

(NR1)
F ⊢ N0

(—∗R)
⊢ F —∗ N0

(Id)
F ⊢ F

(Id)
Ny ⊢ Ny

(—∗L)
F,F —∗ Ny ⊢ Ny

(NR2)
F,F —∗ Ny ⊢ Nsy

(—∗R)
F —∗ Ny ⊢ F —∗ Nsy

(Id)
F ⊢ F

(Id)
Nx ⊢ Nx

(—∗L)
F,F —∗ Nx ⊢ Nx

(Ind N)
F,Nx ⊢ Nx

Note that in the application of (Ind N) in this proof we associate the induction

variable z and the induction hypothesis F —∗ Nz with the inductive predicate N .

We remark that one can easily see that this example demonstrates the need for

generalisation of induction hypotheses in this setting (at least for cut-free proofs):

10

Brotherston

it is clear that using either F or Nz as the induction hypothesis will not enable us

to prove the major premise of the induction application.

4 A cyclic proof system for BIID

We now define a second proof system CLBIωID for BIID which admits a notion of

cyclic proof; our proof structures are finite derivation trees together with a function

assigning to every unexpanded node in the proof tree (called a bud) an interior node

with an identical sequent labelling (the companion of the bud). These structures

(called pre-proofs) can then be viewed as cyclic graphs; we impose a global condition

on pre-proofs to ensure soundness.

The proof rules of the system CLBIωID are the rules of LBIID described in Sec-

tion 3, except that for each inductive predicate Pi of Σ, the induction rule (Ind Pi)

of LBIID is replaced by the case-split rule:

case distinctions
(Case Pi)

Γ(Piu) ⊢ F

where for each production having predicate Pi in its conclusion, we obtain a corre-

sponding case distinction as follows:

C(x)

Pit(x)
=⇒ Γ(u = t(x);CB(x)) ⊢ F (∀x ∈ x. x 6∈ FV (Γ ∪ {F}))

where CB(x) is the bunch obtained from the formula C(x) by replacing each occur-

rence of ∧ by ‘;’ and each occurrence of ∗ by ‘,’.

Any atomic formula containing an inductive predicate symbol occurring in C(x)

in the case distinction above is said to be a case-descendant of the active formula

Piu of the rule instance.

Example 4.1 The case-split rule for N from Example 2.7 is:

Γ(t = 0) ⊢ F Γ(t = sx;Nx) ⊢ F
(Case N)

Γ(Nt) ⊢ F

Example 4.2 The case-split rule for ls from Example 2.8 is:

Γ(t = u; I) ⊢ F Γ(t 7→ x, lsxu) ⊢ F
(Case ls)

Γ(ls t u) ⊢ F

Definition 4.3 (Companion) Let B be a bud of a derivation tree D. An internal

node C in D is said to be a companion for B if they have the same sequent labelling.

By assigning a companion to each bud node in a finite derivation tree, one

obtains a finite representation of an associated (regular) infinite tree:

Definition 4.4 (CLBIω
ID pre-proof) A CLBIωID pre-proof of a sequent Γ ⊢ ∆ is

a pair P = (D,R), where D is a derivation tree constructed according to the proof

rules of CLBIωID given above such that Γ ⊢ ∆ appears at the root of D, and R is a

function assigning a companion to every bud of D.

The graph of P is the graph GP obtained from D by identifying each bud node

B in D with its companion R(B).

11

Brotherston

We observe that the local soundness of our proof rules is not sufficient to guaran-

tee that pre-proofs are sound, due to the (possible) cyclicity evident in their graph

representations. In order to give a criterion for soundness, we formulate the notion

of a trace following a path in a pre-proof graph, similar to that used in [8,22] but

more complex due to our use of bunches in sequents.

Definition 4.5 (Trace) Let P be a CLBIωID pre-proof and let (Γi ⊢ Fi) be a path

in GP . A trace following (Γi ⊢ Fi) is a sequence (τi) such that, for all i:

• τi = Piti is a leaf of Γi, where Pi is an inductive predicate;

• if Γi ⊢ Fi is the conclusion of (Subst) then τi = τi+1[θ], where θ is the substitution

associated with the rule instance;

• if Γi ⊢ Fi is the conclusion of (=L) with active formula t = u then there is a

formula G and variables x, y such that τi = G[t/x, u/y] and τi+1 = G[u/x, t/y];

• if Γi ⊢ ∆i is the conclusion of a case-split rule then either τi+1 = τi, or τi is the

active formula of the rule instance and τi+1 is a case-descendant of τi. In the

latter case, i is said to be a progress point of the trace;

• if Γi ⊢ ∆i is the conclusion of any other rule then τi+1 = τi;

• the position of τi+1 in Γi+1 is the same as the position of τi in Γi, modulo any

splitting of Γi. E.g. if Γi ⊢ Fi is the conclusion of the inference:

∆ ⊢ F1 Γ(∆′, F2) ⊢ F
(—∗L)

Γ(∆,∆′, F1 —∗ F2) ⊢ F

then, if Γi+1 ⊢ Fi is the left hand premise, we must have ∆ = Ψ(τi) and ∆ =

Ψ(τi+1) (for some Ψ). If Γi+1 ⊢ Fi is the right hand premise, then we must have

either ∆′ = Ψ(τi) and ∆′ = Ψ(τi+1) or Γ(−) = Ψ(τi) and Γ(−) = Ψ(τi+1).

An infinitely progressing trace is a trace having infinitely many progress points.

Informally, a trace follows (a part of) the construction of an inductively defined

predicate occurring in the left hand side of the sequents occurring on a path in a

pre-proof. These predicate constructions never become larger as we follow the trace

along the path, and at progress points, they actually decrease. This property is

encapsulated in the following lemma and motivates the subsequent definition of a

cyclic proof :

Lemma 4.6 Let P be a CLBIω
ID pre-proof of Γ0 ⊢ F0, and let M be a standard

model such that Γ0 ⊢ F0 is false in M in the resource state r0 and environment

ρ0 (say). Then there is an infinite path (Γi ⊢ Fi)i≥0 in GP and infinite sequences

(ri)i≥0 and (ρi)i≥0 such that:

(i) for all i, Γi ⊢ Fi is false in Mi under the resource state ri and environment ρi;

(ii) if there is a trace (τi = Piti)i≥n following some tail (Γi ⊢ Fi)i≥n of (Γi ⊢ Fi)i≥0,

then there exists a sequence (r′i)i≥n of resource states such that M, r′i |=ρi
Piti

for all i ≥ n and the sequence (αi)i≥n of ordinals defined by αi = least α s.t. (r′i, ρi(ti)) ∈
Pα

i , is non-increasing and, furthermore, if j is a progress point of (τi) then

αj+1 < αj .

We remark that in order to prove this lemma, the resource states r′i used to

12

Brotherston

satisfy the trace formulas must be constructed as substates of the states ri used to

falsify the sequents along the constructed path.

Definition 4.7 (CLBIω
ID proof) A CLBIωID pre-proof P = (D,R) is an CLBIωID

proof if, for every infinite path in D, there is an infinitely progressing trace following

some tail of the path.

Similar definitions, in different contexts, appear in [17,22].

Proposition 4.8 (Soundness) If there is a CLBIωID proof of Γ ⊢ ∆ then Γ ⊢ ∆ is

valid.

Proof. (Sketch) Let P be a CLBIωID proof of Γ ⊢ F . If Γ ⊢ F is not valid, i.e. false

in some standard model M in some resource state r0 and environment ρ0, then we

can apply Lemma 4.6 to construct infinite sequences (Γi ⊢ Fi)i≥0, (ri)i≥0 and (ρi)i≥0

satisfying the two properties of the lemma. As (Γi ⊢ ∆i)i≥0 is a path in GP , there is

an infinitely progressing trace following some tail of the path by Definition 4.7, so

by the second property of the lemma we can construct an infinite descending chain

of ordinals, which is a contradiction. 2

Example 4.9 The following is a CLBIωID proof of the sequent F,Nx ⊢ Nx (recall

we gave an LBIID proof in Example 3.8).

(NR1)
F ⊢ N0

(=L)
F, x = 0 ⊢ Nx

F,Nx ⊢ Nx (†)
(Subst)

F,Ny ⊢ Ny
(NR2)

F,Ny ⊢ Nsy
(=L)

F, (x = sy;Ny) ⊢ Nx
(Case N)

F,Nx ⊢ Nx (†)

We use (†) to indicate the pairing of a suitable companion with the only bud in

this pre-proof. To see that it is indeed a CLBIωID proof, observe that any infinite

path π in the pre-proof graph necessarily has a tail consisting of repetitions of the

path from the companion to the bud in this pre-proof, and there is an progressing

trace following this path: (Nx,Ny,Ny,Ny,Nx) (with the progression occurring

from the active formula Nx of (Case N) to its case-descendant Ny in the trace).

Thus by concatenating copies of this trace we can obtain an infinitely progressing

trace on a tail of π as required.

We remark that, unlike the situation for LBIID (cf. Example 3.8), we do not

require generalisation in this proof, i.e., the invention of new formulas in the proof

is not necessary.

Example 4.10 The following is a CLBIωID pre-proof of the sequent lsxx′∗lsx′ y ⊢
lsx y:

(Id)
lsx y ⊢ ls x y

(≡)
I, ls x y ⊢ lsx y

(=L)
(x′ = x; I), ls x′ y ⊢ lsx y

(Id)
x 7→ z ⊢ x 7→ z

(†) lsx x′, ls x′ y ⊢ lsx y
(Subst)

ls z x′, lsx′ y ⊢ ls z y
(∗R)

x 7→ z, ls z x′, lsx′ y ⊢ x 7→ z ∗ ls z y
(lsR2)

x 7→ z, ls z x′, ls x′ y ⊢ ls x y
(Case ls)

(†) ls x x′, lsx′ y ⊢ ls x y
(∗L)

lsx x′ ∗ ls x′ y ⊢ ls x y

13

Brotherston

The pairing of a suitable companion with the only bud in this pre-proof is

denoted by (†). To see that the above is in fact a CLBIωID proof, observe that any

infinite path π in the pre-proof necessarily has a tail consisting solely of repetitions of

the finite path in the pre-proof from the companion to the bud. Now, the sequence:

(lsxx′, ls z x′, ls z x′, ls z x′, lsxx′)

is a trace following this path. It progresses at its first position because ls z x′

is a case-descendant of lsxx′ in the displayed application of the case-split rule

(Case ls). Thus one can readily see that one can build the required infinitely

progressing trace on this tail of π by concatenating copies of this trace, and so this

pre-proof is indeed a CLBIωID proof.

We remark that the LBIID proof of lsxx′ ∗ lsx′ y ⊢ lsx y proceeds, after

applying (∗L), by induction on lsxx′ using the induction variables z, z′ (say) and

the induction hypothesis ls z′ y —∗ ls z y, thus requiring a generalisation similar to

that needed in Example 3.8.

Proposition 4.11 It is decidable whether a CLBIωID pre-proof is a CLBIωID proof.

Proof. (Sketch) The property of every infinite path posessing an infinitely progress-

ing trace along a tail is an ω-regular property, and hence reducible to the emptiness

of a Büchi automaton. A full proof (for a general notion of trace) appears in [9]; a

similar argument appears in [22]. 2

5 Conclusions and Future work

Our work thus far constitutes a reasonably straightforward extension, to the setting

of BI, of the inductive definition framework and proof systems formulated in our

previous work for first-order logic with inductively defined relations [8,10,9]. Thus

one might reasonably hope that the key proof-theoretical results from that work,

including appropriate completeness and cut-elimination theorems, will also extend

to the systems we consider here. One would also expect to be able to show that our

system CLBIωID subsumes LBIID, with the question of their equivalence presenting

similar difficulties to those discussed in [8,10,9]; for first-order logic with inductively

defined relations, it is not yet known how to extract a traditional induction proof

from a cyclic proof, and we have only conjectured the equivalence of the two proof

styles in this setting.

One could also examine the extension of our inductive definition framework to

more powerful induction schemas, for example definitions employing additive and/or

multiplicative implication, and to coinduction.

For the immediate future, though, we intend to pursue two main avenues. First,

we would like to further explore the potential of cyclic proof for proof search in

BIID and related sublogics (e.g. separation logic with inductive definitions). We

have already seen trivial examples in which cyclic proof appears to avoid the gen-

eralisation necessary in the corresponding inductive proof (Examples 4.9 and 4.10).

More generally, cyclic proof should offer a “least-commitment” approach to proof

search, whereby the induction schema, variables and hypotheses are not chosen at

the beginning of the proof, as in traditional inductive theorem proving, but are

eventually selected implicitly via the satisfaction of the soundness condition. We

14

Brotherston

have already given proof-theoretic machinery for analysing and manipulating the

structure of general cyclic proofs [9] which may be of assistance in such investiga-

tions. Secondly, we hope that it will be possible to directly formulate cyclic proof

systems for the direct verification of low-level programs, (using, e.g., Hoare triples).

We speculate that such systems would use appropriate cyclic proof principles to

establish invariants for the looping constructs in such programs, or, given such

invariants, to prove appropriate postconditions.

References

[1] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of Mathematical
Logic, pages 739–782. North-Holland, 1977.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Proceedings of FMCO 2005, volume 4111 of LNCS, pages 115–137,
2005.

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation logic.
In Proceedings of APLAS 2005, volume 3780 of LNCS, pages 52–68. Springer, 2005.

[4] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. In Proceedings of 18th CAV, volume 4144 of LNCS, pages
386–400. Springer, 2006.

[5] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI hyperdoctrines and separation logic. In
Proceedings of ESOP’05, pages 233–247. Springer-Verlag, 2005.

[6] L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local reasoning about a copying garbage collector. In
Proceedings of POPL’04, pages 220–231, 2004.

[7] Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local reasoning, separation and aliasing. In
Proceedings of SPACE’04, January 2004.

[8] James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In B. Beckert, editor,
Automated Reasoning with Analytic Tableaux and Related Methods: Proceedings of TABLEAUX 2005,
volume 3702 of LNAI, pages 78–92. Springer-Verlag, 2005.

[9] James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD thesis, University
of Edinburgh, November 2006.

[10] James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite descent. In
preparation, 2007.

[11] Alan Bundy. The automation of proof by mathematical induction. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 13, pages 845–911. Elsevier
Science, 2001.

[12] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In Proceedings of SAS-13, volume 4134 of
LNCS, pages 182–203. Springer, 2006.

[13] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based on separation
logic. In Proceedings of TACAS-12, volume 3920 of LNCS, pages 287–302, 2006.

[14] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures. In
Proceedings of POPL’01, January 2001.

[15] Per Martin-Löf. Haupstatz for the intuitionistic theory of iterated inductive definitions. In J.E. Fenstad,
editor, Proceedings of the Second Scandinavian Logic Symposium, pages 179–216. North-Holland, 1971.

[16] Yiannis N. Moschovakis. Elementary Induction on Abstract Structures, volume 77 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 1974.

[17] Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer Science,
163:99–116, 1997.

[18] P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–
244, June 1999.

[19] David Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied Logic
Series. Kluwer, 2002.

[20] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[21] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science, 2002.

[22] Christoph Sprenger and Mads Dam. A note on global induction mechanisms in a µ-calculus with
explicit approximations. Theoretical Informatics and Applications, July 2003. Full version of FICS ’02
paper.

[23] Hongseok Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite graph marking
algorithm. In Proceedings of SPACE 2001, 2001.

15

Verifying Complex Properties using Symbolic

Shape Analysis

Thomas Wies

Departement of Computer Science
University of Freiburg, Germany

Viktor Kuncak Karen Zee Martin Rinard

MIT, CSAIL
Cambridge, USA

Andreas Podelski

Departement of Computer Science
University of Freiburg, Germany

Abstract

One of the main challenges in the verification of software systems is the analysis of statically unbounded
data structures with dynamic memory allocation, such as linked data structures and arrays. We describe
Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows
that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications
expressed in terms of changes to the set of objects stored in the data structure. During the analysis,
Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of
formulas, represented as sets of binary decision diagrams. To synthesize loop invariants of this form, Bohne
uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision
procedures (currently CVC Lite), first-order provers such as SPASS and E, and the automated reasoner
within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can
serve as a useful communication mechanism between different decision procedures. In addition, Bohne uses
field constraint analysis, a combination mechanism that enables the use of uninterpreted function symbols
within formulas of Monadic Second-Order Logic over trees. Using Bohne, we have verified operations on
data structures such as linked lists with iterators and back pointers, trees with and without parent pointers,
two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob
data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and
apply it in the context of larger programs. This paper describes the Bohne algorithm, the techniques that
Bohne uses to reduce the amount of annotations and the running time of the analysis.

1 Introduction

Complex data structure invariants are one of the main challenges in verifying soft-

ware systems. Unbounded data structures such as linked data structures and dy-

namically allocated arrays make the state space of software artifacts infinite and

require new reasoning techniques (such as reasoning about reachability) that have

traditionally not been part of theorem provers specialized for program verification.

The ability of linked structures to change their shape makes them a powerful pro-

gramming construct, but at the same time makes them difficult to analyze, because

the appropriate analysis representation is dependent on the invariants that the pro-

gram maintains. It is therefore not surprising that the most successful verification

approaches for analysis of data structures use parameterized abstract domains; these

analyses include parametric shape analysis [47] as well as predicate abstraction [3,23]

and its generalizations [14, 31].

This paper presents Bohne, an algorithm for inferring loop invariants of programs

that manipulate heap-allocated data structures. Like predicate abstraction, Bohne

is parameterized by the properties to be verified. What makes the Bohne algorithm

unique is the use of a precise abstraction domain that can express detailed properties

Wies, Kuncak, Zee, Rinard, Podelski

of different regions of a program’s infinite memory, and a range of techniques for

exploring this analysis domain using decision procedures. The algorithm was initially

developed as a symbolic shape analysis [53,43] for linked data structures and uses the

key idea of many shape analyses, made explicit in the TVLA analyzer [47, 36]: the

partitioning of objects according to certain unary predicates. One of the observations

of our paper is that the synthesis of heap partitions is not only useful for analyzing

shape properties (which involve transitive closure), but also for combining such shape

properties with sorting properties of data structures and properties expressible using

linear arithmetic and first-order logic.

1.1 Related Work

We next put the Bohne algorithm in the context of two abstract interpretation [11]

approaches that are closest to symbolic shape analysis: predicate abstraction and

parametric shape analysis. We then discuss the work on decision procedures because

Bohne uses a validity checker for an expressive logic to perform the analysis.

Predicate abstraction. Bohne builds on predicate abstraction but introduces

important new techniques that make it applicable to the domain of shape analy-

sis. There are two main sources of complexity of loop invariants in shape analysis.

The first source of complexity is the fact that the invariants contain reachability

predicates. To address this problem, Bohne uses a decision procedure for monadic

second-order logic over trees [50, 25], and combines it with uninterpreted function

symbols in a way that preserves completeness in important cases [54]. The second

source of complexity is that the invariants contain universal quantifiers in an es-

sential way. Among the main approaches for dealing with quantified invariants in

predicate abstraction is the use of Skolem constants [14], indexed predicates [31] and

the use of abstraction predicates that contain quantifiers. The key difficulty in using

Skolem constants for shape analysis is that the properties of individual objects de-

pend on the “context”, given by the properties of surrounding objects, which means

that it is not enough to use a fixed Skolem constant throughout the analysis; it is

instead necessary to instantiate universal quantifiers from previous loop iterations,

in some cases multiple times. Compared to indexed predicates [31] the domain used

by Bohne is more general because it contains disjunctions of universally quantified

statements. The presence of disjunctions is not only more expressive in principle, but

allows Bohne to keep formulas under the universal quantifiers more specific. This

enables the use of less precise, but more efficient algorithms for computing changes

to properties of objects without losing too much precision in the overall analysis.

Finally, the advantage of using abstraction tailored to shape analysis compared to

using quantified global predicates is that the parameters to shape-analysis-oriented

abstraction are properties of objects in a state, as opposed to global properties of

a state, and the number of global predicates needed to emulate state predicates is

exponential in the number of properties [39, 53].

The advantages of combining predicate abstraction with shape analysis are

clearly demonstrated in lazy shape analysis [6]. Lazy shape analysis performs inde-

pendent runs of a shape analysis algorithm, whose results are then used to improve

the precision of predicate abstraction. In contrast, our symbolic shape analysis gen-

17

Wies, Kuncak, Zee, Rinard, Podelski

eralizes predicate abstraction technique to the point where it itself becomes effective

as a shape analysis. We note that Bohne has also been extended to perform the

automated discovery of predicates; the discussion of this extension is beyond the

scope of this paper.

Shape analysis. Shape analyses are precise analyses for linked data structures.

They were originally used for compiler optimizations [24,19,18] and lacked the pre-

cision needed to establish invariants that Bohne is analyzing. Precise data structure

analyses for verification include [29,16,26,35,41,20,47] and have recently also been

applied to verify set implementations [45]. Unlike Bohne, most shape analyses that

synthesize loop invariants are based on precomputed transfer functions and a fixed

(though parameterized) set of properties to be tracked; recent approaches enable

automation of such computation using decision procedures [57, 56, 58, 43, 54] or fi-

nite differencing [46]. Our approach differs from [32] in using complete reasoning

about reachability in both lists and trees, and using a different architecture of the

reasoning procedure. Our reasoning procedure uses a coarse-grain combination of

reachability reasoning with decision procedures and theorem provers for numerical

and first-order properties, as opposed to using a Nelson-Oppen style theorem prover.

This allowed us to easily combine several tools that were developed completely in-

dependently [25, 4, 42]. Shape analysis approaches have also been used to verify

sortedness properties [38] relying on manually abstracting a sortedness relation.

Decision procedures. Our symbolic shape analysis algorithm relies on decision

procedures for expressive logics to perform synthesis of loop invariants. The system

then verifies that the synthesized invariants are sufficient to prove the absence of

errors and to prove the postcondition. During the invariant synthesis, the analysis

primarily uses the MONA decision procedure [25] with field constraint analysis [54]

to reason about expressive invariants involving reachability in tree-like linked struc-

tures. Our analysis also uses CVC Lite [4] via the SMT-LIB interface to reason about

array data structures, local properties in non-tree data structures, and linear arith-

metic. These two decision procedures are most relevant for the present paper. In our

system (Figure 1) we also use interactive theorem provers Isabelle [42] and Coq [5]

to debug the proof obligations and translations into decision procedures, as well

as to automatically discharge some proof obligations using simplication and proof

search built into these provers. We have also had success using first-order theorem

provers Vampire [51], E [48] (via the TPTP interface [49]) as well as SPASS [52]. We

used first-order theorem provers in Jahob to verify implementations of data struc-

tures [8], avoiding the use of reachability using specification variables similarly to

the approaches taken in [29, 40] and automated to some extent in [37]. Finally, to

reason about the sizes of data structures, we used a new decision procedure [30, 28]

with a reduction to Presburger arithmetic.

Several recent decision procedures address specifically linked lists [1,12,39,7,44],

where the emphasis is on the predictability (decision procedures for well-defined

classes of properties of linked lists), the efficiency (membership in NP), the ability

to interoperate with other reasoning procedures, and modularity. Although the

Bohne approach is not limited to lists, it can take advantage of decision procedures

for lists by applying such specialized procedures when they are applicable and using

18

Wies, Kuncak, Zee, Rinard, Podelski

more general reasoning otherwise. In our current experience, the MONA decision

procedure [25] proved to be effective for verifying reachability in both list and tree

structures.

Bohne could also take advantage of logics for reasoning about reachability, such as

the logic of reachable shapes [55]. Existing logics, such as guarded fixpoint logic [21]

and description logics with reachability [10,17] are attractive because of their expres-

sive power, but so far no decision procedures for these logics have been implemented.

1.2 Contributions

We have previously described the general idea of symbolic shape analysis [43] as

well as the field constraint analysis decision procedure for combining reachability

reasoning with uninterpreted function symbols [54]. These previous techniques are

our starting point. The main contributions of this paper are the following:

(i) We describe a method for synthesis of Boolean heap programs that improves the

efficiency of fixpoint evaluation by precomputing abstract transition relations

and can control the precision/efficiency trade-off by recomputing transition

relations on-demand during fixpoint computation.

(ii) We introduce semantic caching of decision procedure queries across different

fixpoint iterations and even different analyzed procedures. The caching yields

substantial improvements for procedures that exhibit some similarity, which

opens up the possibility of using our analysis in an interactive context.

(iii) We describe a static analysis that propagates precondition conjuncts and

quickly finds many true facts, reducing the running time and the number of

needed abstraction predicates for the subsequent symbolic shape analysis.

(iv) We present a domain-specific quantifier instantiation technique that signifi-

cantly improves the running time of the analysis. Furthermore, it often elimi-

nates the need for the underlying decision procedures to deal with quantifiers.

Together, these new techniques allowed us to verify a range of data structures with-

out specifying loop invariants and without specifying a large number of abstraction

predicates. Our examples include implementations of lists (with iterators and with

back pointers), trees with parent pointers, two-level skip lists, sorted lists, as well as

combinations of these data structures. What makes these results particularly inter-

esting is a higher level of automation than in previous approaches: Bohne synthesizes

loop invariants that involve reachability expressions and numerical quantities, yet it

does not have precomputed transfer functions for a particular set of abstraction pred-

icates. Bohne instead uses decision procedures to reason about arbitrary predicates

definable in a given logic. Moreover, in our system the developer is not required

to manually specify the changes of membership of elements in sets because such

changes are computed by the system. Our system uses such synthesized invariants

to communicate the information between different decision procedures.

Bohne as a component of Jahob. Bohne is part of the data structure verification

frameworks Jahob [27, 28] and Hob [34, 33]. The goal of these systems is to verify

data structure consistency properties in the context of non-trivial programs. To

achieve this goal, these tools combine multiple static analyses, theorem proving, and

19

Wies, Kuncak, Zee, Rinard, Podelski

Fig. 1. Jahob Data Structure Analysis System Architecture

decision procedures. In this paper we present our experience in deploying Bohne in

the Jahob framework. The input language for Jahob is a subset of Java extended

with annotations written as special comments. Therefore, Jahob programs can be

compiled and executed using existing Java compilers and virtual machines.

Figure 1 illustrates the integration of Bohne into the Jahob framework. Bohne

uses Jahob’s facilities for symbolic execution of program statements and the validity

checker to compute the abstraction of the source program. The output of Bohne

is the source program annotated with the inferred loop invariants. The annotated

program serves as an input to a verification condition generator. The generated ver-

ification conditions are verified using an approach [28] that combines special purpose

decision procedures, general purpose theorem provers, and reasoning techniques such

as field constraint analysis [54].

2 Motivating Example

We illustrate our technique on the procedure SortedList.insert shown in Figure 2.

This procedure inserts a Node object into a global sorted list. The annotation given

by special comments /*: ... */ consists of data structure invariants, pre- and

postconditions, as well as hints for the analysis. Formulas are expressed in a subset

of the language used in the Isabelle interactive theorem prover [42]. The specification

uses an abstract set variable content which is defined as the set of non-null objects

reachable from the global variable first by following the field next. The data

structure invariants are specified by the annotation invariant "...". For instance,

the first invariant expresses the fact that the field next forms trees in the heap, i.e.

that next is acyclic and injective; the third invariant expresses the fact that the

elements stored in the list are sorted in increasing order according to field data. The

precondition of the procedure, requires "...", states that the object to be inserted

is non-null and not yet contained in the list. The postcondition, ensures "...",

expresses that the argument is properly inserted into the list.

The loop in the procedure body traverses the list until it finds the proper position

for insertion. It then inserts the argument such that the resulting data structure is

again a sorted list. Our analysis, Bohne, is capable of verifying that the postcon-

dition holds at the end of the procedure insert, that data structure invariants are

20

Wies, Kuncak, Zee, Rinard, Podelski

class Node {
public int data;
public Node next;

}
class SortedList {

private static Node first;
/∗: public static specvar content :: objset;

vardefs "content == {v. v 6= null ∧ next∗ first v}";

invariant "tree [next]";
invariant "first = null ∨ (∀ n. n.next 6= first)";
invariant "∀ v. v ∈ content ∧ v.next 6= null −→ v..Node.data ≤ v.next.data";
invariant "∀ v. v 6= null ∧ v.next 6= null −→ v.next ∈ content";

∗/
public static void insert(Node n)

/∗: requires "n 6= null ∧ n /∈ content"
modifies content
ensures "content = old content ∪ {n}" ∗/

{/∗: specvar reach_curr :: objset;
vardefs "reach_curr == {v. next∗ curr v}";
specvar prev_le_n :: bool;
vardefs "prev.data <= n.data"; ∗/

Node prev = null;
Node curr = first ;
while ((curr != null) && (curr.data < n.data)) {

//: track(reach_curr); track(prev_le_n);
prev = curr;
curr = curr.next;

}
n.next = curr;
if (prev != null) prev.next = n;
else first = n;

}
}

Fig. 2. Insertion into a sorted list

tree [next] ∧ (first = null ∨ (∀ n. n.next 6= first)) ∧
(∀ v. v ∈ content ∧ v.next 6= null −→ v.data <= v.next.data) ∧
(∀ v w. v 6= null & w 6= null & v.next = w −→ w ∈ content) ∧
n ∧ null ∧ n /∈ content ∧ content = old content ∧
(curr ∧ null −→ curr ∈ content) ∧ (prev = null −→ first = curr) ∧
(prev ∧ null −→ prev ∈ content ∧ prev /∈ reach_curr ∧

prev.next = curr ∧ prev_le_n)

Fig. 3. Loop invariant for procedure SortedList.insert

preserved, and that there are no run-time errors such as null pointer dereferences.

In order to establish these properties, Bohne derives a complex loop invariant shown

in Fig. 3.

The main difficulties for inferring this invariant are: (1) it contains universal

quantifiers over an unbounded domain and (2) it contains constructs such as reach-

ability, numerical properties, and uninterpreted function symbols.

Bohne infers universally quantified invariants using symbolic shape analysis

based on Boolean heaps [53, 43]. This approach can be viewed as a generalization

of predicate abstraction or a symbolic approach to parametric shape analysis. Ab-

straction predicates can be Boolean-valued state predicates (which are either true

or false in a given state, such as prev_le_n) or predicates denoting sets of heap

objects in a given state (which are true of a given object in a given state, such as

reach_curr). The latter serve as building blocks of the inferred universally quan-

tified invariants. The track(...) annotation is used as a hint on which predicates

21

Wies, Kuncak, Zee, Rinard, Podelski

I ∧ ¬(curr.data < n.data) ∧ prev 6= null ∧
next_1 = next[n := curr][prev := n] ∧
content_1 = {v. v 6= null ∧ next_1∗ first v} ∧
v ∈ content_1 ∧ v.next_1 6= null −→ v.data ≤ v.next_1.data

Fig. 4. Verification condition for preservation of sortedness

the analysis should use for the abstraction of which code fragments.

To reduce the annotation burden we use a syntactic analysis to infer abstraction

predicates automatically. Furthermore, parts of the invariant often literally come

from the procedure’s precondition. In particular, data structure invariants are often

preserved as long as the heap is not mutated. We therefore precede the symbolic

shape analysis phase with an analysis that propagates precondition conjuncts across

the control-flow graph of the procedure’s body. Using this propagation technique we

are able to infer the first six conjuncts of the invariant. The symbolic shape analysis

phase makes use of this partial invariant to infer the full invariant shown in Fig. 3.

Bohne’s symbolic shape analysis enables the combination of different decision

procedures. Thereby the inferred invariants communicate information between the

individual decision procedures, as illustrated with the following example. Figure 4

shows one of the generated verification conditions for the insert procedure. It

expresses the fact that the sortedness property is reestablished after executing the

path from the exit point of the loop through the if-branch of the conditional to

the procedure’s return point. The symbol “I” denotes the loop invariant given in

Fig. 3. This verification condition is valid. Its proof requires the fact content’ =

content ∪ {n}; denote this fact P . P follows from the given assumptions. The

MONA decision procedure is able to conclude P by expanding the definitions of

the abstract sets content and content’. However, MONA is not able to prove

the verification condition, because proving its conclusion requires reasoning over

integers. On the other hand, the CVC Lite decision procedure is able to prove the

conclusion given the fact P by reasoning over the abstract sets without expanding

their definitions, but it is not able to conclude P from the assumptions, because

this deduction step requires reasoning over reachability. In order to communicate P

between the two decision procedures, Bohne infers, in addition to the loop invariant

I, an invariant for the procedure’s return point that includes the missing fact P .

This invariant enables CVC Lite to prove the verification condition.

3 Context-Sensitive Abstraction

We next describe the symbolic shape analysis algorithm implemented in Bohne.

What makes this algorithm unique is the fact that abstract transition relations are

computed on-demand in each fixpoint iteration taking into account the context that

approximates previously explored abstract states. This approach allows the algo-

rithm to take advantage of precomputed abstract transition relations from previous

fixpoint iterations, while maintaining sufficient precision for the analysis of linked

data structures by recomputing the transitions when the context changes in a sig-

nificant way.

22

Wies, Kuncak, Zee, Rinard, Podelski

proc Reach(init : precondition formula,

ℓinit : initial program location,

T : set of guarded commands) =

let init# = abstract(init)

let root = 〈location = ℓinit; states = init#; sons = ∅〉
let unprocessed = {root}
while unprocessed 6= ∅ do

choose n ∈ unprocessed

for all (n.location, c, ℓ′) ∈ T do

let context = {m.states | m.location = n.location }
let old = {m.states | m.location = ℓ′ }
let new = AbstractPost(c, context, n.states)− old

if new 6= ∅ then

let n′ = 〈location = ℓ′; states = new; sons = ∅〉
n.sons := n.sons ∪ {(c, n′)}
unprocessed := unprocessed ∪ {n′}

unprocessed := unprocessed − {n}
return root

Fig. 5. Reachability analysis in Bohne

3.1 Reachability Analysis

The input of Bohne is the procedure to be analyzed, preconditions specifying the

initial states of the procedure, and a set of abstraction predicates. Bohne converts

the procedure into a set of guarded commands that correspond to the loop-free paths

in the control-flow graph.

The pseudo code of Bohne’s top-level fixpoint computation loop is shown in Fig-

ure 5. The analysis first abstracts the conjunction of the procedure’s preconditions

obtaining an initial set of abstract states. It then computes an abstract reacha-

bility tree. Each node in this tree is labeled by a program location and a set of

abstract states, the root being labeled by the initial location and the abstraction of

the preconditions. The edges in the tree are labeled by guarded commands. The

reachability tree keeps track of abstract traces which are used for the analysis of

abstract counterexamples.

For each unprocessed node in the tree, the analysis computes the abstract post-

condition for the associated abstract states and all outgoing transitions of the cor-

responding program location. Transitions are abstracted context-sensitively, taking

into account the previously discovered reachable abstract states for the associated

program location. Whenever the difference between the already discovered abstract

states of the post location and the abstract post states of the processed transition

is non-empty, a new unprocessed node is added to the tree. The analysis stops after

the list of unprocessed nodes becomes empty, indicating that the fixpoint is reached.

After termination of the reachability analysis, Bohne annotates the original pro-

cedure with the computed loop invariants and passes the result to the verification

condition generator.

Focusing on algorithmic aspects, we next give a description of the abstract do-

23

Wies, Kuncak, Zee, Rinard, Podelski

main, abstraction function, and the abstract post operator.

3.2 Symbolic Shape Analysis

Following the framework of abstract interpretation [11], a static analysis is defined

by lattice-theoretic domains and by fixpoint iteration over the domains. Symbolic

shape analysis can be seen as a generalization of predicate abstraction [22]. For

predicate abstraction the analysis computes an invariant; the fixpoint operator is

an abstraction of the post operator; the concrete domain consists of sets of states

(represented by closed formulas), and the abstract domain of a finite lattice of closed

formulas.

Abstract Domain. Let Pred be a finite set of abstraction predicates p(v) with an

implicit free variable v ranging over heap objects. A cube C is a partial mapping

from Pred to {0, 1}. We call a total cube complete. We say that predicate p occurs

positively (occurs negatively, does not occur) in C if C(p) = 1 (C(p) = 0, C(p) is

undefined). We denote by Cubes the set of all cubes. An abstract state is a subset

of cubes, which we call a Boolean heap. The abstract domain is given by sets of

Boolean heaps, i.e. sets of sets of cubes: AbsDom = 22Cubes
.

Meaning Function. The meaning function γ is defined on cubes, Boolean heaps,

and sets of Boolean heaps as follows:

γ(C) =
∧

p∈Pred∩dom(C)

pC(p), γ(H) = ∀v.
∨

C∈H

γ(C), γ(H) =
∨

H∈H

γ(H)

where p1 = p and p0 = ¬p

The meaning of a cube C is the conjunction of the properly signed predicates in Pred.

A Boolean heap H describes all concrete states whose heap is partitioned according

to the cubes in H. The meaning of a set H of Boolean heaps is the disjunction of

the meaning of all its elements.

Lattice Structure. Define a partial order ⊑ on cubes by:

C ⊑ C ′ def
⇐⇒ ∀p ∈ Pred. C ′(p) = C(p) ∨ (C ′(p) is undefined).

For a cube C and Boolean heap H we write C ∈c H as a short notation for the fact

that C is complete and there exists C ′ ∈ H such that C ⊑ C ′. The partial order ⊑
is extended from cubes to a preorder on Boolean heaps:

H ⊑ H ′ def
⇐⇒ ∀C ∈ H. ∃C ′ ∈ H ′. C ⊑ C ′.

For notational convenience we identify Boolean heaps up to subsumption of cubes,

i.e. up to equivalence under the relation (⊑ ∩ ⊑−1). We then identify ⊑ with

the partial order on the corresponding quotient of Boolean heaps. In the same

way we extend ⊑ from Boolean heaps to a partial order on the abstract domain.

These partial orders induce Boolean algebra structures. We denote by ⊓, ⊔ and ·
the meet, join and complement operations of these Boolean algebras. Bohne usees

binary decision diagrams (BDDs) [9] to implement Boolean heaps, the abstract

domain, and operations of the Boolean algebras.

24

Wies, Kuncak, Zee, Rinard, Podelski

Context-sensitive Cartesian post. The abstract post operator implemented in

Bohne is a refinement of the abstract post operator presented in [43]. Its core is

given by the Cartesian post operator. This operator maps a guarded command c,

and a set of Boolean heaps H to a set of Boolean heaps as follows:

CartesianPost(c,H) =

let cpost(c, C) =
d
{C ′ | ∀p ∈ Pred. C ⊑ wlp#(c, pC′(p)) }

in { { cpost(c, C) | C ∈c H } | H ∈ H}.

The actual abstraction occurs in the computation of wlp#(c, F) which is defined by:

wlp#(c, F) = {C | γ(C) |= wlp(c, F) } .

The Cartesian post maps each Boolean heap H in H to a new Boolean heap H ′.

For a given state s satisfying γ(H), a cube C in H represents a set of heap objects

in s. The Cartesian post computes the local effect of command c on each set of

objects which is represented by some complete cube in H: each complete cube C

in H is mapped to the smallest cube cpost(c, C) that represents at least the same

set of objects in the post states under command c. Consequently, each object in a

given post state is represented by some cube in the resulting Boolean heap H ′, i.e.

all post states satisfy γ(H ′). The effect of c on the objects represented by some cube

is expressed in terms of weakest preconditions wlp of abstraction predicates. These

are abstracted by wlp#.

Computing the effect of c for each cube in H locally implies that we do not

take into account the full information provided by H. This becomes an inherent

problem if updated predicates express non-local properties such as reachability. As

an example, consider a Boolean heap H that contains two cubes

C1 = [(x = v) 7→ 1, (y = v) 7→ 0, (next∗z v) 7→ 1] and

C2 = [(x = v) 7→ 0, (y = v) 7→ 1, (next∗z v) 7→ 0] .

Cube C1 describes an object which is pointed to by a stack variable x and reachable

from some other stack variable z following field next. Cube C2 describes a second

object which is pointed to by stack variable y, but which is not reachable from z. If

we consider a field update (c = (x.next := y)) then after the update y is reachable

from z. However we have

cpost(c, C2) 6⊑ [(next∗z v) 7→ 1]

because C2 is updated independently of C1. In principle one can strengthen the

abstraction of weakest preconditions by taking into account the Boolean heap H for

which the post is computed. In fact we have

γ(H) ∧ (y = v) |= wlp(c, next∗z v) .

This strengthening would result in a more precise Cartesian post, but as a con-

sequence abstract weakest preconditions would have to be recomputed for each

Boolean heap to which the Cartesian post is applied. This would make the analysis

25

Wies, Kuncak, Zee, Rinard, Podelski

proc CSCartesianPost(c, Γ : context formula, H : AbsDom) : AbsDom =

let c# = Cubes

if c# is precomputed for (c,Γ) then c# := lookup(c,Γ)

else foreach p ∈ Pred do

c# := c# ⊓

(

[p′ 7→ 1] ⊓ wlp#(c,Γ,¬p) ⊔

[p′ 7→ 0] ⊓ wlp#(c,Γ, p)

)

let H′ = ∅

foreach H ∈ H do

let H ′ = RelationalProduct(H, c#)

H′ := H′ ⊔ {H ′}

return H′

Fig. 6. Context-sensitive Cartesian post

infeasible. Nevertheless, such global context information is valuable when updated

predicates describe global properties such as reachability. Therefore, we would like

to strengthen the abstraction using some global information, accepting that ab-

stract weakest preconditions have to be recomputed occasionally. We introduce the

context-sensitive Cartesian post to allow this kind of strengthening:

CSCartesianPost(c,Γ,H) =

let cpost(c, C) =
d
{C ′ | ∀p ∈ Pred. C ⊑ wlp#(c,Γ, pC′(p)) }

in { { cpost(c, C) | C ∈c H } | H ∈ H}

where wlp#(c,Γ, F) = {C | Γ ∧ γ(C) |= wlp(c, F) } (1)

The formula Γ is the key tuning parameter that controls the tradeoff between pre-

cision and efficiency of the analysis. We impose a restriction on Γ: we say that Γ

is a context formula for a set of Boolean heaps H if γ(H) implies Γ. In order to

ensure soundness, we require that for all applications CSCartesianPost(c,Γ,H) of the

context-sensitive Cartesian post Γ is a context formula for H.

Figure 6 gives an implementation of the context-sensitive Cartesian post operator

that exploits the representation of Boolean heaps as BDDs. First it precomputes

an abstract transition relation c# which is expressed in terms of cubes over primed

and unprimed abstraction predicates. After that it computes the relational product

of c# and each Boolean heap. The relational product conjoins a Boolean heap

with the abstract transition relation, projects the unprimed predicates, and renames

primed to unprimed predicates in the resulting Boolean heap. Note that the abstract

transition relation only depends on command c and the context formula Γ. This

allows us to cache abstract transition relations and avoid their recomputation in

later fixpoint iterations if Γ is unchanged.

Splitting. The Cartesian post operator maps each Boolean heap in a set of Boolean

heaps to one Boolean heap. This means that in terms of precision the Cartesian

post does not exploit the fact that the abstract domain is given by sets of Boolean

heaps. In the following we describe an operation that splits a Boolean heap into a

set of Boolean heaps. It is similar to the focus operation in TVLA [47]. Splitting

maintains important invariants of Boolean heaps that result from best abstractions

26

Wies, Kuncak, Zee, Rinard, Podelski

of concrete states. We split Boolean heaps before applying the Cartesian post.

This increases the precision of the analysis by carefully exploiting that the abstract

domain is disjunctive complete.

Traditional shape analyses precisely keep track of objects which are pointed

to by stack variables. This information is crucial for a precise analysis. In order

to keep track of these objects we use abstraction predicates of the form (x = v)

where x is some stack variable. Since these predicates denote singleton sets, i.e.

each of them is true for exactly one object on the heap, we call them singleton

predicates. Consequently, if a Boolean heap H is the the result of applying the

best abstraction with respect to γ to some concrete state then for every singleton

predicate p it contains exactly one complete cube with a positive occurrence of

p. Boolean heaps resulting from the Cartesian post might not have this property.

This makes the analysis imprecise. Therefore we split each Boolean heap before

application of the Cartesian post into a set of Boolean heaps, such that the above

property is reestablished. Let P be the subset of abstraction predicates denoting

singletons then the splitting operator is defined as follows:

Split(H) = split(P,H)

split(∅,H) = H

split({p} ∪ P ′,H) = let Cp = [p 7→ 1] and C¬p = [p 7→ 0] in
⋃

H∈H split(P ′, {H ⊓ {C¬p} ⊔ {C} | C ∈c (H ⊓ {Cp}) }).

The splitting operator takes a set of Boolean heaps H as arguments. For each

singleton predicate p and Boolean heap H it splits H into a set of Boolean heaps.

Each of the resulting Boolean heaps corresponds to H, but contains only one of the

complete cubes in H that have a positive occurrence of p. The splitting operator is

sound, i.e. satisfies: γ(Split(H)) = γ(H).

Cleaning. Splitting might introduce unsatisfiable Boolean heaps, because it is done

propositionally without taking into account the semantics of predicates. Unsatisfi-

able Boolean heaps potentially lead to spurious counterexamples and hence should

be eliminated. The same applies to cubes that are unsatisfiable with respect to other

cubes within one Boolean heap. We use a cleaning operator 1 to eliminate unsatisfi-

able Boolean heaps and unsatisfiable cubes within satisfiable Boolean heaps. At the

same time we strengthen the Boolean heaps with the guard of the commands before

the actual computation of the Cartesian post. The cleaning operator is defined as

follows:

Clean(F,H) = let H1 = {H ∈ H | F ∧ γ(H) 6|= false} in

{ {C ∈c H | F ∧ γ(H) ∧ γ(C) 6|= false } | H ∈ H1 }.

The operator Clean takes as arguments a formula F (e.g. the guard of a command)

and a set of Boolean heaps. It first removes all Boolean heaps that are unsatisfiable

with respect to F . After that it removes from each remaining Boolean heap H

all complete cubes which are unsatisfiable with respect to F and H. The cleaning

1 The cleaning operator resembles the coerce operation in TVLA [47].

27

Wies, Kuncak, Zee, Rinard, Podelski

abstract(F) = let H = {C | C |= ¬F } in Clean(F,Split(H))

proc AbstractPost(c, context : AbsDom, H0 : AbsDom) : AbsDom =

let H = Clean(guard(c),Split(H0))

let Γ = κ(context ⊔H)

return CSCartesianPost(c,Γ,H)

Fig. 7. Bohne’s abstract post operator

operator is sound, i.e. strengthens H with respect to F :

F ∧ γ(H) |= γ(Clean(F,H)) |= γ(H) .

Obviously the cleaning and splitting operators bear the danger of an exponential

blowup. This can be avoided, e.g. by giving up precision and enforcing a polynomial

bound by only considering cubes up to a fixed length. However, in practice this does

not seem to be necessary, because Boolean heaps are relatively sparse and contain

only few complete cubes.

Abstract post operator. Figure 7 defines the abstract post operator used in

Bohne. It is defined as the composition of the splitting, cleaning, and the Carte-

sian post operator. The function κ is a context operator. A context operator is a

monotone mapping from sets of Boolean heaps to a context formula. It controls

the trade-off between precision and efficiency of the abstract post operator. Our

choice of κ is described in the next section. Figure 7 also defines the abstraction

function that is used to compute the initial set of Boolean heaps. For abstracting

a formula F the function abstract first computes a Boolean heap H which is the

complement of an under-approximation of ¬F . It then splits H with respect to sin-

gleton predicates and strengthens the result by the original formula F . We compute

the abstraction indirectly because it allows us to reuse all the functionality that we

need for computing the abstract post operator. We also avoid computing the best

abstraction function for the abstract domain, because the computational overhead

is not justified in terms of the gained precision.

Assuming that κ is in fact a context operator, soundness of AbstractPost follows

from the soundness of all its component operators. Note that soundness is still

guaranteed if the underlying validity checker is incomplete.

4 Context Instantiation

The context information used to strengthen the abstraction is given by the set of

Boolean heaps that are already discovered at the respective program location. If

we take into account all available context for the abstraction of a transition then

we need to recompute the abstract transition relation in every iteration of the fixed

point computation. Otherwise the analysis would be unsound. In order to avoid

unnecessary recomputations we use the operator κ to abstract the context by a

context formula that less likely changes from one iteration to the next. For this pur-

pose we introduce a domain-specific quantifier instantiation technique. We use this

28

Wies, Kuncak, Zee, Rinard, Podelski

Var − object-valued program variables

instantiate(H : Boolean heap) : formula =

let cube(x) =
⊔

(H ⊓ {[(x = v) 7→ 1]}) in
∧

x∈Var

γ(cube(x))[v := x]

κ(H) = let H =
⊔

H in instantiate(H)

Fig. 8. Context instantiation and the context operator κ

technique not only in connection with the context operator, but more generally to

eliminate any universal quantifier in a decision procedure query that originates from

the concretization of a Boolean heap. This eliminates the need for the underlying

decision procedures to deal with quantifiers.

We observed that the most valuable part of the context is the information avail-

able over objects pointed to by program variables. This is due to the fact that

transitions always change the heap with respect to these objects. We therefore

instantiate Boolean heaps to objects pointed to by stack variables. Bohne auto-

matically adds an abstraction predicate of the form (x = v) for every object-valued

program variable x. A syntactic backwards analysis of the procedure’s assert state-

ments and postcondition is used to determine which of these predicates are relevant

at each program point.

Figure 8 defines the function instantiate. It uses the above mentioned predicates

to instantiate a Boolean heap H to a quantifier free formula (assuming predicates

itself are quantifier free). For every program variable x it computes the least upper

bound of all cubes in H which have a positive occurrence of predicate (x = v).

The resulting cube is concretized and the free variable v is substituted by program

variable x. The function κ maps a set of Boolean heaps H to a formula by taking

the join of H and instantiating the resulting Boolean heap. One can show that κ is

indeed a context operator, i.e. κ is monotone and the resulting formula is a context

formula for H.

5 Semantic Caching

Abstracting context does not avoid that abstract transition relations have to be re-

computed occasionally in later fixpoint iterations. Whenever we recompute abstract

transition relations we would like to reuse the results from previous abstractions.

We do this on the level of decision procedure calls by caching the queries and the

results of the calls. Syntactic caching of decision procedure queries has been used

before (e.g. [2] mentions its use in the SLAM system [3]). The problem with sim-

ple syntactic caching of formulas in shape analysis is that the context formulae are

passed to the decision procedure as part of the queries, so a simple syntactic ap-

proach is ineffective. However, the context consists of all discovered abstract states

at the current iteration. Therefore, the context changes monotonically from one

iteration to the next. The monotonicity of the context operator κ guarantees that

29

Wies, Kuncak, Zee, Rinard, Podelski

context formulae, too, increase monotonically with respect to the entailment order.

We therefore cache formulas by keeping track of the partial order on the context.

Since context formulae occur in the antecedents of the queries, this allows us to

reuse negative results of entailment checks from previous fixpoint iterations. This

method is effective because in practice the number of entailments which are invalid

exceeds the number of valid ones.

Furthermore, formulas are cached up to alpha equivalence. Since the cache is

self-contained, this enables caching results of decision procedure calls not only across

different fixpoint iterations for one procedure, but even across the analysis of different

procedures. This yields substantial improvements for procedures that exhibit some

similarity, which opens up the possibility of using our analysis in an interactive

context. For example, we verified a procedure inserting an element into a sorted

list (see SortedList.add in Figure 9) and repeated the analysis without erasing the

cache on a modified version of the same procedure where two commuting assignments

were exchanged. About 90% of the results to decision procedure calls were found in

the cache, causing that running time went down from 11s to 3s.

6 Propagation of Precondition Conjuncts

It often happens that parts of loop invariants literally come from the procedure’s

preconditions. A common situation where this occurs is that a procedure executes

a loop to traverse a data structure performing only updates on stack variables and

after termination of the loop the data structure is manipulated. In such a case the

data structure invariants are trivially preserved while executing the loop. Using

an expansive symbolic shape analysis to infer such invariants is inappropriate. We

therefore developed a fast but effective analysis that propagates conjuncts from the

precondition across the procedure’s control-flow graph. This propagation precedes

the symbolic shape analysis, such that the latter is able to assume the previously

inferred invariants.

The propagation analysis works as follows: it first splits the procedure’s pre-

condition into a conjunction of formulas and assumes all conjuncts at all program

locations. It then recursively removes a conjunct F at program locations that have

an incoming control flow edge from some location where either (1) F has been previ-

ously removed or (2) where F is not preserved under post of the associated command.

After termination of the analysis (none of the rules for removal applies anymore) the

remaining conjuncts are guaranteed to be invariants at the corresponding program

points.

The preservation of conjuncts is checked by discharging a verification condition

(via decision procedure calls). The use of decision procedures makes this analysis

more general than the syntactic approach for computing frame conditions for loops

used in ESC/Java-like desugaring of loops [15]. In particular, the propagation is

still applicable in the presence of heap manipulations that preserve the invariants in

each loop-free code fragment. Unlike the Houdini tool [13], precondition conjunct

propagation does not attempt to invent new predicates.

30

Wies, Kuncak, Zee, Rinard, Podelski

benchmark used DP # predicates total # validity checker calls running time

(manually supplied) total (cache hits) total (DP)

DLL.addLast MONA 7 (0) 118 (19%) 2s (69%)

List.reverse MONA 7 (2) 371 (22%) 4s (72%)

SortedList.add MONA, CVC lite 16 (1) 368 (40%) 11s (65%)

Skiplist.add MONA 20 (0) 787 (44%) 26s (57%)

Tree.add MONA 13 (0) 358 (31%) 31s (92%)

ParentTree.add MONA 13 (0) 362 (32%) 33s (91%)

Linear.arrayInv CVC lite 7 (5) 882 (52%) 57s (97%)

Fig. 9. Results of Experiments

7 Experiments

We applied Bohne to verify operations on various data structures. Our experiments

cover data structures such as singly-linked lists, doubly-linked lists, two-level skip

lists, trees, trees with parent pointers, sorted lists, and arrays. The verified prop-

erties include: (1) absence of run-time errors, such as null pointer dereferences and

array bound violations; (2) complex data structure consistency properties, such as

preservation of the tree structure, array invariants, as well as sortedness; and (3)

procedure contracts, stating e.g. how the set of elements stored in a data structure

is affected by the procedure.

Figure 9 shows the results for a collection of benchmarks running on a 2 GHz

Pentium M with 1 GB memory. The Jahob system is implemented in Objective

Caml and compiled to native code. Running times include inference of loop invari-

ants. This time dominates the time for a final check (using verification-condition

generator) that the resulting loop invariants are sufficient to prove the postcondition.

The benchmarks can be found on the Jahob project web page [27]. The version of

Bohne used to generate these results uses a simple analysis of the source code to de-

termine most of the abstraction predicates automatically; the number of predicates

in parentheses indicates the additional predicates that we needed to specify to make

the symbolic shape analysis sufficiently precise. Note that we did not need to specify

how these predicates change in response to program statements; this is computed

automatically by Bohne. Note also that our examples are not stand-alone programs

that build and then traverse their own data structures. Instead, our examples use

assume-guarantee reasoning of Jahob to verify procedures with non-trivial precondi-

tions, postconditions and representation invariants. As a result, these examples can

be used in the context of larger programs that are verified by more scalable analysis,

as demonstrated in the Hob project [33].

We also examined the impact of context-sensitive abstraction and context instan-

tiation on the running time of the analysis. The results are shown in Table 10. As

expected, running times for context-sensitive abstraction with instantiation disabled

are significantly higher (2-8 times) than with instantiation enabled. Without context

instantiation abstract transition relations have to be recomputed many times and

caching of decision procedure calls is less effective. If context-sensitive abstraction

is disabled completely the analysis not only becomes less precise (e.g. the analysis

failed to verify the SortedList and SkipList examples without context) but also in

many cases slower. Most likely the less precise analysis needs to explore a larger

part of the abstract state space.

31

Wies, Kuncak, Zee, Rinard, Podelski

benchmark DLL.addLast SortedList.add Skiplist.add Tree.add

no context (Γ = true)

running time 2s 14s 29s 71s

DP calls (cache hits) 118 (20%) 457 (32%) 1110 (51%) 1024 (51%)

context-sensitive without instantiation (κ = id)

running time 4s 24s 72s 473s

DP calls (cache hits) 178 (23%) 445 (22%) 1031 (38%) 742 (13%)

context-sensitive with instantiation

running time 2s 11s 26s 32s

DP calls (cache hits) 118 (19%) 368 (40%) 787 (44%) 358 (31%)

Fig. 10. Effect of context-sensitive abstraction and context instantiation

Note that our implementation of the algorithm is not highly tuned in terms

of aspects orthogonal to Bohne’s algorithm, such as type inference for internally

manipulated Isabelle formulas. We expect that the running times would be notably

improved using more efficient implementation of Hindley-Milner type reconstruction.

In previous benchmarks without type reconstruction in average 97% of the time was

spent in the decision procedures. The most promising directions for improving the

analysis performance are therefore 1) deploying more efficient decision procedures,

and 2) further reducing the number of decision procedure calls.

In addition to the presented examples, we have used the verification condition

generator to verify examples such as array-based implementations of containers and

implementations of association lists. Bohne can also infer loop invariants in such

examples.

8 Conclusions

We described Bohne, a data structure verification algorithm based on symbolic shape

analysis that infers invariants about sets given by predicates on objects. We showed

how to fruitfully combine this abstraction with a collection of decision procedures

that operate on independent subgoals of the same proof obligation. We deployed

a range of techniques that improve the running time of the analysis and the level

of automation compared to direct application of the algorithm. These techniques

include context-dependent abstraction, semantic caching of formulas, propagation

of conjuncts, and domain-specific quantifier instantiation. Our experience with the

Bohne analysis in the context of the Hob and Jahob data structure verification

systems suggests that it is effective for verifying a wide range of data structures

with user-defined procedure contracts. The verified properties go beyond traditional

shape properties such as treeness and include the characterization of data structure

operations in terms of changes to their content.

References

[1] Balaban, I., A. Pnueli and L. Zuck, Shape analysis by predicate abstraction, in: VMCAI’05, 2005.

[2] Ball, T., B. Cook, S. K. Lahiri and L. Zhang, Zapato: Automatic theorem proving for predicate
abstraction refinement, in: Tool Paper, CAV, 2004.

[3] Ball, T., R. Majumdar, T. Millstein and S. K. Rajamani, Automatic predicate abstraction of C programs,
in: Proc. ACM PLDI, 2001.

32

Wies, Kuncak, Zee, Rinard, Podelski

[4] Barrett, C. and S. Berezin, CVC Lite: A new implementation of the cooperating validity checker, in:
Proc. 16th Int. Conf. on Computer Aided Verification (CAV ’04), Lecture Notes in Computer Science
3114, 2004, pp. 515–518.

[5] Bertot, Y. and P. Castéran, “Interactive Theorem Proving and Program Development–Coq’Art: The
Calculus of Inductive Constructions,” Springer, 2004.

[6] Beyer, D., T. A. Henzinger and G. Théoduloz, Lazy shape analysis, in: T. Ball and R. Jones, editors,
Proceedings of the 18th International Conference on Computer Aided Verification (CAV 2006, Seattle,
WA, August 16-20), LNCS 4144 (2006), pp. 532–546.

[7] Bingham, J. and Z. Rakamarić, A logic and decision procedure for predicate abstraction of heap-
manipulating programs, Technical Report TR-2005-19, UBC Department of Computer Science (2005).

[8] Bouillaguet, C., V. Kuncak, T. Wies, K. Zee and M. Rinard, On using first-order theorem provers
in a data structure verification system, Technical Report MIT-CSAIL-TR-2006-072, MIT (2006),
http://hdl.handle.net/1721.1/34874.

[9] Bryant, R. E., Graph-based algorithms for boolean function manipulation, IEEE Transactions on
Computers C-35 (1986), pp. 677–691.

[10] Calvanese, D., G. De Giacomo and M. Lenzerini, Reasoning in expressive description logics with
fixpoints based on automata on infinite trees, in: Proc. of the 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI’99), 1999, pp. 84–89.

[11] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints, in: Proc. 4th POPL, 1977.

[12] Distefano, D., P. O’Hearn and H. Yang, A local shape analysis based on separation logic, in: TACAS’06,
2006.

[13] Flanagan, C. and K. R. M. Leino, Houdini, an annotation assistant for esc/java, in: FME ’01:
Proceedings of the International Symposium of Formal Methods Europe on Formal Methods for
Increasing Software Productivity (2001), pp. 500–517.

[14] Flanagan, C. and S. Qadeer, Predicate abstraction for software verification, in: Proc. 29th ACM POPL,
2002.

[15] Flanagan, C. and J. B. Saxe, Avoiding exponential explosion: Generating compact verification
conditions, in: Proc. 28th ACM POPL, 2001.

[16] Fradet, P. and D. L. Métayer, Shape types, in: Proc. 24th ACM POPL, 1997.

[17] Georgieva, L. and P. Maier, Description logics for shape analysis, in: Proc. 3rd SEFM, 2005, pp. 321–
330.

[18] Ghiya, R. and L. Hendren, Is it a tree, a DAG, or a cyclic graph?, in: Proc. 23rd ACM POPL, 1996.

[19] Ghiya, R. and L. J. Hendren, Connection analysis: A practical interprocedural heap analysis for C, in:
Proc. 8th Workshop on Languages and Compilers for Parallel Computing, 1995.

[20] Gotsman, A., J. Berdine and B. Cook, Interprocedural shape analysis with separated heap abstractions.,
in: SAS, 2006, pp. 240–260.
URL http://dx.doi.org/10.1007/11823230_16

[21] Grädel, E., Decision procedures for guarded logics, in: Automated Deduction - CADE16. Proceedings
of 16th International Conference on Automated Deduction, Trento, 1999, LNCS 1632 (1999).
URL http://www-mgi.informatik.rwth-aachen.de/Publications/pub/graedel/Gr-cade99.ps

[22] Graf, S. and H. Saidi, Construction of abstract state graphs with PVS, in: Proc. 9th CAV, 1997, pp.
72–83.

[23] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in: POPL, 2002.

[24] Jones, N. D. and S. S. Muchnick, Chapter 4: Flow analysis and optimization of LISP-like structures,
in: S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications, Prentice
Hall, 1981 .

[25] Klarlund, N., A. Møller and M. I. Schwartzbach, MONA implementation secrets, in: Proc. 5th
International Conference on Implementation and Application of Automata (2000).

[26] Klarlund, N. and M. I. Schwartzbach, Graph types, in: Proc. 20th ACM POPL, Charleston, SC, 1993.

[27] Kuncak, V., The Jahob project web page,
http://www.mit.edu/∼vkuncak/projects/jahob/ (2006).

[28] Kuncak, V., “Modular Data Structure Verification,” Ph.D. thesis, EECS Department, Massachusetts
Institute of Technology (2007).

[29] Kuncak, V., P. Lam and M. Rinard, Role analysis, in: Annual ACM Symp. on Principles of
Programming Languages (POPL), 2002.

[30] Kuncak, V., H. H. Nguyen and M. Rinard, Deciding Boolean Algebra with Presburger Arithmetic, J.
of Automated Reasoning (2006),
http://dx.doi.org/10.1007/s10817-006-9042-1 .

[31] Lahiri, S. K. and R. E. Bryant, Indexed predicate discovery for unbounded system verification, in:
CAV’04, 2004.

[32] Lahiri, S. K. and S. Qadeer, Verifying properties of well-founded linked lists, in: POPL’06, 2006.

33

http://dx.doi.org/10.1007/11823230_16
http://www-mgi.informatik.rwth-aachen.de/Publications/pub/graedel/Gr-cade99.ps
http://dx.doi.org/10.1007/s10817-006-9042-1

Wies, Kuncak, Zee, Rinard, Podelski

[33] Lam, P., V. Kuncak and M. Rinard, Hob: A tool for verifying data structure consistency, in: 14th
International Conference on Compiler Construction (tool demo), 2005.

[34] Lam, P., V. Kuncak, K. Zee and M. Rinard, The Hob project web page, http://hob.csail.mit.edu (2004).

[35] Lee, O., H. Yang and K. Yi, Automatic verification of pointer programs using grammar-based shape
analysis, in: ESOP, 2005.

[36] Lev-Ami, T., “TVLA: A Framework for Kleene Based Logic Static Analyses,” Master’s thesis, Tel-Aviv
University, Israel (2000).

[37] Lev-Ami, T., N. Immerman, T. Reps, M. Sagiv, S. Srivastava and G. Yorsh, Simulating reachability
using first-order logic with applications to verification of linked data structures, in: CADE-20, 2005.

[38] Lev-Ami, T., T. Reps, M. Sagiv and R. Wilhelm, Putting static analysis to work for verification: A
case study, in: Int. Symp. Software Testing and Analysis, 2000.

[39] Manevich, R., E. Yahav, G. Ramalingam and M. Sagiv, Predicate abstraction and canonical abstraction
for singly-linked lists, in: R. Cousot, editor, Proceedings of the 6th Int. Conf. on Verification, Model
Checking and Abstract Interpretation, VMCAI 2005, LNCS 3148 (2005), pp. 181–198.

[40] McPeak, S. and G. C. Necula, Data structure specifications via local equality axioms, in: CAV, 2005,
pp. 476–490.

[41] Møller, A. and M. I. Schwartzbach, The Pointer Assertion Logic Engine, in: Programming Language
Design and Implementation, 2001.

[42] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL: A Proof Assistant for Higher-Order Logic,”
LNCS 2283, Springer-Verlag, 2002.

[43] Podelski, A. and T. Wies, Boolean heaps, in: Proc. Int. Static Analysis Symposium, 2005.

[44] Ranise, S. and C. G. Zarba, A decidable logic for pointer programs manipulating linked lists (2005),
http://cs.unm.edu/∼zarba/papers/pointers.ps.

[45] Reineke, J., “Shape Analysis of Sets,” Master’s thesis, Universität des Saarlandes, Germany (2005).

[46] Reps, T., M. Sagiv and A. Loginov, Finite differencing of logical formulas for static analysis, in: Proc.
12th ESOP, 2003.

[47] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3-valued logic, ACM TOPLAS 24
(2002), pp. 217–298.

[48] Schulz, S., E – A Brainiac Theorem Prover, Journal of AI Communications 15 (2002), pp. 111–126.

[49] Sutcliffe, G. and C. B. Suttner, The TPTP problem library: CNF release v1.2.1, Journal of Automated
Reasoning 21 (1998), pp. 177–203.

[50] Thatcher, J. W. and J. B. Wright, Generalized finite automata theory with an application to a decision
problem of second-order logic, Mathematical Systems Theory 2 (1968), pp. 57–81.

[51] Voronkov, A., The anatomy of Vampire (implementing bottom-up procedures with code trees), Journal
of Automated Reasoning 15 (1995), pp. 237–265.

[52] Weidenbach, C., Combining superposition, sorts and splitting, , II, Elsevier Science, 2001 pp. 1965–
2013.

[53] Wies, T., “Symbolic Shape Analysis,” Master’s thesis, Universität des Saarlandes, Saarbrücken,
Germany (2004).

[54] Wies, T., V. Kuncak, P. Lam, A. Podelski and M. Rinard, Field constraint analysis, in: Proc. Int. Conf.
Verification, Model Checking, and Abstract Interpratation, 2006.

[55] Yorsh, G., A. Rabinovich, M. Sagiv, A. Meyer and A. Bouajjani, A logic of reachable patterns in linked
data-structures, in: Proc. Foundations of Software Science and Computation Structures (FOSSACS
2006), 2006.

[56] Yorsh, G., T. Reps and M. Sagiv, Symbolically computing most-precise abstract operations for shape
analysis, in: 10th TACAS, 2004.

[57] Yorsh, G., T. Reps, M. Sagiv and R. Wilhelm, Logical characterizations of heap abstractions, TOCL 8
(2007).

[58] Yorsh, G., A. Skidanov, T. Reps and M. Sagiv, Automatic assume/guarantee reasoning for heap-
manupilating programs, in: 1st AIOOL Workshop, 2005.

34

Inferring Local (Non-)Aliasing and Strings for
Memory Safety 1

Yannick Moy2 ,3 ,5 Claude Marché4 ,5

INRIA Futurs - ProVal
Parc Orsay Université - ZAC des Vignes

3, rue Jacques Monod - Bâtiment N
F-91893 ORSAY Cedex

Abstract

We propose an original approach for checking memory safety of C pointer programs, by combining deduc-
tive verification and abstract interpretation techniques. The approach is modular and contextual, thanks to
the use of Hoare-style annotations (pre- and postconditions), allowing us to verify each C function indepen-
dently. Deductive verification is used to check these annotations in a sound way. Abstract interpretation
techniques are used to automatically generate such annotations, in an idiomatic way: standard practice of
C programming is identified and incorporated as heuristics.
Our first contribution is a set of techniques for identifying aliasing and strings, which we do in a local setting
rather than through a global analysis as it is done usually. Our separation analysis in particular is a totally
new treatment of non-aliasing. We present for the first time two abstract lattices to deal with local pointer
aliasing and local pointer non-aliasing in an abstract interpretation framework. Our second contribution
is the design of an abstract domain for implications, which makes it possible to build efficient contextual
analyses. Our last contribution is an efficient back-and-forth propagation method to generate contextual
annotations in a modular way, in the framework of abstract interpretation. We implemented our method
in Caduceus, a tool for the verification of C programs, and successfully generated appropriate annotations
for the C standard string library functions.

Keywords: C programming language, abstract interpretation, deductive verification, pointer programs,
aliasing, buffer overflow, annotation inference

1 Introduction

Wrong memory usage is a major source of bugs in C programs, as exemplified by

the well-known buffer overflow problem. Although many tools are designed to check

the absence of threats on memory safety for C programs, none can ensure memory

safety of real C programs used, e.g., in embedded devices. Moreover, existing tools

often fail on quite simple programs, that an experienced C programmer would easily

review for memory safety. This situation can be accounted for by the lack of support

1 This research is partly supported by CIFRE contract 2005/973 with France Télécom company, and ANR
RNTL CAT
2 France Télécom, Lannion, France
3 CNRS, Laboratoire de Recherche en Informatique, UMR8623, Orsay, F-91405
4 INRIA Futurs, Orsay, F-91893
5 Univ Paris-Sud, Orsay, F-91405

Moy, Marche

in these tools for widely spread C idioms, as well as the inability of the tools to

understand comments embedded in the code, which express (some of) the invariants

and preconditions that make programs correct.

To answer the second of these concerns, deductive verification is a good candi-

date. It aims at checking behavioral properties of programs, where behaviors are

formally specified by logical annotations: function pre- and postconditions, code

assertions, loop invariants, global invariants, etc. Verification tools based on de-

duction target mainly Java, annotated with Jml [19] or C#, annotated with the

Spec# language [3]. On the bright side, deductive verification is very powerful: it is

modular (each function can be verified independently), it is guaranteed to be sound

and it allows describing complex behaviors of programs. On the dark side, annota-

tions must be added manually by the programmer, which can be a very hard task.

When analyzing standalone programs, abstract interpretation (abbrev. AI) provides

a general and efficient solution to this problem. It consists in propagating an over-

approximation of the sets of possible states forward through the control-flow graph.

Sets of states are called abstract values and form abstract lattices, on which union

and intersection are defined. Abstract domains are abstract lattices equipped with

transfer functions which map programming statements to operations on abstract

values. Abstract domain and concrete states are related through concretization and

abstraction functions. Convergence is generally obtained through the use of widen-

ing operators. At each program point, AI generates an invariant, that is a valid

formula at that point. This formula can then be seen as annotation in deductive

verification [3] or as initial predicate in predicate abstraction [17]. Unfortunately, AI

is not sufficient when doing modular verification: a forward analysis cannot generate

function preconditions, which are essential for modularity.

The main contribution of this work is a method based on AI to automatically

integrate the necessary annotations for modular deductive verification. Modularity

is partly obtained by designing a contextual analyzer. Indeed, many C functions

can be called in different valid contexts (think of the nullity of pointer arguments),

with different behaviors and different assumptions. Merging the calling contexts

of a function altogether is a crippling source of imprecision. This is why context-

sensitivity is a key feature for verifying these programs. In whole-program analyses,

the context of interest is taken to be the calling context, in a top-down analysis of

the call-graph. Our approach focuses on the contexts needed by a function body

to make programs correct, in a bottom-up approach. This is a key feature that

allows modular verification. We successfully apply our method to programs with

features that usually make the verification task difficult: pointer arithmetic, dynamic

allocation, aliasing and strings. This is made possible only by incorporating into AI

our knowledge of idiomatic C. In particular, we classically define strings as character

pointers accessed up to a sentinel null character. We could easily accomodate other

definitions of strings.

The remaining of this paper is organized as follows. Section 2 presents our frame-

work for deductive verification and Section 3 our preliminary analyses. Section 4

describes our modular and contextual method for inferring annotations. Section 5

details the implementation and Section 6 reports experimental results. Section 7

discusses related work. We finally conclude and present future work in Section 8.

36

Moy, Marche

For conciseness reasons, we omit proofs here. More details can be found in [22].

2 Framework

Our background framework is given by the Caduceus tool [13] for deductive verifica-

tion of C programs based on generation of weakest preconditions, using Hoare-style

pre- and postconditions, loop invariants, etc. Like in Jml, such annotations are

given as stylized comments.

To deal with pointer programs and aliasing, we consider the classical component-

as-array modeling of heap [13,4]. This model replaces the physical view of heap as

a large unstructured array by an unordered set of memory blocks. Fig. 1 gives the

representation of such a block. For a given pointer p, a pointer addition p+ i is de-

noted shift(p, i) on the model side. A logical function application arrlen(p) denotes

the number of cells between p and the end of the block. Provided dereferencing p is

safe, which is guaranteed by adding the assertion arrlen(p) > 0 as a guard, pointer

dereferencing ⋆p is modeled by select(m, p), where m is a variable called a heap com-

ponent. The semantics of the model is defined through a first-order axiomatization

detailed in [22].
block start p p+i=shift(p,i)

↓ ↓ ↓

←−−−−−−−arrlen(p)−−−−−−−→

←−−−−−−−−−−−−−−−block size−−−−−−−−−−−−−−−→

Fig. 1. Representation of a memory block

We focus on a subset of C that exhibits the kind of constructs that usually make

automatic verification impossible: pointer arithmetic and aliasing. Current limi-

tations concern the treatment of double indirection, casts, structures and memory

deallocation. The examples of Fig. 2 will be used throughout this article to explain

the non-obvious steps of the analysis. It consists in a simple yet idiomatic imple-

mentation of the strcpy and memcpy functions defined in C standard string library.

We also show the kind of annotations that are classically added by hand in order to

guarantee memory safety. As we will see later, these hand-written annotations are

not accurate enough.

3 Aliasing and String Analyses

The first step of the method is a preprocess that removes most pointer arithmetic

and some local aliasing, explicits some local non-aliasing and identifies strings. It

is based on three original and simple independent analyses. We first classify each

pointer value in the program into:

• a base pointer, a cursor pointer or a complex pointer. A base pointer at program

label L is either the initial value of a pointer parameter, or a pointer value returned

by a call to some function on an execution path reaching L. A cursor pointer at

program label L is a pointer value that can be shown to be always aliased with

37

Moy, Marche

//@ requires arrlen(src) ≤ arrlen(dest)
char ⋆strcpy(char ⋆dest, char ⋆src) {

char ⋆cur = dest;
//@ invariant (0 ≤ cur − dest ≤ arrlen(old(src))) ∧ (cur − dest = src − old(src))
while (⋆cur++ = ⋆src++) ;
return dest;

}

//@ requires (n ≤ arrlen(src)) ∧ (n ≤ arrlen(dest))
char ⋆memcpy(char ⋆dest, char ⋆src, int n) {

char ⋆cur = dest;
//@ invariant (0 ≤ old(n) − n ≤ arrlen(old(src))) ∧ (cur − dest = old(n) − n = src − old(src))
while (n−− > 0) ⋆cur++ = ⋆src++;
return dest;

}

Fig. 2. Motivating examples

some other constant or variable offset expression from a same base pointer at L.

We say the cursor pointer is based on the corresponding base pointer. E.g., if

p is a base pointer, p + 3 and p + f(q[i]) are cursor pointers based on p. (C99

standard defines a similar notion of pointer based on an object when formally

defining keyword restrict in §6.7.3.1., except it is a syntactic notion whereas ours

is semantic.) A complex pointer at program label L is a pointer that is neither a

base pointer nor a cursor pointer.

• a string or a (plain) pointer. A string at program label L is a pointer to an array

of characters terminated by a sentinel, the null character. A (plain) pointer at

program label L is a pointer that is not a string.

3.1 Local aliasing

It follows from the definition of cursor pointers that their occurrences in the program

could be replaced by pointer expressions only mentioning base pointers. As such,

identifying as many cursor pointers as possible is profitable to verification, since it

decreases the number of pairs of pointers that could be aliased.

The analysis needed for this program transformation can be formalized as AI

over some special pointer domain, presented in Fig. 3 with only two variables v1 and

v2 and two integer constants c0 and c1, where elements point to their immediately

greater element in the lattice ordering. In order to easily name base pointers, we

introduce temporary variables to hold their value (as in static single assignment

transformation). We divide cursor pointers into index ones and offset ones. Index

pointers are aliased to some constant offset expression from a base pointer. Offset

pointers are aliased to some variable expression from a base pointer. This leads to

the introduction of integer offset variables to follow the value of this difference from

the current base pointer (which may not be the same at all program points).

Local aliasing transformation uses the results of this analysis to remove pointer

arithmetic, local pointer aliasing and pointer variables that it replaces with integer

arithmetic, equality on integers and integer variables. Before we transform the

program at program point L, where pointer variable p is read or written, we need

to take into consideration the abstract values associated to p not only at L but in

all the program. We simply decided to lift all abstract values associated to p to the

topmost abstract value kind associated to p in the program. Fig. 4 describes this

38

Moy, Marche

complex

offset(v1)

77ooooooooooo

. . . offset(v2)

ggOOOOOOOOOOO

index (v1 , c0)

66mmmmmmmmmmmmm

index (v1 , c1)

OO

. . . index (v2 , c0)

OO

index (v2 , c1)

hhQQQQQQQQQQQQQ

Fig. 3. Lattice for local aliasing

lifting in details.

topmost kind index offset complex

old abstract value index (bp, c) index (bp,_) or offset(bp) _

new abstract value index (bp, c) offset(bp) complex

Fig. 4. Lifting abstract values

This transformation allows us to remove all the simple pointer arithmetic and

some local aliasing, possibly all the local aliasing introduced by local variables in

a function. The same analysis can also be used to rewrite pointer comparisons

(resp. pointer differences) as integer ones when comparing (resp. subtracting) cursor

pointers with the same base pointer (or a cursor pointer with its base pointer). This

is a simple but crucial step, since it is common practice in C to use pointer arithmetic

when iterating over an array for efficiency purposes. We do not detail it here, but

this technique can also be applied on integer expressions to help discover relational

invariants. Fig. 5 shows how this transformation affects the functions presented in

Fig. 2.

char ⋆strcpy(char ⋆dest, char ⋆src) {
int src_self_offset = 0, cur_offset = 0;
while (dest[cur_offset++] = src[src_self_offset++]) ;
return dest;

}

char ⋆memcpy(char ⋆dest, char ⋆src, int n) {
int src_self_offset = 0, n_self_offset = 0, cur_offset = 0;
while (n + n_self_offset−− > 0) dest[cur_offset++] = src[src_self_offset++];
return dest;

}

Fig. 5. Examples (cont.): after local aliasing transformation

3.2 Local non-aliasing

Section 3.1 did not deal with aliasing between different base pointers. This kind of

aliasing cannot in general be inferred locally, but according to the following idiom,

non-aliasing of base pointers can be.

Idiom 1 Given two different base pointers p and q, a memory location written

through some pointer expression based on p must not be consequently read through

some pointer expression based on q.

39

Moy, Marche

This idiom expresses the local uniqueness of names to access modified memory

locations. These names may not be unique in the original program, as far as they all

refer to the same base pointer. It facilitates not only automated reasoning about the

program but also human reasoning, which makes it important to follow in practice.

The easiest way to guarantee that this idiom is respected when base pointer p is

read through after base pointer q is written through is to ask for p and q to be

separated. The need for annotations on pointer separation in a modular setting has

been noted previously in [18]. Our contribution is to allow automatic inference of

these annotations, using idiom 1. We introduce three related predicates to express

this non-aliasing property:

• separated(p, q) expresses that pointers p and q do not point to the same memory

location. This is not the same as asking for p 6= q, since p and q may be equal

as far as they do not point to some memory location. An important such case is

when p and q are null.

• full_separated(p, q) expresses that pointers p and q do not point to the same

memory block. This is stronger than asking for simple separation. In our memory

model, memory blocks allocated through different dynamic calls to some allocation

function are not reachable one from the other. This makes the full separation of

p and q equivalent to the separation of p+ i and q + j for any integers i and j:

full_separated(p, q) ≡ ∀ int i, j. separated(p + i , q + j) (1)

• bound_separated(p,n, q ,m) expresses that the memory chunks deliminated by p

included and p + n excluded on one side, q included and q +m excluded on the

other side, do not overloap. This is weaker than asking for full separation. Simple

separation can be seen as a special case of bounded separation:

separated(p, q) ≡ bound_separated(p, 1 , q , 1) (2)

These relations between predicates can be formally stated as the lattice of Fig. 6,

where p and q are pointer variables and i, j, k and l are integers (not necessarily in-

teger constants). In our analysis, such an integer i represents a constant or symbolic

range [0..i[of indices at which p is read or written in the function.

full_separated(p, q)

bound_separated(p,max (i , k), q ,max (j , l))

OO

bound_separated(p, i , q , j)

22eeeeeeeeeeeeeeeeeeeeeeeee

bound_separated(p, k , q , l)

llYYYYYYYYYYYYYYYYYYYYYYYYY

separated(p, q)

llYYYYYYYYYYYYYYYYYYYYYYYYY

22eeeeeeeeeeeeeeeeeeeeeeeee

Fig. 6. Lattice of separation

Asking for any of these properties of base pointers can be formalized as a precon-

dition or postcondition of functions, depending on the kind of base pointers involved.

40

Moy, Marche

This defines a transfer function on the call-graph, to be used in AI over the lattice

of Fig. 6, generating preconditions and postconditions of functions along the way.

On our motivating examples, this results in the same precondition for functions

strcpy and memcpy, namely full_separated(dest , src). This amounts to asking for

the non-overlapping of src reads and dest writes in the loop, which is the expected

behavior.

3.3 Pointers and strings

Plain pointers and strings are used in quite different ways in programs. Knowing

which base pointers are strings and which are not allows us to infer useful information

for each. Being a string is not a type information in C, since direct access to the

string representation allows (re)moving the null sentinel character. This is more a

typestate [28]. While a type is a predicate that characterizes an object throughout

the program, a typestate is a predicate that characterizes an object at a precise

location in the program. We approximate the string typestate using the following

idiom.

Idiom 2 Character pointers whose value at some index is tested for nullity are

strings.

This gives us the seed information that we propagate backward to infer string

pre- and postconditions on function parameters and function returns. We define

a new predicate string for that purpose. Although the backward propagation is

not sound, which is acceptable for an inference method, the forward propagation

that follows it has to take into account the separation information to keep string

information up-to-date. Overall, this back-and-forth method is a particular case of

the method we describe in Section 4. We will detail its specificities after the general

method has been presented.

In the memory model, we are entitled to define strings by the formula:

string(m, p) := ∃ n. n < arrlen(p) ∧ select(m, shift(p,n)) = 0

∧ ∀ i . 0 ≤ i < n → select(m, shift(p, i)) 6= 0

However, experiments with automatic provers show that this is not suitable for two

reasons: first, provers do not easily handle the existential quantification; secondly, it

is necessary to reason about unicity of length. Instead of a definition, we introduce in

the model a new uninterpreted logical function strlen, so that strlen(m, p) denotes

the length of the string pointed-to by p. It defaults to −1 for a non-string pointer

p, so that being a string can be expressed as

string(m, p) := 0 ≤ strlen(m, p). (3)

Given a plain pointer or a string p, we express the safety of a read or write

access to p as validity of a logical formula based on arrlen or strlen . We rely on the

following idioms:

Idiom 3 A base pointer can only be read and written through at positive indices.

Idiom 4 A string can only be read up to its sentinel null character.

41

Moy, Marche

Idiom 3 is trivially true for fresh base pointers, that point by construction to the

beginning of a memory block. After the local aliasing transformation, we expect

it to be true of all base pointers in most programs. Idiom 4 is generally respected

for all unbounded data structures terminated by a sentinel, in particular for strings.

The safety of a read access ⋆e for a string pointer expression e is then formalized as

strlen(m, e) ≥ 0 . Writing to a string is slightly more complex (see e.g., [2]). If e is

still expected to point to a string after the assignment, writing a non-null character

is allowed only in the bounds of the string, which can be expressed as the formula

strlen(m, e) > 0 . Otherwise, writing is allowed in the bounds of the block pointed-to

by e, as with a plain pointer, using formula arrlen(e) > 0 .

These preliminary analyses modify our example code and add logical annota-

tions to it, as shown in Fig. 7. Notice that heap components remain implicit in

annotations.
//@ requires string(src) ∧ full_separated(dest , src)
char ⋆strcpy(char ⋆dest, char ⋆src) {

int src_self_offset = 0, cur_offset = 0;
//@ invariant string(src)
while (dest[cur_offset++] = src[src_self_offset++]) ;
return dest;

}

//@ requires full_separated(dest , src)
char ⋆memcpy(char ⋆dest, char ⋆src, int n) {

int src_self_offset = 0, n_self_offset = 0, cur_offset = 0;
while (n + n_self_offset−− > 0) dest[cur_offset++] = src[src_self_offset++];
return dest;

}

Fig. 7. Examples (cont.): after aliasing and string analyses

4 Inferring Annotations by Abstract Interpretation

We design a very precise intra-procedural analysis, that is both flow-sensitive and

path-sensitive in order to capture the possible complex data dependences that ac-

count for memory safety. To make it scalable despite its high local precision, we

adopt a modular framework to communicate pre- and postconditions of functions

throughout the call-graph. Finally, our analysis is rather contextual than context-

sensitive: the context of interest for analyzing a function is not defined by the calling

contexts (context-sensitive analysis) but by need, according to the function’s body

sensitivity to context (contextual analysis). Fig. 8 presents our method schemati-

cally.

local
aliasing

//
local

non-aliasing
//
strings or
pointers

//

inferring
preconditions and

loop invariants

//

proving
memory
safety

Fig. 8. Schematic view of our method

On the AI side, arrlen(p) and strlen(p) (without m argument) are treated like

meta-variables, that transfer functions must take into account. On the deductive

verification side, arrlen and strlen are treated like uninterpreted functions, for which

an appropriate axiomatization which does not use the existential quantification is

given.

42

Moy, Marche

4.1 Implication Lattice

Consider two abstract lattices A and B, with appropriate union and intersection

operations, that we denote respectively ⊔ and ⊓. We assume there is a Galois

connection from the set Φ of first-order logic formulas without quantifiers to both

A and B (as in [8]), where abstraction and concretization functions are denoted

respectively aval and pred . An implication lattice A ⇒ B of A and B is a lattice

whose carrier CA⇒B is a subset of A×B such that any pair (a, b) represents exactly

the logical implication of the concretizations of a and b. By definition, the following

relation holds:

predA⇒B(a, b)
∆
= predA(a)→ predB(b). (4)

To allow more efficient implementations, we do not require that the carrier is the

full set A × B. Instead, we extend the implication lattice over A × B by mapping

any pair (a, b) to a representative denoted a ⇀ b in the carrier such that:

predA(a)→ predB(b) logically implies predA⇒B(a ⇀ b). (5)

This mapping is the identity on representatives, so that we identify (a, b) and a ⇀ b

on CA⇒B. Take now a1 ⇀ b1 and a2 ⇀ b2 from CA⇒B. We define a union and an

intersection operations over A⇒ B as follows:

(a1 ⇀ b1) ⊔A⇒B (a2 ⇀ b2)
∆
= (a1 ⊓A a2) ⇀ (b1 ⊔B b2), (6)

(a1 ⇀ b1) ⊓A⇒B (a2 ⇀ b2)
∆
= (a1 ⊔A a2) ⇀ (b1 ⊓B b2). (7)

To ensure intersection correctly under-approximates conjunction, we ask that for all

a1 ⇀ b1 and a2 ⇀ b2 in CA⇒B :

(a1 ⊔A a2, b1 ⊓B b2) ∈ CA⇒B. (8)

Least and greatest elements are defined by ⊥A⇒B
∆
= ⊤A ⇀ ⊥B and ⊤A⇒B

∆
= ⊥A ⇀

⊤B .

Theorem 4.1 A ⇒ B
∆
= (CA⇒B,⊥A⇒B ,⊤A⇒B,⊔A⇒B,⊓A⇒B) forms a complete

lattice.

We assume there is a canonical implication form ψ → φ for any formula f ,

such that ψ = predA ◦ avalA(ψ). A trivial such formula is True → f . Abstraction

function avalA⇒B is defined by:

avalA⇒B(ψ → φ)
∆
= avalA(ψ) ⇀ avalB (φ). (9)

Theorem 4.2 (avalA⇒B , predA⇒B) defines a Galois connection between Φ and A⇒
B.

If B is stable by intersection (concretization of intersection is conjunction of

concretizations), e.g., for the convex lattices we use most often in practice, we can

also give an over-approximation ⋓A⇒B of the conjunction:

(a1 ⇀ b1) ⋓A⇒B (a2 ⇀ b2)
∆
= (a1 ⊓A a2) ⇀ (b1 ⊓B b2). (10)

43

Moy, Marche

This operation allows strengthening invariants, which makes it generally more useful

than the intersection operation. We note ⋒A⇒B the last useful operation that we

can form:

(a1 ⇀ b1) ⋒A⇒B (a2 ⇀ b2)
∆
= (a1 ⊔A a2) ⇀ (b1 ⊔B b2). (11)

This operation performs a union on both sides of the implication; we will see shortly

why we need it. From now, for simplicity of exposure, we replace A and B in the

implication lattice above by a unique abstract lattice L that we assume stable by

intersection.

4.2 Inferring Loop Invariants and Function Preconditions

In order to build the desired modular and contextual analysis, we use AI in a novel

way described below. It consists in three propagation phases that are sketched in

bold arrows on the diagrams in Fig. 9, where the last two phases are called in turn

for each memory access.

FUNCTION
END

FUNCTION
BEGIN

LOOP
HEAD

MEMORY
ACCESS

Call-graph

FUNCTION
END

FUNCTION
BEGIN

LOOP
HEAD

MEMORY
ACCESS

Initial forward

propagation

FUNCTION
END

FUNCTION
BEGIN

LOOP
HEAD

MEMORY
ACCESS

Contextual one-

pass

backward propaga-

tion

FUNCTION
END

FUNCTION
BEGIN

LOOP
HEAD

MEMORY
ACCESS

Contextual one-

pass

forward propaga-

tion

Fig. 9. Sketch of the method

4.2.1 Initial Forward Propagation

We use forward AI with widening as a first step to generate invariants at each

program point. On our example, initial forward propagation with octagons as our

background lattice L produces the annotated code shown in Fig. 10.

char ⋆strcpy(char ⋆dest, char ⋆src) {
int src_self_offset = 0, cur_offset = 0;
//@ invariant (0 ≤ cur_offset = src_self _offset)
while (dest[cur_offset++] = src[src_self_offset++]) ;
return dest;

}

char ⋆memcpy(char ⋆dest, char ⋆src, int n) {
int src_self_offset = 0, n_self_offset = 0, cur_offset = 0;
//@ invariant (0 ≤ cur_offset = src_self _offset = −n_self _offset)
while (n + n_self_offset−− > 0) dest[cur_offset++] = src[src_self_offset++];
return dest;

}

Fig. 10. Examples (cont.): after initial forward propagation

44

Moy, Marche

4.2.2 Contextual One-Pass Backward Propagation

We consider each memory access in turn as a starting point for a one-pass backward

propagation phase. Let l be the label for this program point, I the invariant abstract

value computed by initial forward propagation at l and φ the associated safety

condition: if the formula pred(I) → φ is valid, which we check in the abstract domain

in our implementation, then the memory access is safe.

Otherwise, we use backward AI to propagate up in the code an over-approximation

of the set of states from which it is possible to reach l and an over-approximation

of the set of states which result in validity of φ at l. If, at any point during this

propagation, the former set of states is included in the latter, which was never ap-

proximated, then no execution from this point on can result in an unsafe memory

access at l. Otherwise, we generate heuristically loop invariants and preconditions

in order to prove the memory access safe. At l, the sets of states we want to propa-

gate correspond respectively to I and φ. We see immediately that this propagation

corresponds to operation ⋒A⇒B on the implication lattice L ⇒ L, starting from

abstract value avalL⇒L(pred(I) → φ).

Two cases are possible once the abstract value representing an implication for-

mula ψ → φ reaches a loop head during backward propagation.

(i) φ does not mention variables modified in the loop. We universally quantify

those variables in ψ and remove the quantifiers introduced. On octagons, it

amounts to a forget operation, the usual backward transfer function for assign-

ment.

(ii) φ contains variables modified in the loop.

We define several elimination heuristics to deal with a variable v in case ii. In

our experiments with octagons, we noticed that applying Fourier-Motzkin whenever

possible gives the best results. We use Fourier-Motzkin elimination in the cases

where v has a lower bound (or an upper bound) in both parts of the implication (as

in [29]). These bounds are first-order logic terms, that can easily be made non-strict

by incrementing or decrementing them by one, since our underlying type is integer.

We rewrite the implication formula by only taking these bounds into account: v ≥
lhs_bound → v ≥ rhs_bound. Validity of this equation where v is universally

quantified is equivalent to the following formula, obtained through Fourier-Motzkin

elimination of v: lhs_bound ≥ rhs_bound. We use it as new right-hand part of

the implication. The formula obtained is added as new loop invariant. When our

backward analysis reaches function beginning with abstract value a ⇀ b, we add

predA⇒B (a ⇀ b) as new function precondition. In our simple experiments, Fourier-

Motzkin is usually sufficient to heuristically infer loop invariants and preconditions

that guarantee memory safety.

4.2.3 Contextual One-Pass Forward Propagation

Each one-pass backward propagation is followed by a one-pass forward propagation

phase. First, it avoids performing backward propagation again from a memory access

that could be proved safe using the newly generated logical annotations. Secondly,

starting from the invariants computed by initial forward propagation, each forward

propagation strengthens invariants, in particular loop invariants. Each invariant can

45

Moy, Marche

be written predL(I) ∧
∧

i predL⇒L(ai ⇀ bi), where ai ⇀ bi are uniquely identified

so that union and intersection are performed only on matching implication abstract

values. This separates the main part I of the invariant from its contextual parts.

The main part I is propagated using forward AI without widening. To get a

correct over-approximation on loops, we use the abstract value J computed by the

previous forward propagation phase at loop end to define a one-pass refinement

operator, i.e. an operator which replaces the normal looping and widening process,

so that iterating around loops is not needed anymore:

RL(I , J)
∆
= I ⊔ J . (12)

In our context of use, new information forward propagated from a newly computed

precondition or loop invariant is usually known to be true at loop end after initial

forward propagation. This is because we use memory safety conditions as logical

assertion during initial forward propagation. It makes our one-pass refinement op-

erator very effective at discovering new loop invariants.

Contextual parts a ⇀ b are also propagated using forward AI without widening,

in a way that minimizes the loss of information that occurs in unions. In our

implementation with octagons, transfer functions compute an under-approximation

of a and an over-approximation of b, while adding as little inequalities in each. We

devise a contextual variant of operator RL:

RL⇒L(I , J , a ⇀ b)
∆
= a ⇀ avalL(predL((I ⊓ a ⊓ b) ⊔ J) \ predL(I)), (13)

where \ is a logical subtraction, such that φ\ψ removes from the conjuncts of φ

those conjuncts also in ψ.

Theorem 4.3 One-pass refinement operators RL and RL⇒L correctly over-approximate

the most precise loop invariant.

In equation 13, the main part I of the invariant is used to compute its contextual

part a ⇀ b. We do the opposite too. At any point, if predL(I) logically implies

predL(a), then predL(b) is added to the invariant. This is somewhat similar to the

operations performed in a reduced product. The declared objective of this step is

to add enough information to the main part so that the newly computed invariant

I ′ implies the safety of the memory access that started this back-and-forth pass, or

equivalently that pred(I ′)→ φ is valid.

4.3 Flashback: the case of strings

As seen in equation 3, being a string is equivalent to some linear inequation involving

the length of the string. This inequation can be represented in the abstract domain

we work with, using strlen(p) as a meta-variable, as seen in Section 3.3. Therefore,

we can use the back-and-forth propagation just described to infer loop invariants and

preconditions that are likely to guarantee a pointer is a string at some point in the

program. On our example, string inference using backward propagation produces

the annotated code shown in Fig. 11 (memcpy is not modified).

46

Moy, Marche

//@ requires (0 ≤ strlen(src))
char ⋆strcpy(char ⋆dest, char ⋆src) {

int src_self_offset = 0, cur_offset = 0;
//@ invariant (0 ≤ cur_offset = src_self _offset) ∧ (0 ≤ strlen(src))
while (dest[cur_offset++] = src[src_self_offset++]) ;
return dest;

}

Fig. 11. Example (cont.): after string inference (backward only)

Before propagating forward these preconditions and loop invariants, we should

look more closely at what it means to be a string in C. Using idiom 4, we can add

information on strlen(s) whenever testing the (non-)nullity of some string access

s[i]. Indeed, the nullity of s[i] can be understood as the equality i = strlen(s) and

the non-nullity of s[i] as the inequality i < strlen(s). This can be added as an

assumption on each branch that originates in a (non-)nullity test of s[i].

On our example, the initial forward propagation produced cur_offset ≤ strlen(src)

at loop end, and the current contextual forward propagation also gives invariant

cur_offset ≤ strlen(src) at loop entry. Using the improved one-pass widening oper-

ator that we saw for initial forward propagation produces a generalized loop invariant

cur_offset ≤ strlen(src).

4.4 Proving Memory Safety

Applying our back-and-forth method to our example produces the annotated code

shown in Fig. 12, which, modulo our code transformation, strengthens the hand-

written annotations given in Section 2. Caduceus [13] then translates C code into

verification conditions, taking into account the necessary assertions to guarantee

memory safety. On our example, the generated verification conditions are all proved

by Simplify [10] and Yices [12].

//@ requires (0 ≤ strlen(src) < arrlen(dest)) ∧ full_separated(dest , src)
char ⋆strcpy(char ⋆dest, char ⋆src) {

int src_self_offset = 0, cur_offset = 0;
//@ invariant (0 ≤ cur_offset = src_self _offset)
//@ ∧ (cur_offset ≤ strlen(src) < arrlen(dest))
while (dest[cur_offset++] = src[src_self_offset++]) ;
return dest;

}

//@ requires (0 < n → (n ≤ arrlen(src) ∧ n ≤ arrlen(dest))) ∧ full_separated(dest , src)
char ⋆memcpy(char ⋆dest, char ⋆src, int n) {

int src_self_offset = 0, n_self_offset = 0, cur_offset = 0;
//@ invariant (0 ≤ cur_offset = src_self _offset = −n_self _offset)
//@ ∧ (0 < n → (n ≤ arrlen(src) ∧ n ≤ arrlen(dest)))
while (n + n_self_offset−− > 0) dest[cur_offset++] = src[src_self_offset++];
return dest;

}

Fig. 12. Examples (cont.): after back-and-forth inference

5 Implementation

In our implementation, we use the domain of octagons [21]. This minimal relational

domain is able to express all constraints of the form ±x± y ≤ c where x and y are

variables and c is an integer constant. This seems to be the most interesting domain

47

Moy, Marche

for memory analysis, as argued in [17], although we might need a full relational

domain when considering programs with casts and unions. Our implementation

(see http://caduceus.lri.fr) is roughly 10,000 lines of Ocaml for the plugin

part inside Caduceus, and a few hundred lines of C to patch the available octagon

library [21].

The implication domain is based on the octagon one. Instead of defining the left

part of the implication to be an octagon and the right part another octagon, we pack

both parts in one octagon. This is an important decision both for scalability and

simplicity. The drawback of this decision is that we cannot represent formulas like

x > 0 → x > 10, because the same inequality is used on both sides of the formula.

This choice respects relations 5 and 8. In practice, we patched the octagon library

to tag inequalities from the right part. One of the most important operations on

octagons, the closure computation, has to be restricted to the untagged inequalities.

Closing an octagon derives the tighest possible bounds on each considered inequality

of the form ±x± y ≤ c. Our restriction prevents merging inequalities from the left

and right parts of an implication.

6 Experiments

The standard string library as defined by Ansi C presents a good mix of pointer and

string manipulations, with many implicit preconditions only given in textual descrip-

tion, like the overlapping conditions. Since available implementations are heavily

optimized, using bit-field manipulations or assembly code, we hand-coded a forward

implementation of <string.h> header file that would be both simple and idiomatic.

On this implementation, we successfully generated the necessary annotations and

automatically proved memory safety for 18 functions out of a total of 22. The four

remaining functions are strcat and strncat, which require inferring linear inequa-

tions involving three variables (which is not possible with the octagon domain only)

and strtok and strerr, which require inferring global invariants. With additional

hand-written annotations, we also verified automatically these four functions.

As an example of an apparently complex yet correct precondition generated by

our method, here is the precondition we generate for the function strncpy (which

uses a logical function min not presented here but implemented):

//@ requires (1 ≤ n → 0 ≤ strlen(src))
//@ ∧ (1 ≤ n ∧ 0 ≤ strlen(src)) → min(n − 1 , strlen(src)) < arrlen(dest)
//@ ∧ (2 ≤ n → n ≤ arrlen(dest))
//@ ∧ full_separated(dest , src)

A quick case analysis on the value of n leads to the equivalent simpler formula, which

looks more like a valid precondition for strncpy that a programmer would specify:

//@ requires (n ≤ 0 ∨ (0 ≤ strlen(src) ∧ n ≤ arrlen(dest))) ∧ full_separated(dest , src)

48

http://caduceus.lri.fr

Moy, Marche

7 Related Work

Our work owes much to the early work of Bourdoncle [5]. He too focused on ar-

ray bound checking. His backward propagation from assertions (the ones he calls

invariant assertions) merges the conditions to reach the program point where the

assertion is performed and the conditions to make this assertion valid. These are the

parts we separate in our implication abstract value, which allows us to generate loop

invariants and preconditions that precisely explicit programs latent specifications.

Another work close to ours, in its objectives and description, is the modular

checker for buffer overflows of Hackett et al. [15]. Their annotation language based

on properties, which would be uninterpreted functions in our setting, allows them to

modularly check each function separately. Our contextual inference allows us to treat

functions like strcpy and more importantly to infer different function preconditions

for different contexts, both things their method cannot do and that they describe

as unannotatable interfaces.

Our work applies the per-path summary approach of debugging tools like Prefix [6]

or Archer [31] in a formally justified way amenable to verification. Various verifi-

cation tools like Boon [30], Cssv [11] and Overlook [2] handle allocation and strings

by using function symbols much like arrlen and strlen . We believe our approach

is strictly more powerful due to its unique annotation inference method and han-

dling of aliasing. Our implication lattice is only a special case of the reduced power

domain defined in [9] and generalized in [14], but our implementation is the first

practical implementation we know of.

The necessity for some logical specification of pointer separation in C dates back

to C99 standard [16], with the addition of the restrict keyword. Various authors

have described annotation-based systems to help programmers specify pointer sepa-

ration [1,18]. This has been pushed forward as a kind of logic for shared mutable data

structures by Reynolds in separation logic [25]. Our local separation analysis was

inspired from these works, with the emphasis on locality and automatic inference.

Recently, there have been attempts at using a combination of various proof tech-

niques. In [17], AI is used in a first phase to compute invariants about the program

that are used in a second phase to seed predicate abstraction. Interestingly, they

also use the octagon library [21]. In [20], a real feedback loop is built between AI and

deductive verification. Although very promising, this approach suffers from the high

cost of calling deductive verification repeatedly and it cannot generate preconditions.

Lastly, our backward inference bears some resemblance with the footprint analy-

sis of Calcagno et al. [7]. But their goal is quite different from ours, which results in

different methods. They focus on shape properties of C programs, while we focus

on much simpler properties that are (usually) sufficient to prove memory safety.

8 Conclusion and Future Work

We presented a new static method for checking memory safety of pointer-intensive

C programs. Our analysis is incomplete: it expects programs to follow commonly

respected C idioms and only returns success for correct programs that follow the

idioms we selected. Our method relies on an inference algorithm based on heuris-

49

Moy, Marche

tics, that combines forward and backward abstract interpretation, to generate the

necessary logical annotations, mostly function preconditions and loop invariants.

This algorithm was specifically designed for modular and contextual verification.

In particular, we crafted a special implication domain for abstract interpretation.

We showed how to implement it efficiently using a relational domain, which we did

for the octagon domain. This makes the implication domain a cheap disjunctive

domain for contextual analysis. We presented two previously unknown lattices for

local pointer aliasing and local pointer non-aliasing. We showed that special symbols

could be used both as meta-variable generators in abstract interpretation and as un-

interpreted functions in deductive verification. This allowed collaboration between

abstract interpretation and deductive verification as well as deductive verification of

existential properties.

In order to deal with real programs, our next steps are the treatment of casts on

one side and structures on the other side. Unions combine the difficulties of casts

and structures. As argued in Section 5, we might need a full relational domain when

considering programs with casts and unions, instead of the weaker octagon domain

we have been using so far. Before doing so, we need to gather idioms on the ways C

programmers use invariants to prevent memory errors when using casts, structures

and unions. A crucial point here is that we need to check the proposed idioms

on large bases of programs. We plan to do this through code instrumentation and

runtime checking on typestates [28], much as what CCured does on types [23]. A

starting point might be some interesting such idioms that have already been studied

in the context of program understanding or shape analysis, e.g., in [27,24,26]. To

scale better, we plan to verify memory safety using abstract interpretation alone

whenever possible, and resort to deductive verification only in the most complex

cases. This is allowed by the correctness of our forward propagation steps. Chang

and Leino [8] presented a method based on forward abstract interpretation to infer

properties on heap, mostly for object-oriented programs. We should look at ways to

integrate it with our method.

Altogether, we showed our method could be used to prove memory safety of C

pointer programs (those of the standard string library) that no other available tool

can handle. We are looking forward to applying it to more programs.

Acknowledgements

We would like to thank all the people that contributed to unobfuscate this pa-

per: Mathieu Baudet, Dariusz Biernacki, Nicolaj Bjørner, Sylvain Conchon, Jean-

François Couchot, Jean-Christophe Filliâtre, Francesco Logozzo, Matteo Slanina.

We also thank Antoine Miné for his octagon domain implementation. Finally, we

thank Pierre Crégut for his decisive impulse and advisory work.

References

[1] Aiken, A., J. S. Foster, J. Kodumal and T. Terauchi, Checking and inferring local non-aliasing, in:
Proc. PLDI ’03, New York, NY, USA, 2003, pp. 129–140.

[2] Allamigeon, X., W. Godard and C. Hymans, Static analysis of string manipulations in critical embedded
c programs., in: SAS, 2006, pp. 35–51.

50

Moy, Marche

[3] Barnett, M., B.-Y. E. Chang, R. DeLine, B. Jacobs and K. R. M. Leino, Boogie: A modular reusable
verifier for object-oriented programs, fMCO 2005.

[4] Bornat, R., Proving pointer programs in Hoare logic, in: Mathematics of Program Construction, 2000,
pp. 102–126.

[5] Bourdoncle, F., Assertion-based debugging of imperative programs by abstract interpretation, in: Proc.
ESEC ’93, London, UK, 1993, pp. 501–516.

[6] Bush, W. R., J. D. Pincus and D. J. Sielaff, A static analyzer for finding dynamic programming errors,
Software Practice and Experience 30 (2000), pp. 775–802.

[7] Calcagno, C., D. Distefano, P. O’Hearn and H. Yang, Footprint analysis: A shape analysis that discovers
preconditions (2007), invited lecture at HAV’07.

[8] Chang, B.-Y. E. and K. R. M. Leino, Abstract interpretation with alien expressions and heap structures.,
in: VMCAI, 2005, pp. 147–163.

[9] Cousot, P. and R. Cousot, Systematic design of program analysis frameworks, in: Proc. POPL’79, 1979,
pp. 269–282.

[10] Detlefs, D., G. Nelson and J. B. Saxe, Simplify: a theorem prover for program checking., J. ACM 52

(2005), pp. 365–473.

[11] Dor, N., M. Rodeh and M. Sagiv, Cssv: towards a realistic tool for statically detecting all buffer overflows
in c, in: Proc. PLDI ’03, New York, NY, USA, 2003, pp. 155–167.

[12] Dutertre, B. and L. de Moura, “The YICES SMT Solver,” Computer Science Laboratory, SRI
International (2006), http://yices.csl.sri.com .

[13] Filliâtre, J.-C. and C. Marché, Multi-prover verification of C programs, in: Proc. ICFEM’04, LNCS
3308, 2004, pp. 15–29.

[14] Giacobazzi, R. and F. Ranzato, The reduced relative power operation on abstract domains, Theor.
Comput. Sci. 216 (1999), pp. 159–211.

[15] Hackett, B., M. Das, D. Wang and Z. Yang, Modular checking for buffer overflows in the large, in:
Proc. ICSE ’06, New York, NY, USA, 2006, pp. 232–241.

[16] International Organization for Standardization (ISO), “The ANSI C standard (C99),”
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[17] Jain, H., F. Ivancic, A. Gupta, I. Shlyakhter and C. Wang, Using statically computed invariants inside
the predicate abstraction and refinement loop., in: Proc. CAV’06, LNCS 4144, 2006, pp. 137–151.

[18] Koes, D., M. Budiu and G. Venkataramani, Programmer specified pointer independence, in: Proc. MSP
’04, New York, NY, USA, 2004, pp. 51–59.

[19] Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby and B. Jacobs, JML: notations and tools supporting
detailed design in Java, in: Proc. OOPSLA ’00, Minnesota, 2000, pp. 105–106.

[20] Leino, K. R. M. and F. Logozzo, Loop invariants on demand., in: APLAS, 2005, pp. 119–134.

[21] Miné, A., The octagon abstract domain, Higher Order Symb. Comp. 19 (2006), pp. 31–100.

[22] Moy, Y. and C. Marché, Checking C pointer programs for memory safety, Technical report, LRI, Univ.
Paris-Sud Orsay (2007), http://www.lri.fr/~moy .

[23] Necula, G. C., S. McPeak and W. Weimer, Ccured: type-safe retrofitting of legacy code, in: Proc. POPL
’02, New York, NY, USA, 2002, pp. 128–139.

[24] Ranjit Jhala, R.-G. X., Rupak Majumdar, State of the union: Type inference via craig interpolation,
in: Proc. TACAS’07, 2007.

[25] Reynolds, J., Intuitionistic reasoning about shared mutable data structure, in: Millennial Perspectives
in Computer Science (2000).

[26] Shaunak Chatterjee, S. Q., Shuvendu K. Lahiri and Z. Rakamaric, A reachability predicate for analyzing
low-level software, in: Proc. TACAS’07, 2007.

[27] Siff, M., S. Chandra, T. Ball, K. Kunchithapadam and T. Reps, Coping with type casts in c, in: Proc.
ESEC/FSE-7, London, UK, 1999, pp. 180–198.

[28] Strom, R. E. and S. Yemini, Typestate: A programming language concept for enhancing software
reliability, IEEE Trans. Softw. Eng. 12 (1986), pp. 157–171.

[29] Suzuki, N. and K. Ishihata, Implementation of an array bound checker, in: Proc. POPL ’77, New York,
NY, USA, 1977, pp. 132–143.

[30] Wagner, D., J. S. Foster, E. A. Brewer and A. Aiken, A first step towards automated detection of buffer
overrun vulnerabilities, in: NDSS Symposium, San Diego, CA, 2000, pp. 3–17.

[31] Xie, Y., A. Chou and D. Engler, Archer: using symbolic, path-sensitive analysis to detect memory
access errors, in: Proc. ESEC/FSE-11, New York, NY, USA, 2003, pp. 327–336.

51

http://yices.csl.sri.com
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.lri.fr/~moy

Reasoning about sequences of memory states
(preliminary version)

Rémi Brochenin2 ,3 Stéphane Demri2 ,3 Etienne Lozes2 ,3

LSV, ENS Cachan, CNRS, INRIA
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

Abstract

In order to verify programs with pointer variables, we introduce a temporal logic LTLmem whose underlying
assertion language is the quantifier-free fragment of separation logic and the temporal logic on the top
of it is the standard linear-time temporal logic LTL. We state the complexity of various model-checking
and satisfiability problems for LTLmem, considering various fragments of separation logic (including pointer
arithmetic), various classes of models (with or without constant heap), and the influence of fixing the
initial memory state. Our main decidability result is pspace-completeness of the satisfiability problems
on the record fragment and on a classical fragment allowing pointer arithmetic. Σ0

1
-completeness or Σ1

1
-

completeness results are established for various problems, and underline the tightness of our decidability
results. This paper is a preliminary version of [4].

1 Introduction

Verification of programs with pointers.

Programs with pointer variables are worth to be analyzed and certified, since they

easily contain programming errors that are sometimes difficult to detect. Such errors

include the existence of memory leaks, memory violation, or undesirable aliasing.

Prominent logics for analyzing such programs are Separation Logic [17], pointer

assertion logic PAL [13], TVLA [14] and alias logic [3], to quote a few examples.

Temporal Separation Logic: what for?

Since [16], temporal logics are also used as languages for formal specification of

programs. General and powerful automata-based techniques for verification have

been developed, see e.g. [19]. On the other hand, Separation Logic is a static logic

having a great success for program annotation [17], and more recently for symbolic

computation [2]. Extending the scope of application of Separation Logic to standard

1 Supported by a fellowship from CNRS/DGA.
2 Work supported by the RNTL project “AVERILES”.
3 {brocheni,demri,lozes}@lsv.ens-cachan.fr

Brochenin, Demri, Lozes

temporal logic-based verification technique has many potential interests, either for

model-checking programs, or for defining restricted forms of recursive predicates.

For instance, if we write Xx to denote the next value of x (also sometimes written

x′), the formula (x →֒ Xx)U(x →֒ null), understood on a model with constant heap,

characterises the existence of a simple flat list, which is usually written µL(x). x →֒
null ∨ ∃x′.x →֒ x′ ∧ L(x′).

Temporal logics also allow to work in the very convenient framework of "programs-

as-formulae" and decision procedures for logical problems can be directly used for

program verification, see a standard reduction in [18]. For instance, the previous

formula can be seen as a program walking on a list, and more generally programs

without updates can be expressed as formulae. Some programs with update that

perform a simple pass on the heap, have an input-output relation that may be de-

scribed by a formula. For instance, the formula (x →֒0 Xx ∧ Xx →֒1 x)Ux →֒0 null

expresses broadly that the list in the initial heap h0 is reversed in the final heap h1

(see also Sect. 4.2).

As a side interest, up to our knowledge, few decision procedures for programs

working with pointer arithmetic have been proposed up to now, whereas arithmetical

constraints in temporal logics are known to lead to undecidability, see e.g. [8]. Actu-

ally, there is a growing interest in understanding the interplay of pointer arithmetic,

temporal reasonning, and non aliasing properties.

Our contribution.

In this note, we introduce a linear-time temporal logic LTLmem to specify se-

quences of memory states with underlying assertion language based on quantifier-free

Separation Logic [17]. Our logic addresses a very general notion of models, includ-

ing the aspects of pointer arithmetic and recursive structures with records. We

distinguish the satisfiability problems from the model-checking problems, as well as

distinct subclasses of interesting programs, like for instance the programs without

destructive update. We have shown the pspace-completeness of the satisfiability

problems SAT(CL) and SAT(RF) where CL is the classical fragment without sep-

aration connectives and RF is the record fragment with no pointer arithmetic but

with separation connectives. This result is very tight, as both propositional LTL

and static Separation Logic are already pspace-complete [18,6]. We have obtained

these results by reduction to the nonemptiness problem for Büchi automata on an

alphabet of symbolic memory states obtained by an abstraction that we have shown

sound and complete. This is a variant of the automata-based approach introduced

in [19] for plain LTL and further developed with concrete domains of interpretation

in [9]. This result is not a direct consequence of the decidability of the state logic

used in this temporal logic. For instance, Presburger arithmetic is decidable, but

LTL with Presburger constraints is not. As a matter of fact, the abstraction method

we use based on [15] does not scale to the whole temporal logic, due to a subtle in-

terplay between separation connectives and pointer arithmetic. Similar techniques

can be found in [12]. Observe that the satisfiability problem for the whole state logic

(SL) is decidable. Moreover, we have obtained new undecidability results for several

problems, for instance for SATct(LF) (satisfiability with constant heap on the list

fragment).

53

Brochenin, Demri, Lozes

Related work.

Previous temporal logics designed for pointer verification include Evolution Tem-

poral Logic [20], based on the three-valued logic abstraction method that made the

success of TVLA [14], and Navigation temporal logic [10], based on a tableau method

for model-checking quite similar to our automaton-based reduction. In these works,

the assertion language for states is quite rich, as it includes for instance list predicate,

quantification over adresses, and a freshness predicate. The price of this expressive-

ness is that only incomplete abstractions are proposed, whereas we stick to exact

methods. More importantly, our work addresses models with constant heaps and

pointer arithmetic, which has not been done so far, and leads to a quite different

perspective.

This paper is a preliminary version of [4] even though Figure 1 contains few new

results, see also a discussion in Sect. 4.

2 Memory model and specification language

We introduce below a separation logic dealing with pointer arithmetic and record

values, and a temporal logic LTLmem. Model-checking programs with pointer vari-

ables over LTLmem specifications is our main problem of interest.

2.1 A separation logic with pointer arithmetic

Memory states.

First, let us introduce our model of memory. It captures features of programs

with pointer variables that use pointer arithmetic and records. We assume a count-

ably infinite set Var of variables (as usual, for a fixed formula we need only a fi-

nite amount), and an infinite set Val of values containing the set N of naturals,

thought as address indexes, and a special value nil. For simplicity, we assume

that Val = N ⊎ {nil}. In order to model field selectors, we also consider some

infinite set Lab of labels. In the remainder, we will assume some fixed injection

(x, i) ∈ Var× N 7→ 〈x, i〉 ∈ Var.

We use the notation E ⇀fin F for the set of partial functions from E to F of

finite domain; and E ⇀fin+ F for the set of partial functions from E to F of finite

and nonempty domain. The sets S of stores and H of heaps are then defined as

follows: S
def

≡ Var→ Val and H
def

≡ N ⇀fin (Lab⇀fin+ Val). We call memory state

a couple (s, h) ∈ S ×H.

We will refer to the domain of a heap h by dom(h) ⊆ N. Intuitively, in our memory

model, each index is thought as an entry point on some record cell containing several

fields. Cells are either not allocated, or allocated with some record stored in. In a

memory state (s, h), the memory cell at index i is allocated if i ∈ dom(h); in this

case the stored record is h(i) = {l1 7→ v1, .., ln 7→ vn}.

Note that the size of the information hold in a memory cell is not fixed, nor

bounded. Our models could be more concrete considering labels as offsets and

relying on pointer arithmetic. But for our purpose, it will be convenient to consider

54

Brochenin, Demri, Lozes

Expressions

e ::= x | null

Atomic formulae

π ::= e = e′ | e+ i
l
→֒ e

State Formulae

A ::= π

| A ∗ B | A−∗B | emp (spatial fragment)

| A ∧ B | A → A | ⊤ | ⊥ (classical fragment)

Satisfaction

(s, h) |=SL e = e′ iff J e Ks = J e′ Ks, with J x Ks = s(x) and J null Ks = nil

(s, h) |=SL e+ i
l
→֒ e iff J e Ks ∈ N and J e K + i ∈ dom(h) and h(s(x) + i)(l) = J e Ks

(s, h) |=SL emp iff dom(h) = ∅

(s, h) |=SL A1 ∗ A2 iff ∃ h1, h2 s.t. h = h1 ∗ h2, (s, h1) |=SL A1 and (s, h2) |=SL A2

(s, h) |=SL A
′−∗A iff for all h′, if h ⊥ h′ and (s, h′) |=SL A

′ then (s, h ∗ h′) |=SL A

(s, h) |=SL A1 ∧ A2 iff (s, h) |=SL A1 and (s, h) |=SL A2

(s, h) |=SL A
′ → A iff (s, h) |=SL A

′ implies (s, h) |=SL A

(s, h) |=SL ⊥ never and (s, h) |=SL ⊤ always

Table 1
The syntax and semantics of SL with pointer arithmetic and records

pointer arithmetic and recursive structures independently.

Separation Logic.

We now introduce the separation logic (SL), see e.g. [17], on top of which we

will define our temporal logic. The syntax of the logic is given in Table 1. As

separation logic is about reasoning on disjoint heaps, and we need to define what

we mean by “disjoint heaps” in our model. We choose to allow to reason at the

granularity of record cells, so that a record cell cannot be decomposed in disjoint

parts. Let h1 and h2 be two heaps; we say that h1 and h2 are disjoint, noted h1⊥h2,

if dom(h1) ∩ dom(h2) = ∅. The operation h1 ∗ h2 is defined for disjoint heap as the

disjoint union of the two partial functions. Semantics of formulae is defined by the

satisfaction relation |=SL (see Table 1).

Formulae π are atomic formulae, in which x + i
l
→֒ e states that the value of

the l field of the record stored at the address pointed by x with offset i is equal

to the value of the expression e. The formula e = e′ states the equality between

two expressions, and emp means that the current heap has no memory cell allocated

(empty heap).

Formulae A of SL are called state formulae. A formula A∗B with the separation

conjunction states that A holds on some portion of the memory heap and B holds

on a disjoint portion. A formula A−∗B states that the current heap, when extended

with any disjoint heap verifying A, will verify B.

55

Brochenin, Demri, Lozes

In the remainder, we focus on several specific fragments of this separation logic.

We say that a formula is in the record fragment (RF) if all subformulae x + i
l
→֒ e

use i = 0 (we then write x
l
→֒ e). We say that a formula is in the classical fragment

(CL) if it does not use the connectives ∗,−∗. Finally, we say that a formula is in the

list fragment (LF) if it is in the classical fragment and all subformulae x + i
l
→֒ e

use i = 0 and l = next (we simply write x →֒ e). Clearly, the classical and record

fragments are incomparable, while the list fragment is included in both of them.

Let us illustrate the expressive power of SL on examples. The formula ¬emp ∗

¬emp means that at least two memory cells are allocated. The formula x
l
7→ e,

defined as ¬(¬emp ∗ ¬emp)∧ x
l
→֒ e, is the local version of x

l
→֒ e: s, h |=SL x

l
7→ e iff

dom(h) = {s(x)} and h(s(x))(l) = J e Ks. The formula (x
l
→֒ null)−∗⊥ is satisfied

at (s0, h0) whenever there is no heap h1 with h1⊥h0 that allocates the variable x to

nil on l field, that is x is allocated in h0.

A is valid iff for every memory state (s, h), we have (s, h) |=SL A (written |=SL A).

Satisfiability is defined dually.

Proposition 2.1 The model-checking, satisfiability and validity problems for SL are

pspace-complete.

pspace-hardness results are consequences of [7, Sect. 5.2].

2.2 Temporal extension

Memory states sequences

Models of the logic LTLmem are ω-sequences of memory states, that is elements in

(S×H)ω and they are understood as infinite computations of programs with pointer

variables. In order to analyze computations from programs without destructive

update, we shall also consider models with constant heap, that is elements in Sω×H.

The logic LTLmem.

Formulae of LTLmem are defined in Table 2. Atomic formulae of LTLmem are

state formulae from SL except that variables can be prefixed by the symbol “X”.

For instance, Xx is interpreted by the value of x at the next memory state. The

temporal operators are the standard next-time operator X and until operator U

present in LTL, see e.g. [18]. The satisfaction relation ρ, t |= Φ where ρ is a model

of LTLmem, t ∈ N and Φ is a formula is also defined in Table 2. We use standard

abbreviations such as 3Φ, �Φ . . .

Given a fragment F of SL, we write SAT(F) to denote the satisfiability problem

for F: given a temporal formula φ in LTLmem with state formulae built over F,

is there a model ρ such that ρ, 0 |= φ? The variant problem in which we require

that the model has a constant heap [resp. that the initial memory state is fixed,

say (s, h)] is denoted by SATct(F) [resp. SATinit(F)]. The problem SATct
init(F) is

defined analogously.

56

Brochenin, Demri, Lozes

Enriched expressions η ::= x | Xη | null

Atomic formulae π ::= η = η′ | η + i
l
→֒ η′

State formulae A ::= π | emp | A ∗ B | A−∗B | A ∧ B | A → B | ⊥

Temporal formulae Φ ::= A | XΦ | ΦUΦ′ | Φ ∧ Φ′ | ¬Φ

Semantics

ρ, t |= XΦ iff ρ, t+ 1 |= Φ.

ρ, t |= ΦUΦ′ iff there is t1 ≥ t s.t. ρ, t1 |= Φ′ and ρ, t′ |= Φ for all t′ ∈ {t, .., t1 − 1}.

ρ, t |= Φ ∧Ψ iff ρ, t |= Φ and ρ, t |= Ψ.

ρ, t |= ¬Φ iff ρ, t 6|= Φ

ρ, t |= A iff s′t, ht |=SL A[Xkx← (x, k)] where ρ = (st, ht)t≥0 and

s′t is defined by s′t(〈x, k〉) = st+k(x).

Table 2
The syntax and semantics of LTLmem

2.3 Programs with pointer variables

In this section, we define the model-checking problems for programs with pointer

variables over LTLmem specifications. The set I of instructions used in the programs

is defined by the grammar below:

instr ::= x := y | skip

| x := y→ l | x→ l := y | x := cons(l1 : x1, .., lk : xk) | free x

| x := y[i] | x[i] := y | x = malloc(i) | free x, i

The denotational semantics of an instruction instr is defined as a partial func-

tion J instr K : S × H → S × H, undefined when the instruction would cause

a memory violation. We list in Table 3 the formal denotational semantics of our

instruction set. Boolean combinations of equalities between expressions are called

guards and their set is denoted by G. A program is defined as a triple (Q, δ, qI) such

that Q is a finite set of control states, qI is the initial state and δ is the transition

relation, a subset of Q×G × I ×Q. We use q
g,instr
−−−→ q′ to denote a transition. We

say that a program is without destructive update if transitions are labeled only with

instructions of the form x := y, x := y→ l, and x := y[i].

A program is a finite object whose interpretation can be viewed as an infinite-

state system. More precisely, given a program p = (Q, δ, qI), the transition system

Sp = (S,→) is defined as follows:

• S = Q× (S ×H) (set of configurations),

57

Brochenin, Demri, Lozes

J x := y K (s, h)
def

≡ (s[x 7→ s(y)], h).

J x := y→ l K (s, h ∗ {i 7→ {l 7→ v, . . . }})
def

≡ (s[x 7→ v], h ∗ {i 7→ {l 7→ v, . . . }})

with s(y) = i

J x→ l := y K (s, h ∗ {i 7→ {l 7→ v, . . . }})
def

≡ (s, h ∗ {i 7→ {l 7→ s(y), . . . }})

with s(x) = i

J x := cons(l1 : x1, .., lk : xk) K (s, h)
def

≡

(

s[x 7→ i], h ∗ {i 7→ {l1 7→ s(x1),

. . . , lk 7→ s(xk)}}
)

with i 6∈ dom(h)

J free x, l K (s, h ∗ {i 7→ {l 7→ v, . . . }})
def

≡ (s, h ∗ {i 7→ {. . . }})

with s(x) = i

J skip K (s, h)
def

≡ (s, h)

J x := y[i] K (s, h ∗ {i+ i′ 7→ {next 7→ v}})
def

≡ (s[x 7→ v], h ∗ {i 7→ {next 7→ v}}))

with s(y) = i′

J x[i] := y K (s, h ∗ {i′ + i 7→ {next 7→ v}})
def

≡ (s, h ∗ {i+ i′ 7→ {next 7→ s(y)}})

with s(x) = i′

J x := malloc(i) K(s, h) def

≡

(

s[x 7→ i′], h ∗ {i′ 7→ {next 7→ nil}}

∗ . . . ∗ {i′ + i 7→ {next 7→ nil}
)

with i′, .., i′ + i 6∈ dom(h)

J free x, i K (s, h ∗ {i′ + i 7→ f})
def

≡ (s, h)

with s(x) = i′

Table 3
Semantics for instructions

• (q, (s, h))→ (q′, (s′, h′)) iff there is a transition q
g,instr
−−−→ q′ ∈ δ such that (s, h) |= g

and (s′, h′) = J instr K(s, h).
Note that Sp is not necessarily linear. A computation (or execution) of p is defined

as an infinite path in Sp starting with control state qI . Computations of p can

be viewed as LTLmem models, using propositional variables to encode the extra

information about the control states.

Model-checking aims at checking properties expressible in LTLmem along com-

putations of programs. To a logical fragment (SL, CL, RF, or LF), we associate a

set of programs : all programs for SL and CL, programs with instructions having

i = 0 for RF, and moreover with only the label next for LF. Given one of these

fragments F of SL, we write MC(F) to denote the model-checking problem for F:

58

Brochenin, Demri, Lozes

MC MCct MCct
init MCinit SAT SATct SATct

init

LF Σ1
1-c. Σ0

1-c. pspace-c. Σ1
1-c. pspace-c. Σ0

1-c. pspace-c.

CL and RF Σ1
1-c. Σ0

1-c. pspace-c. Σ1
1-c. pspace-c. Σ0

1-c. pspace-c.

SL\{−∗} Σ1
1-c. Σ0

1-c. pspace-c Σ1
1-c. Σ1

1-c. Σ0
1-c. pspace-c

SL Σ1
1-c. Σ0

1-c. pspace-c Σ1
1-c. Σ1

1-c. Σ1
1-c. Σ1

1-c.

Fig. 1. Complexity of reasoning about program with pointer variables

given a temporal formula φ in LTLmem with state formulae built over F and a pro-

gram p of the associated fragment, is there an infinite computation ρ of p such that

ρ, 0 |= φ (which we write p |= φ)? The variant problem in which we require that

the program is without destructive update [resp. that the initial memory state is

fixed, say (s, h)] is denoted by MCct(F) [resp. MCinit(F)]. The problem MCct
init(F)

is defined analogously. We may write p, (s, h) |= φ to emphasize what is the initial

memory state.

All the model-checking and satisfiability problems defined above can be placed

in Σ1
1 in the analytical hierarchy. Additionally, all the above problems can eas-

ily be shown pspace-hard since they all generalize LTL satisfiability and model-

checking [18].

3 Complexity results

Figure 1 contains a summary of the complexity results about fragments of LTLmem,

more details can be found in [4]. However, let us present some ideas below. The

decidability results for SAT(CL) and SAT(RF) are obtained thanks to a polynomial

size abstraction of the memory states similar to symbolic heaps. A notable difference

is that values of variables at successive states can be compared. This abstraction is

used to define a finite alphabet on which is based a Büchi automaton recognizing

a language of abstract runs. Unlike the standard construction for LTL, we need

to recognize sequences of abstract memory states that admit a concrete sequence of

memory states. Decidability is shown when the set of abstract sequences is ω-regular.

By way of example, let us also consider the undecidability proof for SAT(SL).

The recurrence problem for non-deterministic Minsky machines can be reduced to

it. The main difficulty is to be able to encode incrementations and decrementations

of a variable x. Observe that expressions of the form x = y+ 1 do not belong to the

logical language. The encoding will use in some essential way the interplay between

the separation connectives and the temporal operators. We found two different ways

to encode increment and decrement: using non-aliasing expressed by the separating

conjunction, and using the precise pointing assertion x
next
7→ η stating that the heap

59

Brochenin, Demri, Lozes

contains only one cell, in conjunction with the −∗ operator.

φ∗x++ = (Xx
next
→֒ null ∧ x + 1

next
→֒ null) ∧ ¬(Xx

next
→֒ null ∗ x + 1

next
→֒ null)

φ∗x−− = (Xx + 1
next
→֒ null ∧ x

next
→֒ null) ∧ ¬(Xx + 1

next
→֒ null ∗ x

next
→֒ null)

φ−∗x++ = emp ∧
(

(Xx
next
7→ null)−∗x + 1

next
7→ null

)

φ−∗x−− = emp ∧
(

(x
next
7→ null)−∗Xx + 1

next
7→ null

)

The formulae based on the separating conjunction correctly express incrementation

and decrementation when the cells at index x, x + 1, x − 1 are allocated, whereas

formulae based on the operator −∗ do not need the same assumption.

So, when the heap is constant, only the second way to encode increment ap-

plies. Moreover, in the absence of the operator −∗, we can show that the problem

SATct
init(SL\{−∗}) is in pspace, which contrasts with the Σ1

1-hardness of SATct
init(SL).

This pspace result is obtained by reduction into SATct
init(RF). In some essential way,

we take into account that the heap is constant and that only subheaps can be consid-

ered thanks to the absence of the operator −∗. This decidability result also implies

that SATct(SL) is in Σ0
1.

As far as model-checking problems are concerned, the complexity results do

not depend on fragments. For the problems of the form MCct
init, the program can

be abstracted as a finite-state automaton. Using standard results for LTL and

Proposition 2.1, we get the pspace upper bound. For the problems of the form MCct,

halting problem for Minsky machines can be encoded by guessing the maximal value

of counters for reaching the halting state, whence the Σ0
1-hardness results. Finally,

the problems of the form MC can encode infinite runs of non-deterministic Minsky

machines since the memory is not bounded, whence the Σ1
1-hardness results.

4 Discussion

We provided above complexity results for reasoning tasks about LTLmem. We are

currently investigating issues about the expressive power of this logical formalism.

Let us discuss few issues below.

First, the interest of model-checking programs with heap updates stems from

early works on automata-based verification. Decision procedures are obtained at

the cost of limitations: to define approximations as done in [20,10] or to restrict the

programming language, see e.g. [1]. However, with this approach, compositionality

principles are lost which is a pity since they made the success of separation logic, as

frame rule and composition rule.

Second, assuming that the heap is constant is subject to promising development.

Indeed, it is then possible to define spatial operators at the same syntactic level as

temporal operators, and write formulae as e.g. (x →֒ XxUx →֒ null) ∗ y 7→ null.

This might be a way to model modularity in model-checking programs without

destructive updates, but there are other points of interest we will try to advocate

now.

60

Brochenin, Demri, Lozes

4.1 Recursion with local parameters

The constant heap semantics provides an original viewpoint for recursion with local

parameters and local quantification. The problem of decision procedures in presence

of recursive predicates has not yet completely satisfactory answers, as particular

axiomatizations have been proposed for some standard recursive structures [5], or

incomplete, though apparently good in practice, methods of inference.

In order to be a bit more precise, let us consider the fragment of recursive sepa-

ration logic where all recursive formulae are of the form:

(1) µX(x1, .., xk). A(x1, .., xk) ∨ ∃x
′
1..x

′
k. B(x1, .., xk, x

′
1, .., x

′
k) ∧X(x′1, .., x

′
k)

This fragment is rich enough to express single lists, cyclic lists, and doubly-linked

lists. However, we conjecture that it is not expressive enough for trees and DAGs.

We conjecture that deciding satisfiability in the fragment of recursive separa-

tion logic mentioned above reduces to SATct(SL), and the model-checking problem

reduces to SATct
init, considering that (1) can be rewritten as:

(

B(x1, .., xk,Xx1, ..,Xxk)
)

U A(x1, .., xk).

In this perspective, our results could rise interesting decidability results for model-

checking some of the recursive separation logic with local quantifiers. For satisfiabil-

ity, we expect to define decidable fragments for SATct(SL), for instance considering

the techniques for checking temporal properties of flat programs without destruc-

tive updates introduced in [11]. Another interesting fragment of recursive separation

logic is probably the one where recursion is guarded by the separation operator ∗,
but we do not currently see how to treat it in the temporal logic perspective.

4.2 Programs as formulae

Let us speculate some more. We may take advantage of expressing programs as for-

mulae in order to reduce model-checking to satisfiability, a known approach from [18].

For programs without destructive update, we have the following result.

Proposition 4.1 Let F be a fragment of SL among SL, CL, RF, or LF. Then there

is a logspace reduction from MCct(F) to SATct(F).

Intuitively, we translate instructions of the form x := y into Xx = y, x := y→ l

into y
l
→֒ Xx, and x := y[i] into y + i →֒ Xx. Guards are translated accordingly. To

translate the control of the program, we use special variables to encode the control

state and define a formula that expresses the transition relation.

Moreover, we believe we can extend this result to programs with updates, but

with a slightly different perspective. The constant heap semantics can be helpful to

define the input-output relation of programs, even with destructive updates, pro-

vided some conditions on the way the program read and write over the memory

are satisfied. To do so, we consider the extension of LTLmem with two predicates

→֒0 and →֒1 instead of →֒, and models are couples of state sequences with constant

heap, that is tuples 〈 (si)i≥0 , h0 , h1〉. Let us define the input-output relation

61

Brochenin, Demri, Lozes

RP of a program P as : for all (s0, h0), (s1, h1), (s0, h0)RP (s1, h1) if there is a run

of P that starts with (s0, h0) and ends with (s1, h1). Then we conjecture that for

an interesting class of programs, this relation is definable in LTLmem extended with

→֒0 and →֒1. Basically, the encoding of the control of the program will be the same

as for programs without destructive updates, but the encoding of the instructions

will be different. For instance, x → l := y would be encoded by y
l
→֒1 Xx, whereas

x := y→ l would be encoded as (Xx)
l
→֒0 y

5 Conclusion

We have introduced a logic that combines both aspects of temporal logic and sepa-

ration logic, and permits to express constraints between values at different instants.

We defined several decision problems, and studied their decidability and complexity.

One of the most important complexity results states the decidability of the satisfi-

ability problem without pointer arithmetic or with pointer arithmetic but without

separation operators. In those cases, the problems are in pspace, which is really

tight considering that both SL and LTL satisfiability problems are pspace-complete.

This is not completely expected since LTL with simple Presburger constraints is un-

decidable even though both LTL and expressive fragments of Presburger arithmetic

can be solved in pspace. Our result strongly relies on a faithful abstraction of

memory states. As a future work, we plan to investigate decidable fragments of

separation logic with recursion.

References

[1] Bardin, S., A. Finkel, E. Lozes and A. Sangnier, From pointer systems to counter systems using shape
analysis, 5th International Workshop on Automated Verification of Infinite-State Systems (AVIS’06)
(2006).

[2] Berdine, J., C. Calcagno and P. W. O’Hearn, Symbolic execution with separation logic, APLAS’05 3780

(2005), pp. 52–68.

[3] Bozga, M., R. Iosif and Y. Lakhnech, On logics of aliasing, in: SAS’04, LNCS 3148 (2004), pp. 344–360.

[4] Brochenin, R., S. Demri and E. Lozes, Reasoning about sequences of memory states, in: LFCS’07,
LNCS (2007), to appear.

[5] Calcagno, C., J. Berdine and P. O’Hearn, Smallfoot: Modular automatic assertion checking with
separation logic 4111 (2005), pp. 115–137.

[6] Calcagno, C., H. Yang and P. O’Hearn, Computability and complexity results for a spatial assertion
language, in: APLAS’01, 2001, pp. 289–300.

[7] Calcagno, C., H. Yang and P. O’Hearn, Computability and complexity results for a spatial assertion
language for data structures, in: FST&TCS’01, LNCS 2245 (2001), pp. 108–119.

[8] Comon, H. and V. Cortier, Flatness is not a weakness, CSL’00 1862 (2000), pp. 262–276.

[9] Demri, S. and D. D’Souza, An automata-theoretic approach to constraint LTL, Information and
Computation 205 (2007), pp. 380–415.

[10] Distefano, D., J.-P. Katoen and A. Rensink, Who is pointing when to whom? on the automated
verification of linked list structures, in: FSTTCS’04, LNCS 3328 (2004), pp. 250–262.

[11] Finkel, A., E. Lozes and A. Sangnier, Towards model-checking pointer systems without destructive
update, 2007, under submission.

62

Brochenin, Demri, Lozes

[12] Galmiche, D. and D. Mery, Characterizing provability in BI’s pointer logic through resource graphs, in:
LPAR’05, LNCS 3835 (2005), pp. 459–473.

[13] Jensen, J., M. Jorgensen, N. Klarlund and M. Schwartzbach, Automatic verification of pointer programs
using monadic second-order logic, in: PLDI’97 (1997), pp. 226–236.

[14] Lev-Ami, T. and M. Sagiv, TVLA: A system for implementing static analyses, in: SAS’00, 2000, pp.
280–301.

[15] Lozes, E., Separation logic preserves the expressive power of classical logic, in: 2nd Workshop on
Semantics, Program Analysis, and Computing Environments for Memory Management (SPACE’04),
2004.

[16] Pnueli, A., The temporal logic of programs, in: FOCS’77 (1977), pp. 46–57.

[17] Reynolds, J., Separation logic: a logic for shared mutable data structures, in: LICS’02 (2002), pp. 55–74.

[18] Sistla, A. and E. Clarke, The complexity of propositional linear temporal logic, JACM 32 (1985),
pp. 733–749.

[19] Vardi, M. and P. Wolper, Reasoning about infinite computations, Information and Computation 115

(1994), pp. 1–37.

[20] Yahav, E., T. Reps, M. Sagiv and R. Wilhelm, Verifying temporal heap properties specified via evolution
logic, in: ESOP’03, LNCS 2618 (2003), pp. 204–22.

63

Liveness of Heap Data for Functional

Programs

Amey Karkare1 Uday Khedker Amitabha Sanyal

{karkare,uday,as}@cse.iitb.ac.in
Department of CSE, IIT Bombay

Mumbai, India

Abstract

Functional programming languages use garbage collection for heap memory management. Ideally, garbage
collectors should reclaim all objects that are dead at the time of garbage collection. An object is dead at an
execution instant if it is not used in future. Garbage collectors collect only those dead objects that are not
reachable from any program variable. This is because they are not able to distinguish between reachable
objects that are dead and reachable objects that are live.
In this paper, we describe a static analysis to discover reachable dead objects in programs written in first-
order, eager functional programming languages. The results of this technique can be used to make reachable
dead objects unreachable, thereby allowing garbage collectors to reclaim more dead objects.

Keywords: Compilers, Liveness, Garbage Collection, Memory Management, Data Flow Analysis, Context
Free Grammars

1 Introduction

Garbage collection is an attractive alternative to manual memory management be-

cause it frees the programmer from the responsibility of keeping track of object life-

times. This makes programs easier to implement, understand and maintain. Ideally,

garbage collectors should reclaim all objects that are dead at the time of garbage

collection. An object is dead at an execution instant if it is not used in future.

Since garbage collectors are not able to distinguish between reachable objects that

are live and reachable objects that are dead, they conservatively approximate the

liveness of an object by its reachability from a set of locations called root set (stack

locations and registers containing program variables) [14]. As a consequence, many

dead objects are left uncollected. This has been confirmed by empirical studies for

Haskell [19], Scheme [16] and Java [22,23,24].

Compile time analysis can help in distinguishing reachable objects that are live

from reachable objects that are dead. This is done by detecting unused references

1 Supported by Infosys Technologies Limited, Bangalore, under Infosys Fellowship Award.

Karkare, Khedker, Sanyal

(define (app list1 list2)

π1 :(if π2 :(null? π3 :list1)

π4 :list2

π5 :(cons π6 :(car π7 :list1)

π8 :(app π9 :(cdr π10 :list1)

π11 :list2))))

(let z ←(cons (cons 4 (cons 5 Nil))

(cons 6 Nil)) in

(let y ← (cons 3 Nil) in

π12 :(let w ← π13 :(app y z) in

π14 :(car (car (cdr w))))))

3 Nil

y
×

×
×

w z

4 6 Nil

×

×

5 Nil

(a) Example program. (b) Memory graph at π14.
(b) Thick edges denote live links.
(b) Edges marked × can be nullified.

Fig. 1. Example Program and its Memory Graph.

to objects. If an object is dead at a program point, none of its references are used

by the program beyond that program point. If every unused reference is nullified,

then the dead objects may become unreachable and may be claimed by garbage

collector.

Example 1.1 Figure 1(a) shows an example program. The label π of an expression

e denotes the program point just before the evaluation of e. At a given program

point, the heap memory can be viewed as a (possibly unconnected) directed acyclic

graph called memory graph. The locations in the root set form the entry nodes for

the memory graph. Figure 1(b) shows the memory graph at π14. Each cons cell

is an intermediate node in the graph. Elements of basic data types and the 0-ary

constructor Nil form leaf nodes of the graph. They are assumed to be boxed, i.e.

stored in separate heap cells and are accessed through references. The edges in the

graph are called links.

If we consider the execution of the program starting from π14, the links in the

memory graph that are traversed are shown by thick arrows. These links are live

at π14. Links that are not live can be nullified by the compiler by inserting suitable

statements. If an object becomes unreachable due to nullification, it can be collected

by the garbage collector.

In the figure, the links that can be nullified are shown with a ×. Note that a link

need not be nullified if nullifying some other link makes it unreachable from the root

set. If a node becomes unreachable from the root set as a consequence of nullifying

the links, it will be collected during the next invocation of garbage collector. 2

In this example, starting at π14, there is only one execution path. In general,

there could be multiple execution paths starting from a program point π. The live-

ness information at π is a combination of liveness information along every execution

path starting at π.

In this paper, we describe a static analysis for programs written in first-order,

eager functional programming languages. The analysis discovers live references at

65

Karkare, Khedker, Sanyal

p ::= d1 . . . dn e1 — program

d ::= (define (fv1 . . . vn) e1) — function definition

e ::= — expression

κ — constant

| v — variable

| Nil — primitive constructor

| (cons e1 e2) — primitive constructor

| (car e1) — primitive selector

| (cdr e1) — primitive selector

| (pair? e1) — primitive tester

| (null? e1) — primitive tester

| (+ e1 e2) — generic primitive

| (if e1 e2 e3) — conditional

| (let v1 ← e2 in e3) — let binding

| (f e1 . . . en) — function application

Fig. 2. The syntax of our language

every program point, i.e. the references that may be used beyond the program

point in any execution of the program. We use context free grammars as a bounded

representation for the set of live references. The result of the analysis can be used by

the compiler to decide whether a given reference can be nullified at a given program

point. Our analysis is context-sensitive yet modular in that a function is analyzed

only once.

The rest of the paper is organized as follows: Section 2 describes the language

used to explain our analysis along with the basic concepts and notations. The

analysis in Section 3 captures the liveness information of a program as a set of

equations. The method to solve these equations is given in Section 4. Section 5

describes how the result of the analysis can be used to nullify unused references.

Finally, we compare our approach with related work in Section 6 and conclude in

Section 7.

2 Language, Concepts and Notations

The syntax of our language is described in Figure 2. The language has call-by-value

semantics. The argument expressions are evaluated from left to right. We assume

that variables in the program are renamed so that the same name is not defined in

two different scopes.

For notational convenience, the left link (corresponding to the car) of a cons

cell is denoted by 0 and the right link (corresponding to the cdr) is denoted by

1. We use e.0 to denote the link corresponding to (car e) for an expression e

(assuming e evaluates to a list) and e.1 to denote the link corresponding to (cdr e).

A composition of several cars and cdrs is represented by a string α ∈ {0,1}∗. If

an expression e evaluates to a cons cell then e.ǫ corresponds to the reference to the

cons cell.

For an expression e, let [e] denote the location in the root set holding the value

66

Karkare, Khedker, Sanyal

of e. Given a memory graph, the string e.α describes a path in the memory graph

that starts at [e]. We call the string e.α an access expression, the string α an access

pattern, and the path traced in the memory graph an access path. In Figure 1, the

access expression w.100 represents the access path from w to the node containing the

value 4. Most often, the memory graph being referred to is clear from the context,

and therefore we shall use access expressions to refer to access paths. When we use

an access path to refer to a link in the memory graph, it denotes the last link in

the access path. Thus, w.100 denotes the link incident on the node containing the

value 4. If σ denotes a set of access patterns, then e.σ is the set of access paths

rooted at [e] and corresponding to σ. i.e.

e.σ= {e.α | α ∈ σ}

A link in a memory graph is live at a program point π if it is used in some path

from π to the program exit. An access path is defined to be live if its last link is live.

In Example 1, the set of live access paths at π14 is {w.ǫ,w.1,w.10,w.100, z.0, z.00}.
Note that the access paths z.0 and z.00 are live at π14 due to sharing. We do

not discover the liveness of such access paths directly. Instead, we assume that

an optimizer using our analysis will use alias analysis to discover liveness due to

sharing.

The end result of our analysis is the annotation of every expression in the pro-

gram with a set of access paths rooted at program variables. We call this liveness

environment , denoted L. This information can be used to insert nullifying state-

ments before expressions.

The symbols 0 and 1 extend the access patterns of a structure to describe the

access patterns of a larger structure. In some situations, we need to create access

patterns of a substructure from the access patterns of a larger structure. For this

purpose, we extend our alphabet of access patterns to include symbols 0̄ and 1̄.

The following example motivates the need for these symbols.

Example 2.1 Consider the expression at program point π1 in

π1 :(let w ← π2 :(cons x y) in π3 :· · ·)

Assuming Lπ3
= {w.α}, we would like to find out which reference of the list x and

y are live at π1. Let x.α′ be live at π1. Then, the two possible cases are:

• If α = 1β or α = ǫ, no link in the structure rooted at x is used. We use ⊥ to

denote the access pattern describing such a situation. Thus, α′ = ⊥.

• If α = 0β then the link represented by w.α that is x rooted and live at π1 can be

represented by x.β. Thus, α′ = β.

This relation between α and α′ is expressed by α′ = 0̄α. 1̄ can be interpreted

similarly. 2

With the inclusion of 0̄, 1̄ and ⊥ in the alphabet for access patterns, an access

pattern does not directly describe a path in the memory graph. Hence we define a

Canonical Access Pattern as a string restricted to the alphabet {0,1}. As a special

case, ⊥ is also considered as a canonical access pattern.

We define rules to reduce access patterns to their canonical forms. For access

patterns α1 and α2:

67

Karkare, Khedker, Sanyal

α10̄α2→

{

α1α
′
2 if α2 ≡ 0α′

2

⊥ if α2 ≡ 1α′
2 or α2 ≡ ǫ

(1)

α11̄α2→

{

α1α
′
2 if α2 ≡ 1α′

2

⊥ if α2 ≡ 0α′
2 or α2 ≡ ǫ

(2)

α1⊥α2→⊥(3)

α
k
→ α′ denotes the reduction of α to α′ in k steps, and

⋆
→ denotes the reflexive and

transitive closure of→. The concatenation (·) of a set of access patterns σ1 with σ2

is defined as a set containing concatenation of each element in σ1 with each element

in σ2, i.e.

σ1 · σ2 = {α1α2 | α1 ∈ σ1, α2 ∈ σ2}

3 Computing Liveness Environments

Let σ be the set of access patterns specifying the liveness of the result of evaluating

e. Let L be the liveness environment after the evaluation of e. Then the liveness

environment before the computation of e is discovered by propagating σ backwards

through the body of e. This is achieved by defining an environment transformer for

e, denoted XE .

Since e may contain applications of primitive operations and user defined func-

tions, we also need transfer functions that propagate σ from the result of the appli-

cation to the arguments. These functions are denoted by XP and XF . While XP
is given directly based on the semantics of the primitive, XF is inferred from the

body of a function.

3.1 Computing XE

For an expression e at program point π, XE(e, σ,L) computes liveness environment

at π where σ is the set of access patterns specifying the liveness of the result of

evaluating e and L is the liveness environment after the evaluation of e. Additionally,

as a side effect, the program point π is annotated with the value computed. However,

we do not show this explicitly to avoid clutter. The computation of XE(e, σ,L) is

as follows.

XE(κ, σ,L) =L(4)

XE(v, σ,L) =L ∪ v.σ(5)

XE((P e1 e2), σ,L) = let L′ ← XE(e2,XP
2

P (σ),L) in(6)

XE(e1,XP
1

P (σ),L′)

where P is one of cons, +

XE((P e1), σ,L) =XE(e1,XP
1

P (σ),L)(7)

where P is one of car, cdr, null?, pair?

XE((if e1 e2 e3), σ,L) = let L′ ← XE(e3, σ,L) in(8)

let L′′ ← XE(e2, σ,L) in

XE(e1, {ǫ},L
′ ∪ L′′)

XE((let v1 ← e1 in e2), σ,L) = let L′ ← XE(e2, σ,L) in(9)

68

Karkare, Khedker, Sanyal

XE(e1, σ
′,L′ − v1.σ

′)

where σ′ = {α | v1.α ∈ L
′}

XE((f e1 . . . en), σ,L) = let L1 ← XE(en,XF
n

f (σ),L) in(10)

...

let Ln−1 ← XE(e2,XF
2

f (σ),Ln−2) in

XE(e1,XF
1

f (σ),Ln−1)

We explain the definition of XE for the if expression. Since the value of the

conditional expression e1 is boolean and this value is used, the liveness access pattern

with respect to which e1 is computed is {ǫ}. Further, since it is not possible to

statically determine whether e2 or e3 will be executed, the liveness environment

with respect to which e1 is computed is the union of the liveness environments

arising out of e2 and e3.

3.2 Computing XP and XF

If σ is the set of access patterns specifying the liveness of the result of evaluating

(P e1 . . . en), where P is a primitive, then XP i
P (σ) gives the set of access patterns

specifying the liveness of ei. We describe the transfer functions for the primitives

in our language: car, cdr, cons, null?, pair? and +. The 0-ary constructor Nil does

not accept any argument and is ignored.

Assume that the live access pattern for the result of the expression (car e) is α.

Then, the link that is denoted by the path labeled α starting from location [(car e)]

can also be denoted by a path 0α starting from location [e]. We can extend the

same reasoning for set of access patterns (σ) of result, i.e. every pattern in the set

is prefixed by 0 to give live access pattern of e. Also, since the cell corresponding

to e is used to find the value of car, we need to add ǫ to the live access patterns of

e. Reasoning about (cdr e) similarly, we have

XP 1
car(σ) = {ǫ} ∪ {0} · σ, XP 1

cdr
(σ) = {ǫ} ∪ {1} · σ(11)

As seen in Example 2.1, an access pattern of α for result of cons translates to an

access pattern of 0̄α for its first argument, and 1̄α for its second argument. Since

cons does not read its arguments, the access patterns of the arguments do not

contain ǫ.

XP 1
cons(σ) = {0̄} · σ, XP 2

cons(σ) = {1̄} · σ(12)

Since the remaining primitives read only the value of the arguments, the set of live

access patterns of the arguments is {ǫ}.

XP 1
null?

(σ) = {ǫ}, XP 1
pair?

(σ) = {ǫ}, XP 1
+ (σ) = {ǫ}, XP 2

+ (σ) = {ǫ}(13)

We now consider the transfer function for a user defined function f . If σ is the

set of access patterns specifying the liveness of the result of evaluating (f e1 . . . en),

then XF i
f (σ) gives the set of access patterns specifying the liveness of ei. Let f be

defined as:

(define (f v1 . . . vn) π : e)

Assume that σ is the live access pattern for the result of f . Then, σ is also the live

69

Karkare, Khedker, Sanyal

access pattern for e. XE(e, σ, ∅) computes live access patterns for vi (1 ≤ i ≤ n) at

π. Thus, the transfer function for the ith argument of f is given by:

XF i
f (σ) = {α | vi.α ∈ XE(e, σ, ∅)} 1 ≤ i ≤ n(14)

The following example illustrates our analysis.

Example 3.1 Consider the program in Figure 1. To compute the transfer functions

for app, we compute the environment transformer XE(e, σ, ∅) in terms of a variable

σ. Here e is the body of app. The value of the liveness environment at each point

in the body of app is shown in Appendix ??. From the liveness information at π1

we get:

XF 1
app(σ) = {ǫ} ∪ {00̄} · σ ∪ {1} · XF 1

app({1̄} · σ)

XF 2
app(σ) = σ ∪ XF 2

app({1̄} · σ)

Let epgm represent the entire program being analyzed and σpgm be the set of

access patterns describing the liveness of the result. Then, the liveness environment

at various points in the epgm can be computed as XE(epgm, σpgm, ∅). The liveness

environments at π14 and π12 are as follows:

Lπ14
= { w.({ǫ,1,10} ∪ {100} · σpgm) }

Lπ12
=

{

y.XF 1
app({ǫ,1,10} ∪ {100} · σpgm),

z.XF 2
app({ǫ,1,10} ∪ {100} · σpgm)

}

2

We assume that the entire result of the program is needed, i.e., σpgm is {0,1}∗.

4 Solving the Equations for XF

In general, the equations defining the transfer functions XF will be recursive. To

solve such equations, we start by guessing that the solution will be of the form:

XF i
f (σ) = I i

f ∪ D
i
f · σ,(15)

where I i
f and Di

f are sets of strings over the alphabet {0,1, 0̄, 1̄}. The intuition

behind this form of solution is as follows: The function f can use its argument

locally and/or copy a part of it to the return value being computed. I i
f is the

live access pattern of ith argument due to local use in f . Di
f is a sort of selector

that selects the liveness pattern corresponding to the ith argument of f from σ, the

liveness pattern of the return value.

If we substitute the guessed form of XF i
f in the equations describing it and

equate the terms containing σ and the terms without σ, we get the equations for

I i
f and Di

f . This is illustrated in the following example.

Example 4.1 Consider the equation for XF 1
app(σ) from Example 3.1:

XF 1
app(σ) = {ǫ} ∪ {00̄} · σ ∪ {1} · XF 1

app({1̄} · σ)

Decomposing both sides of the equation, and rearranging the RHS gives:

I1
app ∪D

1
app · σ= {ǫ} ∪ {00̄} · σ ∪ {1} · (I1

app ∪ D
1
app · {1̄} · σ)

= {ǫ} ∪ {1} · I1
app ∪ {00̄} · σ ∪ {1} · D

1
app · {1̄} · σ

70

Karkare, Khedker, Sanyal

Separating the parts that are σ dependent and the parts that are σ independent,

and equating them separately, we get:

I1
app = {ǫ} ∪ {1} · I1

app

D1
app · σ= {00̄} · σ ∪ {1} · D1

app · {1̄}σ

= ({00̄} ∪ {1} · D1
app · {1̄}) · σ

As the equations hold for any general σ, we can simplify them to:

I1
app = {ǫ} ∪ {1} · I1

app and D1
app = {00̄} ∪ {1} · D1

app · {1̄}

Similarly, from the equation describing XF 2
app(σ), we get:

I2
app = I2

app and D2
app = {ǫ} ∪ D2

app · {1̄}

The liveness environment at π12 and π14 in terms Iapp and Dapp are:

Lπ14
= { w.{100} · σpgm }

Lπ12
=

{

y.(I1
app ∪ D

1
app · ({ǫ,1,10} ∪ {100} · σpgm)),

z.(I2
app ∪ D

2
app · ({ǫ,1,10} ∪ {100} · σpgm))

}

Solving for Iapp and Dapp gives us the desired liveness environments at these

program points. 2

4.1 Representing Liveness by Context Free Grammars

The values of I and D variables of a transfer function are sets of strings over the

alphabet {0,1, 0̄, 1̄}. We use context free grammars (CFG) to describe these sets.

The set of terminal symbols of the CFG is {0,1, 0̄, 1̄}. Non-terminals and associated

rules are constructed as illustrated in Examples 4.2 and 4.3.

Example 4.2 Consider the following constraint from Example 4.1:

I1
app = {ǫ} ∪ {1} · I1

app

We add non-terminal 〈I1
app〉 and the productions with right hand sides directly

derived from the constraints:

〈I1
app〉→ ǫ | 1〈I1

app〉

The productions generated from other constraints of Example 4.1 are:

〈D1
app〉→ 00̄ | 1〈D1

app〉1̄

〈I2
app〉→ 〈I

2
app〉

〈D2
app〉→ ǫ | 〈D2

app〉1̄

These productions describe the transfer functions of app. 2

The liveness environment at each program point can be represented as a CFG

with a start symbol for every variable. To do so, the analysis starts with 〈Spgm〉,
the non-terminal describing the liveness pattern of the result of the program, σpgm.

The productions for 〈Spgm〉 are:

〈Spgm〉→ ǫ | 0〈Spgm〉 | 1〈Spgm〉

Example 4.3 Let Sv
π denote the non-terminal generating liveness access patterns

associated with a variable v at program point π. For the program of Figure 1:

71

Karkare, Khedker, Sanyal

〈Sw
π14
〉→ ǫ | 1 | 10 | 100〈Spgm〉

〈Sz
π12
〉→ 〈I2

app〉 | 〈D
2
app〉 | 〈D

2
app〉1 | 〈D

2
app〉10 | 〈D

2
app〉100〈Spgm〉

〈Sy
π12
〉→ 〈I1

app〉 | 〈D
1
app〉 | 〈D

1
app〉1 | 〈D

1
app〉10 | 〈D

1
app〉100〈Spgm〉 2

The access patterns in the access paths used for nullification are in canonical

form but the access patterns described by the CFGs resulting out of our analysis

are not. It is not obvious how to check the membership of a canonical access

pattern in such CFGs. To solve this problem, we need equivalent CFGs such that

if α belongs to an original CFG and α
⋆
→ β, where β is in canonical form, then

β belongs to the corresponding new CFG. Directly converting the reduction rules

(Equations (1, 2, 3)) into productions and adding it to the grammar results in

unrestricted grammar [11]. To simplify the problem, we approximate original CFGs

by non-deterministic finite automata (NFAs) and eliminate 0̄ and 1̄ from the NFAs.

4.2 Approximating CFGs using NFAs

The conversion of a CFG G to an approximate NFA N should be safe in that the

language accepted by N should be a superset of the language accepted by G. We

use the algorithm described by Mohri and Nederhof [18]. The algorithm transforms

a CFG to a restricted form called strongly regular CFG which can be converted

easily to a finite automaton.

Example 4.4 We show the approximate NFAs for each of the non-terminals in

Example 4.2 and Example 4.3.

〈Spgm〉:
start

0

1

〈I1
app〉:

start

1

〈D1
app〉:

start

1 1̄

0 0̄ 〈D2
app〉:

start

1̄

〈Sw
π14
〉:

start 1 0 0

0

1

〈Sz
π12
〉 :

start

1̄

1 0 0

0

1

〈Sy
π12
〉:

start

1 1̄

0 0̄start 1 0 0

0

1
Note that there is no automaton for 〈I2

app〉. This is because the least solution of

the equation 〈I2
app〉 → 〈I

2
app〉 is ∅. Also, the language accepted by the automaton

for D1
app is approximate as it does not ensure that there is an equal number of 1

and 1̄ in the strings generated by rules for 〈D1
app〉. 2

72

Karkare, Khedker, Sanyal

4.3 Eliminating 0̄ and 1̄ from NFA

We now describe how to convert an NFA with transitions on symbols 0̄ and 1̄ to

an equivalent NFA without any transitions on these symbols.

Input: An NFA N with underlying alphabet {0,1, 0̄, 1̄} accepting a set of access

patterns

Output: An NFA N with underlying alphabet {0,1} accepting the equivalent set

of canonical access patterns

Steps:

i← 0

N0 ← Equivalent NFA of N without ǫ-moves [11]
do {

N′
i+1 ← Ni

foreach state q in Ni such that q has an incoming edge from q′

with label 0̄ and outgoing edge to q′′ with label 0 {
/⋆ bypass 0̄0 using ǫ ⋆/
add an edge in N′

i+1 from q′ to q′′ with label ǫ.

}
foreach state q in Ni such that q has an incoming edge from q′

with label 1̄ and outgoing edge to q′′ with label 1 {
/⋆ bypass 1̄1 using ǫ ⋆/

add an edge in N′
i+1 from q′ to q′′ with label ǫ.

}
Ni+1 ← Equivalent NFA of N′

i+1 without ǫ-moves
i← i+ 1

} while (Ni 6= Ni−1)

N← Ni

delete all edges with label 0̄ or 1̄ in N.

The algorithm repeatedly introduces ǫ edges to bypass a pair of consecutive edges

labeled 0̄0 or 1̄1. The process is continued till a fixed point is reached. When

the fixed point is reached, the resulting NFA contains the canonical access patterns

corresponding to all the access patterns in the original NFA. The access patterns

not in canonical form are deleted by removing edges labeled 0̄ and 1̄. Note that by

our reduction rules if α is accepted by N and α
⋆
→ ⊥, then ⊥ should be accepted

by N, However, N returned by our algorithm does not accept ⊥. This is not a

problem because the access patterns which are tested for membership against N do

not include ⊥ as well.

Example 4.5 We show the elimination of 0̄ and 1̄ for the automata for 〈Sy
π12
〉

and 〈Sz
π12
〉. The automaton for 〈Sw

π14
〉 remains unchanged as it does not contain

transitions on 0̄ and 1̄. The automata at the termination of the loop in the algorithm

are:

73

Karkare, Khedker, Sanyal

〈Sy
π12
〉:

start

1 1̄

0 0̄start 1 0 0

0

1
0
0

〈Sz
π12
〉 :

start

1̄

1 0 0

0

1
0

Eliminating the edges labeled 0̄ and 1̄, and removing the dead states gives:

〈Sy
π12
〉:

start

1

0

0

1

0 〈Sz
π12
〉 :

start 1 0 0

0

1
0

The language accepted by these automata represent the live access paths corre-

sponding to y and z at π12. 2

We now prove the termination and correctness of our algorithm.

Termination

Termination of the algorithm follows from the fact that every iteration of do-while

loop adds new edges to the NFA, while old edges are not deleted. Since no new

states are added to NFA, only a fixed number of edges can be added before we reach

a fix point.

Correctness

The sequence of obtaining N from N can be viewed as follows, with Nm denoting

the NFA at the termination of while loop:

N
deletion

of ǫ-edges
N0

addition

of ǫ-edges
N′

1
deletion

of ǫ-edges
N1

addition

of ǫ-edges
· · ·

addition

of ǫ-edges
N′

i
deletion

of ǫ-edges
Ni · · ·

deletion

of ǫ-edges
Nm

Nm
deletion of

0̄, 1̄ edges
N

Then, the languages accepted by these NFAs have the following relation:

L(N) = L(N0) ⊆ L(N′
1) = L(N1) ⊆ · · · ⊆ L(N′

i) = L(Ni) ⊆ · · · = L(Nm)

L(N) ⊆ L(Nm)

We first prove that the addition of ǫ-edges in the while loop does not add any

new information, i.e. any access pattern accepted by the NFA after the addition of

ǫ-edges is a reduced version of some access pattern existing in the NFA before the

addition of ǫ-edges.

Lemma 4.6 for i > 0, if α ∈ L(Ni) then there exists α′ ∈ L(Ni−1) such that

α′ ⋆
→ α.

Proof. As L(Ni) = L(N′
i), we have α ∈ L(N′

i). Only difference between N′
i and

Ni−1 is that N′
i contains some extra ǫ-edges. Thus, any ǫ-edge free path in N′

i is

also in Ni−1. Consider a path p in N′
i that accepts α. Assume the number of ǫ

74

Karkare, Khedker, Sanyal

edges in p is k. The proof is by induction on k.

(BASE) k = 0, i.e. p does not contains any ǫ-edge: As the path p is ǫ-edge free, it

must be present in Ni−1. Thus, Ni−1 also accepts α. α
⋆
→ α.

(HYPOTHESIS) For any α ∈ L(Ni) with accepting path p having less than k ǫ-

edges there exists α′ ∈ L(Ni−1) such that α′ ⋆
→ α.

(INDUCTION) p contains k ǫ-edges e1, . . . , ek: Assume e1 connects states q′ and

q′′ in N′
i. By construction, there exists a state q in N′

i such that there is an edge

e′1 from q′ to q with label 0̄(1̄) and an edge e′′1 from q to q′′ with label 0(1) in N′
i.

Replace e1 by e′1e
′′
1 in p to get a new path p′′ in N′

i. Let α′′ be the access pattern

accepted by p′′. Clearly, α′′ 1
→ α. Since p′′ has k − 1 ǫ-edges, α′′ is accepted by N′

i

along a path (p′′) that has less than k ǫ-edges. By induction hypothesis, we have

α′ ∈ L(Ni−1) such that α′ ⋆
→ α′′. This along with α′′ 1

→ α gives α′ ⋆
→ α. 2

Corollary 4.7 for each α ∈ L(Nm), there exists α′ ∈ L(N) such that α′ ⋆
→ α.

Proof. The proof is by induction on m, and using Lemma 4.6. 2

The following lemma shows that the the language accepted by Nm is closed with

respect to reduction of access patterns.

Lemma 4.8 For α ∈ L(Nm), if α
⋆
→ α′ and α′ 6= ⊥, then α′ ∈ L(Nm).

Proof. Assume α
k
→ α′. The Proof is by induction on k, number of steps in

reduction.

(BASE) case k = 0 is trivial as α
0
→ α.

(HYPOTHESIS) Assume that for α ∈ L(Nm), if α
k−1
→ α′, then α′ ∈ L(Nm).

(INDUCTION) α ∈ L(Nm), α
k
→ α′. There exists α′′ such that: α

k−1
→ α′′ 1

→ α′.

By induction hypothesis, we have α′′ ∈ L(Nm).

For α′′ 1
→ α′ to hold we must have α′′ = α10̄0α2 and α′ = α1α2, or α′′ = α11̄1α2

and α′ = α1α2. Consider the case when α′′ = α10̄0α2. Any path in Nm accepting α′′

must have the following structure (The states shown separately may not necessarily

be different):

q0 q′ q q′′ qF
start 0̄ 0

α1 α2

As Nm is the fixed point NFA for the iteration process described in the algorithm,

adding an ǫ-edge between states q′ and q′′ will not change the language accepted by

Nm. But, the access pattern accepted after adding an ǫ-edge is α1α2 = α′. Thus,

α′ ∈ L(Nm). The case when α′′ = α11̄1α2 is identical. 2

Corollary 4.9 For α ∈ L(N), if α
⋆
→ α′ and α′ 6= ⊥, then α′ ∈ L(Nm).

Proof. L(N) ⊆ L(Nm)⇒ α ∈ L(Nm). The proof follows from Lemma 4.8. 2

The following theorem asserts the equivalence of N and N with respect to the

equivalence of access patterns, i.e. every access pattern in N has an equivalent

canonical access pattern in N, and for every canonical access pattern in N, there

exists an equivalent access pattern in N.

75

Karkare, Khedker, Sanyal

Theorem 4.10 Let N be an NFA with underlying alphabet {0,1, 0̄, 1̄}. Let NFA

N be the NFA with underlying alphabet {0,1} returned by the algorithm. Then,

(i) if α ∈ L(N), β is a canonical access pattern such that α
⋆
→ β and β 6= ⊥, then

β ∈ L(N).

(ii) if β ∈ L(N) then there exists an access pattern α ∈ L(N) such that α
⋆
→ β.

Proof.

(i) From Corollary 4.9: α ∈ L(N), α
⋆
→ β and β 6= ⊥ ⇒ β ∈ L(Nm). As β is in

canonical form, the path accepting β in Nm consists of edges labeled 0 and 1

only. The same path exists in N. Thus N also accepts β ⇒ β ∈ L(N).

(ii) L(N) ⊆ L(Nm) ⇒ β ∈ L(Nm). Using Corollary 4.7, there exists α ∈ L(N)

such that α
⋆
→ β.

2

5 An Application of Liveness Analysis

The result of liveness analysis can be used to decide whether a given access path

v.α can be nullified at a given program point π. Let the link corresponding to v.α

in the memory graph be l. A naive approach is to nullify v.α if it does not belongs

to the liveness environment at π. However, the approach is not safe because of two

reasons: (a) The link l may be used beyond π through an alias, and may therefore

be live. (b) a link l′ in the access path from the root variable v to l may have been

created along one execution path but not along another. Since the nullification of

v.α requires the link l′ to be dereferenced, a run time exception may occur.

To solve the first problem, we need an alias analysis phase to detect sharing of

links among access paths. A link in the memory graph can be nullified at π if none

of the access paths sharing it are live at π . To solve the second problem, we need

an availability analysis phase. It detects whether all links in the access path have

been created along all execution paths reaching π. The results of these analysis are

used to filter out those access paths whose nullification may be unsafe. We do not

address the descriptions of these analyses in this paper.

6 Related Work

In this paper, we have described a static analysis for inferring dead references in first

order functional programs. We employ a context free grammar based abstraction

for the heap. This is in the spirit of the work by Jones and Muchnick [13] for

functional programs. The existing literature related to improving memory efficiency

of programs can be categorized as follows:

Compile time reuse. The method by Barth [2] detects memory cells with zero

reference count and reallocates them for further use in the program. Jones and

Le Metayer [15] describe a sharing analysis based garbage collection for reusing of

cells. Their analysis incorporates liveness information: A cell is collected even when

it is shared provided expressions sharing it do not need it for their evaluation.

76

Karkare, Khedker, Sanyal

Explicit reclamation. Shaham et. al. [25] use an automaton called heap safety au-

tomaton to model safety of inserting a free statement at a given program point. The

analysis is based on shape analysis [20,21] and is very precise. The disadvantage of

the analysis is that it is very inefficient and takes large time even for toy programs.

Free-Me [7] combines a lightweight pointer analysis with liveness information that

detects when short-lived objects die and insert statements to free such objects. The

analysis is simpler and cheaper as the scope is limited. The analysis described by In-

oue et. al. [12] detects the scope (function) out of which a cell becomes unreachable,

and claims the cell using an explicit reclaim procedure whenever the execution goes

out of that scope. Like our method, the result of their analysis is also represented

using CFGs. The main difference between their work and ours is that we detect

and nullify dead links at any point of the program, while they detect and collect

objects that are unreachable at function boundaries. Cherem and Rugina [5] use a

shape analysis framework [8] to analyze a single heap cell at a time for deallocation.

However, multiple iterations of the analysis and the optimization steps are required,

since freeing a cell might result in opportunities for more deallocations.

Making dead objects unreachable. The most popular approach to make dead

objects unreachable is to identify live variables in the program to reduce the root

set to only the live reference variables [1]. The major drawback of this approach

is that all heap objects reachable from the live root variables are considered live,

even if some of them may not be used by the program. Escape analysis [3,4,6]

based approaches discover objects escaping a procedure (an escaping object being

an object whose lifetimes outlives the procedure that created it). All non-escaping

objects are allocated on stack, thus becoming unreachable whenever the creating

procedure exits. In Region based garbage collection [9], a static analysis called

region inference [26] is used to identify regions that are storage for objects. Normal

memory blocks can be allocated at any point in time; they are always allocated in a

particular region and are deallocated at the end of that region’s lifetime. Approaches

based on escape analysis and region inference detect garbage only at the boundaries

of certain predefined areas of the program. In our previous work [17], we have used

bounded abstractions of access paths called access graphs to describe the liveness

of memory links in imperative programs and have used this information to nullify

dead links.

A related work due to Heine and Lam [10] attempts to find potential memory

leaks in C/C++ programs by detecting the earliest point in a program when an

object becomes unreachable.

7 Conclusions

In this paper we presented a technique to compute liveness of heap data in func-

tional programs. This information could be used to nullify links in heap memory to

improve garbage collection. We have abstracted the liveness information in the form

of a CFG, which is then converted to NFAs. This conversion implies some impreci-

sion. We present a novel way to simplify the NFAs so they directly describe paths

in the heap. Unlike the method described by Inoue et. al. [12], our simplification

does not cause any imprecision.

77

Karkare, Khedker, Sanyal

In future, we intend to take this method to its logical conclusion by addressing

the issue of nullification. This would require us to perform alias analysis which we

feel can be done in a similar fashion. We also feel that with minor modification our

method can be used for dead code elimination and intend to extend our analysis to

higher order languages.

References

[1] Agesen, O., D. Detlefs and J. E. Moss, Garbage collection and local variable type-precision and liveness
in Java virtual machines, in: PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation (1998), pp. 269–279.

[2] Barth, J. M., Shifting garbage collection overhead to compile time, Commun. ACM 20 (1977), pp. 513–
518.

[3] Blanchet, B., Escape analysis for object-oriented languages: application to Java, in: OOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (1999), pp. 20–34.

[4] Blanchet, B., Escape analysis for JavaTM : Theory and practice, ACM Transactions on Programming
Languages and Systems 25 (2003), pp. 713–775.

[5] Cherem, S. and R. Rugina, Compile-time deallocation of individual objects, in: ISMM ’06: Proceedings
of the 2006 international symposium on Memory management (2006), pp. 138–149.

[6] Choi, J.-D., M. Gupta, M. Serrano, V. C. Sreedhar and S. Midkiff, Escape analysis for Java, in:
OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (1999), pp. 1–19.

[7] Guyer, S. Z., K. S. McKinley and D. Frampton, Free-me: a static analysis for automatic individual
object reclamation, in: PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation (2006), pp. 364–375.

[8] Hackett, B. and R. Rugina, Region-based shape analysis with tracked locations, in: POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(2005), pp. 310–323.

[9] Hallenberg, N., M. Elsman and M. Tofte, Combining region inference and garbage collection, in:
PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation (2002), pp. 141–152.

[10] Heine, D. L. and M. S. Lam, A practical flow-sensitive and context-sensitive c and c++ memory leak
detector, in: PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation (2003), pp. 168–181.

[11] Hopcroft, J. E. and J. D. Ullman, “Introduction To Automata Theory, Languages, And Computation,”
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[12] Inoue, K., H. Seki and H. Yagi, Analysis of functional programs to detect run-time garbage cells, ACM
Trans. Program. Lang. Syst. 10 (1988), pp. 555–578.

[13] Jones, N. D. and S. S. Muchnick, Flow analysis and optimization of lisp-like structures, in: POPL ’79:
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages
(1979), pp. 244–256.

[14] Jones, R. and R. Lins, “Garbage collection: algorithms for automatic dynamic memory management,”
John Wiley & Sons, Inc., New York, NY, USA, 1996.

[15] Jones, S. B. and D. L. Metayer, Compile-time garbage collection by sharing analysis, in: FPCA ’89:
Proceedings of the fourth international conference on Functional programming languages and computer
architecture (1989), pp. 54–74.

[16] Karkare, A., A. Sanyal and U. Khedker, Effectiveness of garbage collection in MIT/GNU scheme,
http://arxiv.org/abs/cs/0611093 (2006).

[17] Khedker, U., A. Sanyal and A. Karkare, Heap reference analysis using access graphs,
Submitted to ACM Transactions on Programming Languages and Systems, copy available at
http://arxiv.org/abs/cs.PL/0608104 (2006).

[18] Mohri, M. and M.-J. Nederhof, Regular approximation of context-free grammars through
transformation, in: J.-C. Junqua and G. van Noord, editors, Robustness in Language and Speech
Technology, Kluwer Academic Publishers, Dordrecht, 2000 pp. 251–261.

78

http://arxiv.org/abs/cs/0611093
http://arxiv.org/abs/cs.PL/0608104

Karkare, Khedker, Sanyal

[19] Röjemo, N. and C. Runciman, Lag, drag, void and use—heap profiling and space-efficient compilation
revisited, in: ICFP ’96: Proceedings of the first ACM SIGPLAN international conference on Functional
programming (1996), pp. 34–41.

[20] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3-valued logic, in: POPL ’99:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(1999), pp. 105–118.

[21] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3-valued logic, ACM Transactions
on Programming Languages and Systems 24 (2002), pp. 217–298.

[22] Shaham, R., E. K. Kolodner and M. Sagiv, On the effectiveness of gc in java, in: ISMM ’00: Proceedings
of the 2nd international symposium on Memory management (2000), pp. 12–17.

[23] Shaham, R., E. K. Kolodner and M. Sagiv, Heap profiling for space-efficient java, in: PLDI
’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and
implementation (2001), pp. 104–113.

[24] Shaham, R., E. K. Kolodner and M. Sagiv, Estimating the impact of heap liveness information on
space consumption in Java, in: ISMM ’02: Proceedings of the 3rd international symposium on Memory
management (2002), pp. 64–75.

[25] Shaham, R., E. Yahav, E. K. Kolodner and M. Sagiv, Establishing local temporal heap safety properties
with applications to compile-time memory management, Sci. Comput. Program. 58 (2005), pp. 264–289.

[26] Tofte, M. and L. Birkedal, A region inference algorithm, ACM Transactions on Programming Languages
and Systems 20 (1998), pp. 724–767.

79

K
a
r
k
a
r
e
,
K

h
e
d
k
e
r
,
S
a
n
y
a
l

Program Live Access Patterns Liveness Environment Liveness Environment

Point for e at π after e at π

(π) (σ) (L) (XE(e, σ,L))

π1 σ ∅

{

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

}

π2 {ǫ}

{

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

} {

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

}

π3 {ǫ}

{

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

} {

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

}

π4 σ

{

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.XF 2
app({1̄} · σ)

} {

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.(σ ∪ XF 2
app({1̄} · σ))

}

π5 σ ∅

{

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.XF 2
app({1̄} · σ)

}

π6 {0̄} · σ

{

list1.{1} · XF 1
app({1̄} · σ),

list2.XF 2
app({1̄} · σ)

} {

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.XF 2
app({1̄} · σ)

}

π7 {ǫ} ∪ {00̄} · σ

{

list1.{1} · XF 1
app({1̄} · σ),

list2.XF 2
app({1̄} · σ)

} {

list1.({ǫ} ∪ {00̄} · σ ∪ {1} · XF 1
app({1̄} · σ)),

list2.XF 2
app({1̄} · σ)

}

π8 {1̄} · σ ∅

{

list1.{1} · XF 1
app({1̄} · σ),

list2.XF 2
app({1̄} · σ)

}

π9 XF 1
app({1̄} · σ) {list2.XF 2

app({1̄} · σ)}

{

list1.{1} · XF 1
app({1̄} · σ),

list2.XF 2
app({1̄} · σ)

}

π10 {1} · XF 2
app({1̄} · σ) {list2.XF 2

app({1̄} · σ)}

{

list1.{1} · XF 1
app({1̄} · σ),

list2.XF 2
app({1̄} · σ)

}

π11 XF 2
app({1̄} · σ) ∅ {list2.XF 2

app({1̄} · σ)}

Computation of liveness environment for app

80

Separation Analysis for Deductive Verification 1

Thierry Hubert2 ,3 ,5 Claude Marché4 ,5

INRIA Futurs - ProVal
Parc Orsay Université - ZAC des Vignes

3, rue Jacques Monod - Bâtiment N
F-91893 ORSAY Cedex

Abstract

The component-as-array model is a widely used technique for modeling heap memory in order to perform
deductive verification of pointer programs. We propose an separation analysis which can be integrated in
the core of this model. This allows to greatly simplify the verification conditions generated by a weakest
precondition calculus, and thus greatly helps proving such pointer programs. We illustrate the improvements
both in term of scaling up for codes of large size, and in term of simplification of the reasoning for establishing
advanced behaviors.

Keywords: Deductive Verification, Separation Analysis, Regions, Polymorphism

1 Introduction

To perform verification of pointer programs, it is widely known that detection of

pointer aliasing is essential. A separation analysis is a technique to automatically

detect that two given pointers are not alias to each other. Various separation an-

alyzes have been proposed, in the context of advanced static analysis of programs

and abstract interpretation.

Deductive verification is the class of verification techniques that are based on logi-

cal semantics of programs, starting from the landmark work of Floyd and Hoare [1,2],

and the concepts of logical assertions such as pre- and post-conditions, loop invari-

ants, etc. Compared to static analysis techniques, deductive verification is poten-

tially much more expressive, and is able to establish advanced behaviors of programs,

the main drawback being that logic assertions must be given by the programmer.

The most well-known technique for analysing separation in the context of de-

ductive verification is Separation Logic proposed by Reynolds [3]. Yet, as far as

1 This research is partly supported by “CIFRE” contract 774/2004 with Dassault Aviation company, and
ANR RNTL grant “CAT”
2 Dassault Aviation, Suresnes, France
3 CNRS, Laboratoire de Recherche en Informatique, UMR8623, Orsay, F-91405
4 INRIA Futurs, Orsay, F-91893
5 Univ Paris-Sud, Orsay, F-91405

Hubert, Marche

we know, no tool implementing Separation Logic has demonstrated a disruptive

progress on reasoning on concrete case studies such as industrial embedded code.

For deductive verification, the technique that has shown itself the most effective

in practice is the Weakest Precondition (WP) calculus of Dijkstra [4]. It is the base

of effective tools such as ESC/Java [5], several tools for Java programs annotated

using the Java Modeling Language [6], Spec# [7] for the C# programming language,

and a tool of our own called Caduceus [8] for C programs.

Dealing with pointer programs in the context of a WP calculus is usually done by

providing an appropriate axiomatic modeling of the memory heap. The component-

as-array model, coming from an old idea by Burstall [9], has been emphasized by

Bornat [10]. Variants of this modeling are used by tools mentioned above. Unfor-

tunately Separation Logic is not easily compatible with those techniques based on

WP and the component-as-array modeling.

The goal of this paper is to propose a new separation analysis, based on the

idea of separation logic, but directly suitable for the component-as-array modeling.

The idea is quite natural: memory regions that are guaranteed to be separated can

be modelled by distinct components of the heap memory model. The method we

present here is general and applicable to many programming languages: we present

it for C but it is clearly possible to apply it to Java, C#, etc. In Section 2, we define

the core language we consider, and recall the principles of the component-as-array

modeling.

In Section 3, we present our new separation analysis, and define the refined

component-as-array model it leads to. The main technique is based on a polymorphic

type system à la Milner [11]. Indeed, in our implementation inside the Caduceus

tool, this type system is explicitely used, because internally Caduceus produces

intermediate representation of the program into the Why language [12], which is

itself a polymorphically typed language.

In Section 4, we show applications of the technique, and experimental results

obtained with our implementation in the Caduceus tool for C. We compare to related

work in Section 5 and conclude in Section 6.

2 Preliminaries

2.1 Core language

Our analysis is described on a core language. Data types of this language are only

integers and structures.

Core expressions are made of constants, variables, standard operators, function

calls, field accesses, pointer arithmetic. Other C constructs can be translated to

these.

e ::= c (constants)

| v (variables)

| e op e (integer operators +,-,*,/,%, &&, etc.)

| e→ f (field access)

| id(e, . . . , e) (function call)

82

Hubert, Marche

| e⊕ e (addition pointer+integer giving a pointer)

| e⊖ e (subtraction pointer-pointer giving an integer)

Statements are

s ::= v = e; (variable assignment)

| e→ f = e; (field assignment)

| return e; (function return)

| if(e) s else s (conditional branching)

| while(e) s (while loop)

We indeed have such a language in the implementation of Caduceus, with some

others constructs like switch, break, etc. Only constructs given above are important

for the rest of the paper. We also support allocation and deallocation, but we ignore

them first simplicity. We also ignore procedure calls, which can be treated similarly

as function calls.

2.2 Normalization of C source

We present briefly how we transform general C code into our core language. The two

main points are to remove the address operator &, and to reduce the star operator

∗p, array accesses t[i], and dot fields accesses e.f to arrow field access e → f . The

address operator is removed by an initial analysis which for each variable x present

as argument of &, transformes it into a pointer variable (or more precisely an array

of size 1) to the type of x in the original C code ; and then each occurrence of &x

becomes x and each occurrence of x becomes ∗x. The same is done for structure

fields: if the address of a structure field f is taken somewhere as in &e.f , then the

type of f becomes a pointer (more precisely an array of size 1) to the type of f in

the original C code. Each occurrence of &e.f becomes e.f and e.f becomes e → f

(because it is equivalent to ∗(e.f)). Star operators, array accesses, and remaining

dot field accesses are then reduced by the following normalization rules:

e.f = e→ f

∗e= e→ F (e)

e1[e2] = (e1 ⊕ e2)→ F (e1)

where F (e) is a field name generated from the type of e: for the int type we use

intM (for “int memory”), for type int* we use intPM (“int pointer memory”), etc.

Figure 1 shows an example of normalization of C code.

2.3 Component-as-array modeling

The key idea proposed by Burstall [9] is to have one ‘array’ variable for each structure

field, which is indeed an applicative map which can be accessed or modified only via

two side-effect free functions select and store, which satisfy the so-called theory of

arrays :

select(store(a, i, v), i) = v(1)

select(store(a, i, v), j) = select(a, j) if i 6= j(2)

83

Hubert, Marche

This modeling syntactically encodes the fact that two structure fields cannot be

aliased. The important consequence is that whenever one field is updated, only the

corresponding array variable is modified and we have for free that any other field is

left untouched.

Filliâtre and Marché proposed a variant of this technique to deal with C pointer

arithmetic [8]. The C memory heap is also represented by a finite set of array

variables, indexed by pointers viewed as pairs of an adress to an allocated block

and an offset into this block. Thus ‘array’ variables are indeed 2-dimensional. For

our core language, since we have the shift operation on pointers as a primitive, we

indeed do not need anymore to make explicit this 2-dimensional representation.

In the same paper, the modeling of the heap is described using multi-sorted

polymorphic first-order logic. This logic is indeed the logic of the Why tool, which

is a verification tool based on a WP calculus, for a WHILE language with only

non-aliased global variables [12].

So, with our core language, modeling of memory is done by introducing two logic

sorts: pointer and α memory, and operations

shift : pointer, integer→ pointer

select : α memory, pointer→α

store : α memory, pointer, α→α memory

satisfying the theory of arrays given above and

shift(p, 0) = p

shift(shift(p, i), j) = shift(p, i+ j)

Then an interpretation of our core language into a WHILE language is given by

transformation rules:

[e→ f] = select(f, [e])

[e1 ⊕ e2] = shift([e1], [e2])

[v = e] = v := [e]

[e1 → f = e2] = f := store(f, [e1], [e2])

Statements are interpreted into WHILE constructs, and memory accesses e→ f are

in fact guarded with an assertion to check validity of pointer dereferencing. This

Original code:

int x;

int t[2];

struct S { int y;} s;

void f() {

int *z = &x;

t[1] = *z;

s.y = t[1];

}

Normalized code:

int x[1];

int t[2];

struct S { int y; };

struct S s[1];

void f() {

int *z = x;

(t ⊕ 1)->intM = z->intM;

s->y = (t ⊕ 1)->intM;

}

Fig. 1. Example of C code normalization

84

Hubert, Marche

struct S { int i; };

/*@ requires \valid(x) && \valid(y)
@ assigns x->i, y->i
@ ensures x->i == 1 && y->i == 2
@*/

void f(struct S *x, struct S *y) {
x->i = 1; y->i = 2;

}

struct S t1[1], t2[1];

//@ ensures t1[0].i == 1 && t2[0].i == 2
void g() { f(&t1[0],&t2[0]); }

Fig. 2. Simple case of separation analysis

aspect is not useful for the remaining, so we refer to [8,13] for details.

3 Separation Analysis

3.1 Modeling with regions

We want to integrate a separation analysis into the modeling presented above. Let’s

illustrate that on simple examples. Consider the C code of Figure 2. We use here

the syntax of the Caduceus specification language, which is very similar to JML:

the annotations are given in special comments /*@ .. */, requires introduces a

pre-condition, ensures a post-condition, and assigns is a clause to specify which

memory location are modified [8,13]. The annotation \valid(x) means that x

points to a safely allocated memory location.

Post-condition of function f cannot be established, because it is indeed wrong

if pointers x and y appear to be alias, that is if they are equal. For the call to

f in function g they are different, but since we use a modular reasoning (function

by function, as for any technique based on WP), the whole code cannot be proven

correct. A possible solution could be to add to the pre-condition of f the additional

hypothesis x != y, but our goal in this paper is to avoid this extra condition. The

WHILE interpretation of the C code of f is

i := store(i,x,1) ; i := store(i,y,2) ;

so establishing the post-condition select(i, x) == 1 amounts to prove

select(store(store(i, x, 1), y, 2), x) = 1

which is a consequence of axioms 1 and 2 if x 6= y. Our goal is to interpret the code

of f differently using two distinct variables for representing the fields of x and y:

ix := store(ix, x, 1); iy := store(iy, y, 2);

These are two distinct regions for field i. With that interpretation, post-conditions

select(ix, x) = 1 and select(iy , y) = 2 are consequences of axiom 1 without the need

of x 6= y.

Consider additionally the code of Figure 3. Function f is now called twice, in

the first call x points to array s.t1 and y points to array s.t2, and it is reversed in

the second call. To allow the use of different regions, we need to make these regions

parameters to f, and we call them parametric regions. The complete interpretations

85

Hubert, Marche

struct T {
struct S t1[2];
struct S t2[2];

};

/*@ ensures s.t1[0].i == 1 && s.t2[0].i == 2 &&
@ s.t1[1].i == 2 && s.t2[1].i == 1
@*/

void h(struct T s) {
f(&s.t1[0],&s.t2[0]);
f(&s.t2[1],&s.t1[1]);

}

Fig. 3. Case of parametric regions

of f and h are then

void f(i_x,i_y,x,y) {

i_x := store(i_x,x,1) ; i_y := store(i_y,y,2) ;

}

and

void h(t1,t2,i_t1,i_t2,s) {

f(i_t1,i_t2,select(t1,s),select(t2,s));

f(i_t2,i_t1,shift(select(t2,s),1),shift(select(t1,s),1));

}

and their post-conditions can be established by simple first-order reasoning. No-

tice that this holds because our WHILE back-end language assumes non-aliased

variables, so that ix and iy are assumed distinct. Indeed, the Why tool we use to

interpret this intermediaire statically checks this non-aliasing: an attempt to call f

with the same value for ix and iy would be rejected, as an ill-typed program.

So our goal is to integrate a notion of separation into the modeling of C code, by

attaching regions to pointers and memory variables. The interpretation of a memory

access e → f is now select(f_r, e) where r is the region of e. We see now how we

compute those regions.

3.2 Regions as types

We see regions as a rich type system for pointers. For simplicity, we only consider

pointers and the int base type. The types of expressions are then given by the

grammars

(types) τ ::= int

| r pointer (pointer to region r)

| (τ, r) memory (memory of values of type τ in region r)

(regions) r ::= ρ (region variable)

| R (region constant)

Region variables are needed for the parametric regions passed to functions: regions

as function parameters have a polymorphic type. Our type system is then just a

particular case of a polymorphic type system à la Milner [11].

86

Hubert, Marche

If we consider the function f of example above, its profile is

f(ix : (int, ρ1) memory, iy : (int, ρ2) memory, x : ρ1 pointer, y : ρ2 pointer)

that is polymorphic in ρ1, ρ2: for each call to f these regions can be instantiated

differently.

3.2.1 Region typing rules

We now express separation by giving typing rules for expressions, using types with

regions. The typing environment is made of two parts denoted Γ and ∆. Γ is a

classical typing environment which maps variable identifiers to types: we denote

x : t ∈ Γ whenever Γ maps variable x to the type t. ∆ is a region environment

which maps pairs (r, f) to types, where r is a region and f is a field identifier. We

denote that as (r, f) : t ∈ ∆.

We are now able to give typing rules for expressions:

Integer constants:

Γ,∆ ⊢ n : int

Type of a variable follows the environment Γ:

Γ,∆ ⊢ x : t
if x : t ∈ Γ

Type of a field access follows the environment ∆:

Γ,∆ ⊢ l : r pointer

Γ,∆ ⊢ l→ f : t
if (r, f) : t ∈ ∆

Function calls:
Γ,∆ ⊢ e1 : t1 · · · Γ,∆ ⊢ en : tn

Γ,∆ ⊢ id(e1, . . . , en) : t

if id : (τ1, · · · , τn) → τ ∈ Γ and there is a region substitution σ such that t = τσ

and for each i, ti = τi σ (polymorphic typing).

Pointer shift keeps the same region:

Γ,∆ ⊢ e1 : r pointer Γ,∆ ⊢ e2 : int

Γ,∆ ⊢ e1 ⊕ e2 : r pointer

Difference and comparison of pointers must be done only with pointers in the

same region:

Γ,∆ ⊢ e1 : r pointer Γ,∆ ⊢ e2 : r pointer

Γ,∆ ⊢ e1 op e2 : int

where op ∈ {⊖,==, <=,=>,<,>, ! =}.

The typing rules for statements are then the following:

Variable assignment:

Γ,∆ ⊢ e : t

Γ,∆ ⊢ v = e : t
if x : t ∈ Γ

Field assignment:

Γ,∆ ⊢ e1 : r pointer Γ,∆ ⊢ e2 : t

Γ,∆ ⊢ e1 → f = e2 : t
if (r, f) : t ∈ ∆

Typing of other statements is done in a natural way.

87

Hubert, Marche

For the typing of local or global declarations, we assume for the moment given an

oracle which gives the regions involved in the construction of Γ. For declarations of

structures, this means that the ∆ environment is also given. In other words, typing

of functions is made in a given ∆.

The first result we give is a soundness property of the typing rules: indeed this

soundness is relative in the sense that it shows that the interpretations of programs

are the same with or without the separation of memory variables.

Theorem 3.1 (Relative soundness) If a program is well typed in a given envi-

ronment Γ,∆, then its logical interpretation with region memory variables has the

same semantics as its interpretation with the classical component-as-array model.

Proof sketch: we provide a bisimulation of execution steps of interpreted pro-

grams, with or without separation. A state of the program with regions can be seen

as a partition of the state of the program without regions. Each operation on the

program with region can be simulated on the state of the program without region

and vice-versa: this works because all operations respect the partition, because the

program is well-typed in term of regions.

3.3 Inference of regions

The remaining step is now to provide an inference system to construct an environ-

ment Γ,∆ which makes a given program well-typed, if possible.

Since our type system is a particular case of a polymorphic type system à la

Milner, we can derive an inference method from known type inference algorithms

such as the W algorithm [14]. The only specific feature is the handling of the ∆

part of the environment.

In a first step, we assign to each global pointer variable a fresh region constant.

Parameters of functions, and local variables, which are pointers, are given a fresh

region variable. This provides an initial Γ. We build at the same time an initial ∆

which makes everything separated a priori.

In a second step, functions are analyzed, in the order given by the call graph,

to determine their polymorphic type. For each function, the code is traversed, and

the typing rules given above lead to equality constraints between regions, that is

we perform unification of regions. Each time a function is analyzed, we determine

which of the region variables remain not instantiated, and we make the function

type polymorphic by quantifying over them.

Unification of regions is standard, expect for the handling of ∆: each time two

regions r1 and r2 are made identical, we need to perform a merge operation on ∆:

for each field f such that ∆ maps (r1, f) to t1 and (r2, f) to t2, we need to merge the

mappings, and consequently unify the type t1 and t2 (which may recursively lead

to unification of other regions). During this unification phase, Γ is also modified by

side-effect.

At the end of this process, we end up with a Γ and a ∆ in which the program is

well-typed.

This type inference process indeed computes the separation into the largest pos-

sible number of regions, allowed by the typing rules given.

88

Hubert, Marche

4 Applications

Our separation analysis is implemented in the Caduceus tool, as a user option. Selec-

tion of this option asks to perform the inference of regions, and then the generation

of the model and the Why interpretation of C code is modified accordingly. We

show here a few experiments and applications.

4.1 Caduceus benchmarks

Caduceus benchmarks is a set of small C programs that are used as a non-regression

test. These examples are small, and most of them are motivated by other concerns

than separation.

Without the separation analysis, for the whole set of examples there is a total

number of 1324 verification conditions generated. These are passed to the automatic

theorem prover Simplify [15], and 1287 of them are discharged, that is 97.2%.

With the separation analysis turned on, there are 1349 verification conditions

generated. At first, it seems that the number of them should be the same, because

separation analysis leads to Why interpretations of programs which have exactly the

same structure. Indeed, the number of them is different because of two reasons:

• First, trivial verification conditions (mainly propositional tautologies) are indeed

automatically discharged silently, and in some cases, with the separation analysis

some verification conditions are tautologies whereas without separation they are

not. So this may make the number of VCs smaller.

• Second, one has to notice that the interpretation of assigns clauses produces as

many propositions as the number of memory variables involved, which is larger

when separation is turned on. So this may make the number of VCs larger, but

each of them is simpler.

With separation analysis on, the automatic theorem prover Simplify discharges 1327

VCs, that is 98.3%, a slightly better score.

This means that separation analysis helps sometimes for those small examples,

but more importantly, this means that this does not bring overhead on examples

where separation is not the concern. Remark also that the separation analysis itself

is quick (we believe it is linear in the size of the code), so probably separation analysis

could be turned on by default in the future.

4.2 Regions and logical annotations

This example is inspired from a piece of Java code by P. Müller [16]. It computes

the set of positive elements of an array, and puts them in a new array.

int *m(int t[], int length) {

int count = 0; int i; int *u;

for (i=0; i < length; i++) if (t[i] > 0) count++;

u = (int*)calloc(count,sizeof(int));

count = 0;

89

Hubert, Marche

for (i=0; i < length; i++) if (t[i] > 0) u[count++] = t[i];

return u;

}

To verify that the assignment of u[count] is inside the array bounds is tricky: it

involves a “semantic” reasoning, noticing that the second loop counts exactly the

same number of elements as the first, so the index count must be smaller than the

value of count used for allocating the array u. To make this reasoning explicit, it is

natural to annotate the loops with an invariant, the same one for both loops:

/*@ invariant

@ count == \num_of(int j; 0 <= j && j < i ; t[j] > 0)

@*/

for (i=0 ; i < length; i++) ...

where \num_of is a JML-like construct [17] giving the number of elements satisfy-

ing the predicate given as argument. Indeed, the original example by Müller was

precisely a challenge for static verification tools because none of them supports the

\num_of construct. Anyway, it is possible on a given example to ‘expand’ the use

of \num_of, and we did that for our C code: we introduce a logic function [8]:

//@ logic int num_of_pos(int i,int j,int a[]) reads t[..]

together with a few axioms:

/*@ axiom num_of_pos_empty :

@ \forall int i, int j, int a[];

@ i > j => num_of_pos(i,j,a) == 0

@*/

/*@ axiom num_of_pos_true_case :

@ \forall int i, int j, int k, int a[];

@ i <= j && a[j] > 0 =>

@ num_of_pos(i,j,a) == num_of_pos(i,j-1,a) + 1

@*/

/*@ axiom num_of_pos_false_case :

@ \forall int i, int j, int k, int a[];

@ i <= j && ! (a[j] > 0) =>

@ num_of_pos(i,j,a) == num_of_pos(i,j-1,a)

@*/

(see http://www.lri.fr/~marche/MullerChallenge.pdf for the remaining anno-

tations).

The key point now is that the verification of safety cannot be done, because in

the second loop, we know that count is less than the number of positive elements

in t, but there is a reasoning to perform to establish than this number of elements

did not change between the two loops. With a single heap variable in the model

for representing integer arrays, this is far from simple. Indeed, the logic function

num_of_pos is axiomatized with some inductive scheme, and one should prove that

it implies that num_of_pos(i,j,a) only depends on the values of a[i..j], which

is hard to prove.

90

http://www.lri.fr/~marche/MullerChallenge.pdf

Hubert, Marche

On the other hand, with our modeling involving memory separation, it is sta-

tically detected that t and u are separated, and thus can be modeled with two

separate heap variables intM_t and intM_u. Then, the logic function num_of_pos

becomes parametric in the memory variable involved for the array argument a, and

it becomes syntactically true that num_of_pos(0,j-1,t) is the same in both loop of

our piece of C code. On that example, each verification condition is then discharged

automatically by the Simplify prover.

4.3 An industrial case study

In collaboration with Dassault Aviation company, we experimented Caduceus and its

separation analysis on a real embedded code for avionics. The first experiment was

made on a core of this code, which is approximately 3000 lines long. The characterics

are that it contains a large number of data structures, and usually these structures

contains nested arrays of other structures.

With this first experiment, we do not provide any user functional property, so

that the only verifications made are for safety of pointer dereferencing and array

accesses. Necessary function preconditions and loop invariants are indeed automat-

ically generated by an ad-hoc tool using simple heuristics.

Without separation analysis, this code gives rise to 1151 VCs, 965 being dis-

charged by Simplify, that is 83.8%. With separation, we get 1982 VCs, 1972 dis-

charged by Simplify, that is 99.4 %. There is a total of 376 regions infered for global

variables, and there are 242 polymorphic regions added as parameter to functions.

The significantly higher number of VCs with separation analysis can be explained

by the high number of regions, for the same reason mentioned above about assigns

clauses. Notice that the 10 remaining VCs have been discharged by the interactive

proof assistant Coq.

We believe this is a very positive experimental result, which shows that our

separation analysis is a major improvement in practice. We are currently experi-

menting on the whole code (70000 lines long) with good results too. We are also

trying to prove a complex behavioral property, involving logical annotations and

ghost variables, for which we hope that the separation analysis will greatly simplify

the reasoning, as on the previous example.

5 Related work

Talpin and Jouvelot proposed in 1994 [18] a calculus for analysing effects of programs

based of a polymorphic type system. The principle is the same as ours, but their

work is limited to reference variables: no deep sharing in data structures is possible.

In the context of static analysis, points-to analysis is a very advanced technique

for computing information on pointers. This has been initiated by Andersen in

1994 [19] and extended further in 1996 by Steensgaard [20] and in 2000 by Das [21].

We used their idea of designing a type system for analysis separation, but it is clear

that our analysis is much less precise than theirs. Our method is tailored to the

generation of a refined component-as-array model for deductive verification.

The Cyclone system [22] proposes a new programming language analogous to C,

91

Hubert, Marche

but in which the programmer can specify regions manually. They allow polymorphic

regions in function call as us. But our setting applies to the real C language, and

moreover regions are automatically inferred instead of being given by the user.

Compared to Separation Logic, our separation analysis is clearly less precise. It

seems that Separation Logic is very powerful in some cases: it allows for example to

specify that a linked list cannot be circular, or that a graph is a tree, and to reason

with that. This is something that our analysis cannot do: as soon as one traverses a

linked lists, only one region is inferred for the whole list. Our analysis is clearly more

adapted to deal with programs with a high size of data, but we also have positive

points for reasoning on small programs as shown by the example of Section 4.2.

Combining all the power of Separation Logic and our separation analysis remains a

future task.

6 Conclusion

We proposed a separation analysis that is potentially useful for any tool for deductive

verification based on weakest precondition calculus and a component-as-array model.

Our experimentations on C programs are very positive, as shown by applications

given in Section 4.

There are some drawbacks that we plan to address in the future. First, the

separation analysis must be done on the whole program, so it is not modular. This

is not a major problem since the separation analysis is quick, and because after

separation analysis is performed, the remaining of the verification task can still be

done modularly, function by function. But in case we do not have the complete

program available, such as if we what to verify libraries, this is a problem. We plan

to add new constructs in the specification language to allow user specification of

separation: for example, for a library function such as memcpy, one may want to

specify that the source and target are separated.

Our separation analysis is tailored to its later use for the component-as-array

model. In that model, a given array will be entirely in the same region. However,

by advanced static analysis, it is possible to discover that an given array may be

split into several regions, for example in the following code:

struct S int x ;

struct S t[10];

void f(S *p, int n) { p->x = n; }

void main() f(t+0,2); f(t+1,3);

we do not get for free that t[0]->x == 2. We are planning to incorporate more

advanced static analysis techniques in our setting, in the context of the CAT project

(http://www.rntl.org/projet/resume2005/cat.htm).

References

[1] Floyd, R.W.: Assigning meanings to programs. In Schwartz, J.T., ed.: Mathematical Aspects of
Computer Science. Volume 19 of Proceedings of Symposia in Applied Mathematics., Providence, Rhode

92

http://www.rntl.org/projet/resume2005/cat.htm

Hubert, Marche

Island, American Mathematical Society (1967) 19–32

[2] Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10)
(1969) 576–580 and 583

[3] Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17h Annual IEEE
Symposium on Logic in Computer Science, IEEE Comp. Soc. Press (2002)

[4] Dijkstra, E.W.: A discipline of programming. Series in Automatic Computation. Prentice Hall Int.
(1976)

[5] Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. Technical Report 159,
Compaq Systems Research Center (1998) See also http://research.compaq.com/SRC/esc/ .

[6] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll, E.: An overview
of JML tools and applications. International Journal on Software Tools for Technology Transfer (2004)

[7] Leino, K.R.M.: Efficient weakest preconditions. Technical Report MSR-TR-2004-34, Microsoft
Research (2004)

[8] Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In Davies, J., Schulte, W., Barnett,
M., eds.: Sixth International Conference on Formal Engineering Methods. Volume 3308 of Lecture Notes
in Computer Science., Seattle, WA, USA, Springer-Verlag (2004) 15–29

[9] Burstall, R.: Some techniques for proving correctness of programs which alter data structures. Machine
Intelligence 7 (1972) 23–50

[10] Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program Construction. (2000)
102–126

[11] Milner, R.: A theory of type polymorphismn programming. Journal of Computer and System Sciences
17 (1978)

[12] Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Report 1366, LRI,
Université Paris Sud (2003) http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz .

[13] Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and frame conditions.
In Hurd, J., Melham, T., eds.: 18th International Conference on Theorem Proving in Higher Order
Logics. Lecture Notes in Computer Science, Springer-Verlag (2005)

[14] Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL ’82: Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, New York,
NY, USA, ACM Press (1982) 207–212

[15] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3)
(2005) 365–473

[16] Müller, P.: Specification and
verification challenges. Exploratory Workshop: Challenges in Java Program Verification, Nijmegen,
The Netherlands (2006) http://www.cs.ru.nl/~woj/esfws06/slides/Peter.pdf .

[17] Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools supporting
detailed design in Java. In: OOPSLA 2000 Companion, Minneapolis, Minnesota. (2000) 105–106

[18] Talpin, J.P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal of Functional
Programming 2(3) (1992) 245–271

[19] Andersen, L.O.: Program Analysis and Specialization for the C Programming Language. PhD thesis,
University of Copenhagen (1994)

[20] Steensgaard, B.: Points-to analysis in almost linear time. In: Symposium on Principles of Programming
Languages. (1996) 32–41

[21] Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI ’00: Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and implementation, New York,
NY, USA, ACM Press (2000) 35–46

[22] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-based memory
management in cyclone. In: PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, New York, NY, USA, ACM Press (2002) 282–293

[23] Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare type theory. In Reppy,
J.H., Lawall, J.L., eds.: 11th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2006, Portland, Oregon, USA, ACM (2006) 62–73

93

http://research.compaq.com/SRC/esc/
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz
http://www.cs.ru.nl/~woj/esfws06/slides/Peter.pdf

Verifying Concurrent List–Manipulating

Programs by LTL Model Checking

Joost–Pieter Katoen Thomas Noll Stefan Rieger

RWTH Aachen University
Software Modeling and Verification Group

52056 Aachen, Germany
{katoen,noll,rieger}@cs.rwth-aachen.de

Abstract

We present a novel approach to the verification of concurrent pointer–manipulating programs which operate
on singly–linked lists. By abstracting from chains (i.e., non–interrupted sublists) in the heap, we obtain
a finite–state representation of all possible executions of a given program. The combination of a simple
pointer logic for expressing heap properties and of temporal operators then allows us to employ standard
LTL model checking techniques. The usability of this approach is demonstrated by establishing correctness
properties of a producer/consumer system and of a concurrent garbage collector.

Keywords: Software Model Checking, Abstraction, Heap Verification, Shape Analysis, LTL, Lists, Pointer
Programs

1 Introduction

Techniques for the verification of elementary properties of concurrent pointer pro-
grams are indispensable. Programming with pointers is error–prone with poten-
tial pitfalls such as dereferencing null pointers and the creation of memory leaks.
Pointer programming becomes even more vulnerable in a concurrent setting where
data structures such as linked lists and trees are manipulated and inspected by
several threads.

This paper presents a model–checking approach to the verification of concurrent
programs that manipulate singly–linked lists. Existing approaches either make use
of non–standard logics, advanced model–checking procedures or extended versions
of Hoare logics with accompanying deduction techniques (see Sct. 6 about related
work). In contrast, the approach advocated in this paper stays within the realm
of traditional (linear–time) model checking. This facilitates the usage of standard
(LTL) model checkers for validating temporal properties addressing absence of mem-
ory leaks, dereferencing of null pointers, dynamic creation of cells, and simple and
position–dependent aliasing.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for pointer ma-
nipulation, cell creation and destruction, and (guarded) atomic regions that allow
concurrency control constructs such as test–and–set primitives and monitors. An
operational semantics is provided in terms of labeled transition systems in which
states are equipped with a graph structure representing the current list configura-
tion. List abstraction exploits a variant of summary nodes [45] that represent more
than M chained list cells where constant M is directly obtained from the formula to
be checked. Each configuration is shown to have a canonical representation (up to
isomorphism). The abstract semantics of any concurrent program in our language
is finite, obtained in a fully mechanized manner, and keeps the minimal “distance”
between program variables and summary nodes invariant. Over–approximation oc-

Katoen, Noll, Rieger

curs in a very controlled manner; only assignments may yield nondeterminism as
variables may get “too close” to summary nodes.

Properties are expressed in a first–order linear–time temporal logic (LTL) that is
enriched with assertions on singly–linked lists such as reachability of cells, aliasing,
and freshness of cells. Our logic is similar in spirit to NTL [19,20] and ETL [49].
Opposed to NTL, we avoid the use of temporal operators inside quantification. In
this way, involved mechanisms to keep track of the identities of individual cells are
not needed. As a result, standard LTL model checking algorithms can be employed.
The differences with ETL are more of a technical nature. ETL has a three–valued
interpretation, whereas our logical interpretation is a standard binary one. More-
over, ETL–formulas are translated in first–order logic with transitive closure for
the evaluation on a trace, whereas in our case traces are generated by labeled tran-
sition systems and used in standard LTL model checking. The feasibility of our
approach is shown by considering the verification of a simple concurrent garbage
collection program. Furthermore a prototypical tool is currently under development
for experimenting with real–life examples.

Please note that due to space constraints most of the proofs could not be included
in this paper.

2 A List–Manipulating Programming Language

Given a universe PV of program variables, we define the set of list–manipulating

programs (LM–programs) to be given by the following grammar (where vi, v ∈ PV):

LMP ::= var v1, ..., vk(Stmt1‖...‖Stmtl)

Stmt ::= skip | signal | v := PExp | ∗v := PExp | Stmt; Stmt

| if BExp then Stmt else Stmt fi | while BExp do Stmt od

| new(PExp) | del(PExp) | 〈BExp : Stmt〉
PExp ::= nil | v | ∗v | &v
BExp ::= tt | ff | PExp = PExp | BExp ∧ BExp | ¬BExp

V (π) := {v1, ..., vk} denotes the set of variables for π ∈ LMP.

var x, y, z(
while tt do 〈tt :

if x = nil

then new(y); x := y
else new(∗y); y := ∗y

fi
〉 od

‖ while tt do 〈x 6= nil :
z := x; x := ∗x; del(z)

〉 od
)

Fig. 1. Producer/Consumer

An LM–program thus consists of a dec-
laration of global program variables and a
series of statements to be executed in par-
allel. Each of these statements can either
be a pointer assignment, a sequence of state-
ments, a control structure, or a special state-
ment such as signal which sets a global
signal flag that can be tested in the logic,
new/del for dynamic creation or deletion of
objects at runtime (possibly leading to an
unbounded number of allocated heap cells)
and guarded atomic regions. If the Boolean
guard g in 〈g : s〉 is true, s is executed atom-
ically, i.e., with no interference by other
processes. If g is evaluated to false, the process is blocked (until g becomes true).

Pointer expressions comprise the special constant nil denoting an undefined

95

Katoen, Noll, Rieger

pointer value, a program variable, the dereferencing or referencing of a program
variable. Note that for simplicity we do not allow arbitrary dereferencing depths;
those can be emulated using a sequence of assignments within an atomic region.

Example 2.1 Figure 1 shows an LM–program implementing a producer inserting
objects and a consumer deleting objects at the end (pointed to by y) and beginning
(pointed to by x) of a queue, respectively. If the queue is empty the consumer
cannot proceed due to the guard x 6= nil until the producer has inserted at least
one object. Insertion and deletion are executed atomically to prevent interferences.

Definition 2.2 A heap configuration of a program π ∈ LMP is a tuple γ =
(N,A, µ, F) with a set of nodes N ⊇ V (π), a set of abstract nodes A ⊆ N \ PV ,
a successor function µ : N → Nnil (where Nnil := N ∪ {nil}), and a set of flags
F ⊆ {err,dl, leak, signal,new}.

Let µ⋆ : 2N → 2N with µ⋆(X) := {n ∈ N | ∃k ∈ N, ∃n′ ∈ X : µk(n′) = n} be
the transitive closure of µ, i.e. all nodes reachable from a node in X (and X itself).

Thus the nodes represent both the dynamic objects created and deleted at run-
time and the static program variables (which cannot be deleted). Edges, as for-
malized by the µ–function, encode the points–to information of a specific program
state. The set A of abstract nodes will later be used for our abstraction technique
and will be empty throughout the current section. Finally the flags give special
information about a state, e.g., whether a runtime error or memory leak occurred,
a new node was created, or the signal bit has been set using the signal command.

To ensure the finiteness of our abstraction we will automatically delete those
heap nodes that are not reachable from the program variables. This is accomplished
by the following garbage collection mapping. Whenever it removes an unreachable
node, it sets the leak flag indicating a potential memory leak.

Definition 2.3 For γ = (N,A, µ, F) we define γ↓:= (N ′, A∩N ′, µ ↾ N ′, F ∪{leak |
(N \N ′) 6= ∅}) where N ′ = µ⋆(PV).

Γ denotes the set of all garbage–free heap configurations, i.e., ∀γ ∈ Γ : γ↓= γ,
and Γc ⊆ Γ denotes the set of all concrete configurations, i.e., those with Aγ = ∅.

From now on we will always assume garbage freeness when mentioning heap
configurations. This enforces a bound on the maximal number of incoming edges
for a node (essentially the number of program variables).

Definition 2.4 Let γ = (N, ∅, µ, F) ∈ Γc. Then we define the semantics of pointer
expressions [[·]] : PExp ⇀ Nnil by 1 :

[[nil]] := nil

[[v]] := µ(v)

[[∗v]] := µ([[v]])

[[&v]] := v

The semantics of Boolean expressions [[·]] : BExp ⇀ B is standard and strict 2 .
Note that Def. 2.2 implies that µ(nil) = ⊥ and so [[·]] can indeed yield undefined
results for both pointer and Boolean expressions.

Definition 2.5 For π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP the concrete operational

semantics is given by a transition system T c
π = (Q, q0, lab,→) with a set of states

1 ⇀ denotes a partial function and ⊥ the undefined value.
2 One undefined operand yields an undefined expression.

96

Katoen, Noll, Rieger

Q ⊆ Γc × Stmt⋄({‖}Stmt⋄)
⋆ where Stmt⋄ = Stmt ∪ {⋄}Stmt ∪ {ε}, an initial state

q0 = ((N0, ∅, µ0, ∅), s1‖...‖sl) whereN0 and µ0 represent the “input heap”, a labeling
lab : Q→ Γc with ∀(γ, s) ∈ Q : lab((γ, s)) = γ, and a transition relation→⊆ Q×Q.

In the following we will use the abbreviations F̂ for F \ {signal,new, leak} and
noerr for {err,dl} ∩ F = ∅. γerr and γdl will denote pointer error and deadlock
states. Most transition rules are straightforward, thus here we will only consider
some interesting examples.

[[g]] = 1 γ, s→ γ′, s′ noerr

γ, 〈g : s〉 → γ′, ⋄s′
(1)

γ, s→ γ′, s′ s′ 6= ε noerr

γ, ⋄s→ γ′, ⋄s′
γ, s→ γ′, ε noerr

γ, ⋄s→ γ′, ε
(2)

∃j s.t. γ, sj → γ′, s′j ∀i 6= j : ∄s′i s.t. si = ⋄s′i noerr

γ, s1‖...‖sk → γ′, s1‖...‖s
′
j‖...‖sk

(3)

∄j s.t. γ, sj → γ′, s′j ∃j : sj 6= ε noerr

γ, s1‖...‖sk → γdl, ε
(4)

γ, ε‖...‖ε → γ, ε‖...‖ε
(5)

[[α]] 6= ⊥ noerr

(N,A, µ, F), v := α→ (N,A, µ[v/[[α]]], F̂)↓, ε
(6)

noerr

(N,A, µ, F),new(v)→ (N ⊎ {nnew}, A, µ[v/nnew], F̂ ∪ {new})↓, ε
(7)

[[α]] ∈ N \ PV noerr

(N,A, µ, F),del(α)→ (N \ {[[α]]}, A, µ[[[α]]/⊥, µ−1([[α]])/nil], F̂)↓, ε
(8)

Some remarks on the transition rules are in order. The leak, signal, and new
flags are reset after each transition; they are only activated in the state directly
following the corresponding “event”.

Regarding the concurrency rules we need to take care of the special semantics
of the atomic regions. If a process is executing such a statement it must not be
interrupted, and therefore the corresponding state is marked with ⋄ (rule 1). The
interleaving rule 3 excludes that any other than process j is in an atomic region. If
no process can proceed (all are blocked) we reach the special deadlock state (rule 4).
If all processes are terminated or an error or deadlock state is reached the program
loops to ensure that all paths in the transition system are infinite (rule 5).

The treatment of assignments (rule 6) and the new statement (rule 7) is again
straightforward, we though have to keep in mind in the first case that runtime errors
might occur (dereferencing of nil pointers) and that garbage may be generated.
Rule 8 handles the deletion of nodes. Please note that the next–pointers of the
predecessors of the deleted node are set to nil (mainly to avoid case distinctions for
undefined expressions in the semantics).

We conclude that for the producer/consumer example (Fig. 1) the state space

97

Katoen, Noll, Rieger

becomes infinite when applying the operational semantics as defined above.

3 State–Space Abstraction

As we have seen in the previous section the state space of LM–programs can get
infinite even for simple example programs making standard verification methods
inapplicable. To tackle the problem we use abstraction techniques to generate an
abstract transition system that incorporates the behavior of the concrete one, i.e.,
whose runs cover all concrete ones. This approach is correct but generally incom-
plete: although we can conclude from the satisfaction of a property in the abstract
state space its validity in the concrete case, the inverse is impossible though. But
since the abstraction is parameterized via a global constant M ∈ N we can refine the
abstraction depending on our needs. For a given M > 0 we set M := {0, 1, ...,M, ⋆},
where ⋆ represents all values greater than M .

Chain Abstraction

The main idea of our abstraction is to summarize subgraphs of a configuration
into summary nodes [45], which will be exactly those contained in the A–component
of a heap configuration. Summary nodes (also called abstract nodes) are not allowed
to represent arbitrary structures but only so–called chains, i.e., non–interrupted
lists. Our abstraction is based on [18,19] with the difference that nodes are either
truly abstract or concrete, thus recording node multiplicities is not necessary.

Definition 3.1 Let γ = (N,A, µ, F) ∈ Γ be a configuration. A nonempty set of
nodes C ⊆ N is called a chain if either

• |C| = 1 and C ⊆ PV or

• C ∩ PV = ∅ and there exists a bijection π : {1, ..., |C|} → C such that µ(π(i)) =
π(i+ 1) for i ∈ {1, ..., |C|} and ∀i ∈ {2, ..., |C|} : |µ−1(π(i))| = 1.

For a given chain C we will use the abbreviations
←−
C := π(1), and

−→
C := π(|C|). A

chain is called maximal if no superset C ′ ⊃ C is a chain.

Thus a chain is a sequence of pointer–connected nodes without interference of
other incoming edges or a singleton set containing a program variable. It follows
that the abstraction of chains preserves the graph structure. We will now introduce
a type of functions, called abstraction morphisms, that is based on this concept.

Definition 3.2 Let γi = (Ni, Ai, µi, Fi) ∈ Γ, i ∈ {1, 2} be two heap configurations.
An abstraction morphism h : N1 → N2 satisfies for all v ∈ PV ∩N1 and ni, n

′
i ∈ Ni:

1. h(v) = v

2. h−1(n2) is a chain in N1

3. µ2(n2) = n′2 ⇒ µ1(
−−−−−→
h−1(n2)) =

←−−−−−
h−1(n′2)

4. µ1(n1) = n′1 ⇒ h(n1) = h(n′1) ∨ µ2(h(n1)) = h(n′1)

5. n2 ∈ A2 ⇔ h−1(n2) ∩A1 6= ∅ ∨ |h
−1(n2)| > M

6. F1 = F2

We write h : γ1 ֌ γ2 to denote that the abstraction morphism h abstracts γ1 to γ2

and γ2 ≤ γ1 ⇔ ∃h : γ1 ֌ γ2.

98

Katoen, Noll, Rieger

Abstraction morphisms abstract from concrete chains with minimal lengthM+1
(cond. 2 and 5). The preservation of the graph structure is enforced by conditions
3 and 4. Program variables, being special nodes, remain untouched (cond. 1).

Example 3.3 Figure 2 shows an abstraction morphism for M = 1. The dashed
lines represent the mapping, and the black nodes denote the resulting abstract
nodes. Note that for M = 2 the nodes 3 and 4 could not be projected onto the
same abstract node (condition 5 of Def. 3.2). The chain {3, 4} cannot be extended
by node 5, since this node has two incoming edges which is only allowed for the first
node of a chain. Although in this example the source configuration is concrete, this
is of course not necessary by definition.

x 1 2 3 4 5

6

7

8
9

x 1 2

Fig. 2. An Abstraction Morphism

An important property of abstrac-
tion morphisms is their surjectivity. If,
in addition a morphism is injective it
becomes an isomorphism. Isomorphic
configurations cannot be distinguished
except for node naming, the graph
structure is the same.

Canonical Configurations

Previously we have defined how con-
figurations can be abstracted. It re-
mains the problem that there can be different abstractions of a given source con-
figuration. For this reason we need a normal form that implies uniqueness. In the
following we define this normal form, assuming γ = (N,A, µ, F) ∈ Γ.

Definition 3.4

(i) Let ⌊N⌋j := {n ∈ N | ∄v ∈ PV : µk(v) = n, k < j} be the set of nodes with a
distance of at least j from the variable nodes. Analogously ⌈N⌉j := N \⌊N⌋j+1.

(ii) A configuration γ is called canonical if ⌈N⌉2 ∩ A = ∅ and for all maximal 3

chains C ⊆ ⌊N⌋3 either |C| = 1 or |C| ≤ M ∧ C ∩ A = ∅. The set of all
canonical configurations is denoted by Γ♮.

The notion of canonical configurations is quite intuitive: maximal chains are
collapsed where possible but only up to a distance of three from variable nodes. The
latter condition ensures that pointer expressions always evaluate to concrete nodes,
which will simplify the definition of the abstract LMP semantics. The abstraction
morphism in Fig. 2 yields a canonical configuration, as can be easily verified.

Theorem 3.5 (Existence) For every γ ∈ Γ with ⌈N⌉2 ∩ A = ∅ there exists a

γ′ ∈ Γ♮ such that γ′ ≤ γ.

It is easy to construct a morphism yielding a canonical configuration. It has
to collapse maximal chains that are larger than M or contain abstract nodes, if
they are sufficiently distant from the variable nodes. In the following we will call
this morphism h♮. The precise definition does not matter as states the following
theorem.

3 Here we refer to maximality in ⌊N⌋3.

99

Katoen, Noll, Rieger

Theorem 3.6 (Uniqueness) Let γ ∈ Γ and γ1, γ2 ∈ Γ♮ such that h1 : γ ֌ γ1 and

h2 : γ ֌ γ2 are two abstraction morphisms. Then γ1 and γ2 are isomorphic.

The proof of the uniqueness had to be omitted here. The consequence of these
results is the appropriateness of canonical configurations as a normal form. The
abstract semantics will operate on such configurations.

Abstract Semantics of List–Manipulating Programs

As already mentioned, our goal is to guarantee the correctness of our abstraction
approach. This can be achieved by ensuring that every concrete execution of a given
system can be “simulated” by an abstract computation, which necessarily introduces
nondeterministic behavior on the abstract side.

Regarding the expression semantics nothing needs to be modified: in a canonical
configuration, abstract nodes have a distance greater than two from the variable
nodes such that every pointer expression refers to a concrete node. The expression
semantics can therefore be chosen identical to the concrete case (Def. 2.4), now
interpreted on canonical configurations.

Definition 3.7 Given a program π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP, its ab-

stract operational semantics is defined by the labeled transition system T a
π =

(Q, [q0]∼=, lab,→) with state set Q ⊆ Γ♮/∼= × Stmt⋄({‖}Stmt⋄)
⋆, initial state q0 as

in Def. 2.5, labeling function lab : Q → Γ♮ where ∀(K, s) ∈ Q : lab((K, s)) = K,
and transition relation → as specified by the following rules (we focus on the as-
signments, since the other rules are analogous to the concrete case, but operating
on isomorphism congruence classes).

α /∈ ∗V (π) noerr

[(N,A, µ, F)]∼=, v := α→ [h♮((N,A, µ[v/[[α]]], F̂)↓)]∼=, ε
(1)

γ′ ∈ Γ♮ s.t. h♮((N,A, µ[v/[[∗w]]], F̂)↓) ≤ γ′ [[w]] 6= nil noerr

[(N,A, µ, F)]∼=, v := ∗w → [γ′]∼=, ε
(2)

[[v]] 6= nil [[α]] 6= ⊥ noerr

[(N,A, µ, F)]∼=, ∗v := α→ [h♮((N,A, µ[µ(v)/[[α]]], F̂)↓)]∼=, ε
(3)

[[α]] = ⊥ ∨ [[α′]] = ⊥ noerr

[γ]∼=, α := α′ → [γerr]∼=, ε
(4)

In Fig. 3 the semantic rules are visualized for an example configuration. In rule
2 there might be the necessity for both abstraction and concretion. The execution
of the assignment and the following abstraction via h♮ yields an intermediate config-
uration which is generally not canonical since the variable v could now be too close
to an abstract node. Therefore we have to find a canonical configuration γ′ that
is at least as concrete as γ̄ and related by an abstraction morphism to it. There
might be more than one solution, thus this rule is nondeterministic (indicated by
the dashed arrows), but remains the only source of nondeterminism.

In rules 1 and 3 the distance to an abstract node is not reduced, but the opposite
case can occur: just imagine an assignment of the form y := nil . If y points
into a list whose head is referred to by another variable, we possibly increase the
distance from that variable to abstract nodes. The execution of the assignment

100

K
a
t
o
e
n
,
N

o
l
l
,
R

ie
g
e
r

(1) v = w (analogously: v = nil , v = &w)
w

v

assign

x

w

v

GC

x

w

v

abstract

x

w

v

x

(2) v = ∗w
w

v

assign

x

w v

GC

x

w v

abstract

x

w v

x

w v

x

w v

x

concretize

(3) ∗v = w (analogously: ∗v = ∗w, ∗v = &w)
w

v

assign

x

w

v

GC

x

w

v x

abstract

w

v x

Fig. 3. Exemplary visualization of the abstract semantics (M = 3)

101

Katoen, Noll, Rieger

x y x y x y x y

yxyx

p

c

p

c

p

c

pc

p

c

p

c

Fig. 4. Producer/Consumer: Abstract State Space (M = 1)

therefore potentially yields a non–canonical configuration and we have to re–abstract
to determine the corresponding canonical configuration. According to Thm. 3.6 the
result is unique and thus these steps are deterministic.

Example 3.8 Figure 4 shows the finite abstract state space of the pro-
ducer/consumer program from Fig. 1 for M = 1. The p– and c–transitions each
summarize several producer/consumer steps. The dashed transitions are nondeter-
ministic steps, since the abstract node, visualized in black color, represents at least
two nodes in a chain. If now the consumer deletes one node from the beginning of
the queue the distance of x to the abstract node becomes two and thus we need to
concretize the graph to obtain a canonical configuration. For this we distinguish
two cases: either the abstract node represents exactly two nodes, then we reach the
graph to the right, or it represents more than two, in which case we stay in the
same state since the abstract node still represents more than one concrete node.

Theorem 3.9 (Finiteness) For every π ∈ LMP, T a
π is finite.

The idea of the proof is to establish a bound on the number of nodes of canonical
configurations for a given number of program variables.

Theorem 3.10 (Correctness of the Abstraction) Let π ∈ LMP. For every

transition in T c
π there exists a corresponding abstract transition in T a

π such that the

heaps are related by abstraction morphisms.

The proof of the correctness theorem has been omitted due to space constraints.

4 A Logic for Concurrent List–Manipulating Programs

In the previous sections we have defined our programming language for concurrent
pointer manipulation and both its concrete and abstract semantics. In this section
we will present a logic which will allow us to reason about heap configurations and
program behavior. In the following LV denotes a set of logical variables, where we
always assume that LV ∩ PV = ∅.

Pointer Logic

Pointer logic deals with single configurations and is employed to express graph
properties as well as to inspect the special flags of heap configurations (see Def. 2.2).

102

Katoen, Noll, Rieger

Definition 4.1 The set PL of Pointer Logic formulas is given by the grammar

NExp ::= nil | v (∈ PV) | x (∈ LV) | ∗NExp

Atomic ::= tt | ff | err | dl | leak | signal | new | NExp = NExp | NExp ; NExp

PL ::= Atomic | ¬PL | PL ∧ PL | ∃x : PL

Later on we will use the logical operations ∨, →, ↔, and ∀ (defined as usual)
as abbreviations. Note that in contrast to pointer expressions in LM–programs our
logic supports dereferencing operations of arbitrary depth. The special operation
α ; α′ expresses the reachability of heap objects.

Definition 4.2 Let β : LV ⇀ N be a variable valuation and γ ∈ Γc a concrete
heap configuration. Then we define [[·]] : NExp ⇀ Nnil by:

[[nil]] := nil [[v]] := v for v ∈ PV
[[x]] := β(x) for x ∈ LV [[∗α]] := µγ([[α]]) for α ∈ NExp

Note the semantic difference with respect to the programming language. In
navigation expressions a variable v is interpreted by itself and not by the node it is
referencing. This avoids the necessity of the referencing operator &.

Definition 4.3 The (concrete) satisfaction relation |= for PL–formulas is given as
follows 4 (for γ = (N, ∅, µ, F)):

γ, β |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, β |= α1 = α2 iff [[α1]] = [[α2]] 6= ⊥
γ, β |= α1 ; α2 iff [[αi]] 6= ⊥ ∧ [[α2]] ∈ µ⋆([[α1]])

γ, β |= ∃x : ϕ iff ∃n ∈ N : γ, β[x/n] |= ϕ

Temporal Pointer Logic

Pointer Logic enables us to express properties of single configurations. However
it cannot be used to specify (ongoing) computations, i.e., configuration sequences.
To this aim we will now extend this logic by temporal operators.

Definition 4.4 The set TPL of Temporal Pointer Logic formulas is given as follows:

TPL ::= PL | ¬TPL | TPL ∧ TPL | X TPL | TPL U TPL

For ϕ ∈ TPL we use the abbreviations Fϕ := ttUϕ and Gϕ := ¬F¬ϕ. Moreover
V (ϕ) ⊆ LV denotes the set of (bound or free) logical variables occurring in ϕ.

Note that it is not possible to nest quantifiers and temporal operators. To do so
it would be necessary to keep track of the object identities between states, which is
difficult in the presence of abstract nodes. In addition it would blow up the state
space and exclude the use of standard model checking algorithms. To the best of
our knowledge the only approach to support this idea is the one in [18,19,20]; other
works in the area such as [46] consider only shapes of the heap. This results in a loss

4 For ∧,¬, tt and ff the semantics is standard and therefore omitted.

103

Katoen, Noll, Rieger

of expressivity, e.g., a property like ∀x : new(x)→ F del(x) which states that every
produced object will eventually be consumed cannot be formulated. Nonetheless
we can specify many interesting properties.

Example 4.5 For our producer/consumer system from Fig. 1 it holds true:

1. ¬F(dl ∨ err) (never deadlock or pointer errors)

2. GF new (new objects are created infinitely often)

3. G((∗x 6= nil ∨ ∗y 6= nil)→ (x ; ∗y ∧ ∀v : (v 6= y → x ; v)))
(whenever the queue is not empty, the object y points to is reachable from x
and between x and this object lies a chain)

More general correctness properties are:

4. F ∗x = ∗y (x and y will eventually become aliases)

5. G¬(∃z : (x ; z∧ y ; z)) (x and y always point to disjoint parts of the heap)

6. G(∀y : (x ; y → (¬∃z : (y ; z ∧ ∗z ; y))))
(x always points to a non–cyclic list)

7. FG(¬leak) (only finitely often a memory leak can occur)

8. G(∀y : (x ; y → (∀z : (z ; y → x ; z)))) (x always points to a chain)

As mentioned before, TPL specifies computation paths. The set of possible
paths is represented by a transition system.

Definition 4.6 Let T = (Q, q0, lab,→) be a (concrete) transition system with lab :
Q→ Γc. A path in T is an infinite sequence of states ρ = ρ0ρ1ρ2... ∈ Qω such that
ρi → ρi+1 for all i ∈ N. Then for ϕ ∈ PL we have

ρ |= ϕ (∈ PL) iff ∃β : LV ⇀ Nlab(ρ0) s.t. lab(ρ0), β |=PL ϕ

For the temporal operators the semantics is identical to the one of LTL. We
write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω in T .

Reasoning about Abstract Computations

As expected the concrete semantics is straightforward. When we switch to ab-
stract configurations, however, we run into several complications since logical vari-
ables can be bound to both concrete and abstract nodes. In the latter case we have
to record which concrete node, represented by the summary node, it is bound to.
This could lead to undefinedness of Pointer Logic formulas. This problem occurs
mainly in direct comparisons of the form α = α′. To tackle this problem we choose
the global precision constant M in dependence of the formula as follows. If ϕ ∈ TPL
is the formula to check, then we assume from now on that

M ≥
∑

x∈V (ϕ)

{j + 1 | ∗jx occurs in ϕ}.

Due to the presence of abstract nodes it is not sufficient anymore to evaluate logical
variables by simple variable–to–node mappings. Additionally we must record the
offset of a variable referring to an abstract node and the distance between variables
pointing to the same abstract node. This leads to the concept of abstract valuations.

104

Katoen, Noll, Rieger

Given γ ∈ Γ♮ and ϕ ∈ TPL, an abstract valuation is of the form η = (β, o, δ),
where β : V (ϕ) → Nγ maps logical variables to (abstract) nodes, o : V (ϕ) → M
denotes the offset for an abstract node, and δ : V (ϕ) → V (ϕ) ⇀ M is a “distance
matrix” for the logical variables with potentially undefined entries. δ is only defined
if both arguments are mapped onto the same entity, and o is only different from 1
if the corresponding variable is mapped onto an abstract node. The set of all such
valuations will be denoted by Valγ,ϕ.

Using this concept one can define a function dγ,η : NExp × NExp → {0, 1,∞}
measuring the “distance” of pointer expressions, where distance here means either 0
if the expressions are mapped onto the same (concrete) entity, 1 if the the first case
does not hold but the second argument is reachable from the first or ∞ if neither
is the case.

The presence of abstract nodes plays a vital role in the abstract semantics.
Without the global constraint for M we would not be able to resolve all possible
cases of abstract valuations, a third truth value would thus become necessary. The
distance function δ is required for the case that both variables are mapped onto an
abstract node with offset ⋆. With the help of the distance function the abstract
semantics of PL and TPL is straightforward.

Definition 4.7 Let γ = (N,A, µ, F) ∈ Γ♮ and η = (β, o, δ) ∈ Valγ,ϕ. The satisfac-
tion relation |= for PL–formulas on canonical configurations is then given as follows
(omitting the trivial cases):

γ, η |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, η |= α1 = α2 iff dγ,η(α1, α2) = 0

γ, η |= α1 ; α2 iff dγ,η(α1, α2) ∈ {0, 1}
γ, η |= ∃x : ϕ iff ∃n ∈ N, off ∈M, dist : V (ϕ) ⇀ M s.t.

γ, (βη [x/n], oη[x/off], δη [x/dist]) |= ϕ

Let T = (Q, q0, lab,→) be an abstract transition system with lab : Q → Γ♮/∼=
and ρ ∈ Qω a path in it. Then ρ |= ϕ ∈ PL iff for γ ∈ lab(ρ0) there exists an
η ∈ Valγ,ϕ s.t. γ, η |=PL ϕ. Temporal operators and Boolean connectives are treated
in the standard way. We write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω in T .

The following theorem states that the abstract semantics of TPL and of the
programming language is correct, i.e., that the validity of a formula under the
abstract interpretation implies the validity under the concrete one. The converse
though does not hold.

Theorem 4.8 Let π ∈ LMP and ϕ ∈ TPL. If T a
π |= ϕ then T c

π |= ϕ.

Proof. It suffices to show for all ϕ ∈ PL and γ ∈ Γc the proposition:

∃β : LV ⇀ Nγ s.t. γ, β |= ϕ ⇔ ∃η ∈ Valγ,ϕ s.t. h♮(γ), η |= ϕ (⋆)

Note that the ⇐–direction is sufficient for correctness, the ⇒–direction though is
trivial. In the proof the choice of the global constant M (depending on the formula)
plays a central role. Imagine for example a property “the heap contains at least five
objects different from program variables”. To formulate this property we need at
least five different logical variables and the constraint onM implies that M ≥ 5. For
smaller M it can happen that a formula that is satisfied in the abstract case, does

105

Katoen, Noll, Rieger

not hold in all concrete configurations associated with the abstract one. E.g. for
M = 1 and a graph with one abstract node our example property would be satisfied;
in the corresponding concrete graph where the abstract node is represented by two
concrete nodes not necessarily.

With (⋆) we can infer from Thm. 3.10 the validity of the claim, since TPL
does not allow path quantifiers. By construction of the abstract PL–semantics it is
intuitively clear that (⋆) holds. 2

Model Checking Temporal Pointer Logic

Because of the two–stage approach in defining the logic, we can reduce the TPL
model checking problem to an LTL model checking problem, which can efficiently
be verified by existing model checkers.

Algorithm 1 Let T = (Q, q0, lab,→) be the abstract transition system generated

by a program π ∈ LMP and ϕ ∈ TPL the formula to verify. Let Ψ := {ψ ∈ PL |
ψ maximal subformula of ϕ} = {ψ1, ..., ψr}.

Define a “traditional” transition system T ′ = (Q, q0, lab
′,→) where lab ′ : Q →

2AP with AP = {pi | i ∈ {1, ..., r}} such that pi ∈ lab ′(q) ⇔ lab(q) |= ψi.

Now solve the LTL model checking problem T ′ |=?
LTL ϕ[ψ1/p1, ..., ψr/pr].

The idea is thus to replace all (maximal) PL–subformulas by atomic propositions
to obtain an LTL–formula. To do so we first have to evaluate the PL–formulas on the
transition system and to change its labeling from configurations to atomic proposi-
tions, where each atomic proposition represents the truth value of the corresponding
PL–subformula on the given configuration. The correctness of this approach is clear.

Limitations

Due to the nondeterminism in the abstract semantics caused by the presence
of abstract nodes we may obtain false negatives. This means that in the abstract
transition system there may exist computations which do not correspond to concrete
ones and on which the property to verify does not hold.

Consider a program creating a list (pointed to by v) with M + 3 elements and
then deleting again M + 3 elements. The property to verify is XF(∗v = nil), i.e.
that the list becomes empty. It is obvious that due to the presence of an abstract
node after the construction of the list in the abstract semantics there is a path that
retains that abstract node and thus the list never becomes empty (see Def. 3.7, rule
2). In the concrete case however the formula is satisfied.

Due to the overapproximation and the LTL approach false positives though
cannot occur. This means that the successful verification of a property in the
abstract case implies the correctness in the concrete case. False negatives can only
occur in cases where information on the precise number of objects is necessary.

5 Application: Concurrent Garbage Collection

In this section we will show we will employ our approach to find counterexamples of
a concurrent garbage collection algorithm. More concretely we will consider a so–
called mark–and–sweep collector, which maintains a bit for each object in the heap
to record its reachability status. Here we model this information as an additional
heap component, a (partial) function r : N ⇀ B which indicates whether the

106

Katoen, Noll, Rieger

collector considers a node to be reachable (1) or not (0). This component is made
accessible to the garbage collector program using the additional constructs

• reset ∈ Stmt, which resets the reachability value of every node to 0,

• mark(α) ∈ Stmt where α ∈ PExp, which sets the reachability information of the
node [[α]] to 1, and

• r(α) ∈ BExp where α ∈ PExp tests whether the reachability bit of [[α]] is set.

We refrain from giving the formal details of the extended syntax and semantics
of LM–programs; these are straightforward to formalize. The only modification we
would like to mention explicitly is an adaptation of the automatic garbage collec-
tion procedure (cf. Def. 2.3), which is activated after the execution of every LM–
statement which potentially causes nodes to become unreachable (we refer to the
derivation rules in Def. 2.5). To ensure the finiteness of our abstraction, we still have
to use it. However, we will adapt the handling of the leak flag such that it will be set
only if the garbage collector considers an unreachable node n to be reachable, i.e., if
r(n) = 1. Formally this means that for an extended configuration γ̂ = (N,A, µ, F, r)
we define γ̂↓:= (N ′, A ∩ N ′, µ ↾ N ′, F ∪ {leak | ∃n ∈ (N \ N ′) : r(n) = 1}, r ↾ N ′)
with N ′ = µ⋆(PV).

Using these concepts we can now proceed by describing how a concurrent
garbage collector can be added to a given LM–program, called a mutator. For π =
var v1, . . . , vk : (s1‖ . . . ‖sl) ∈ LMP, we define π′ := var v1, . . . , vk, t : (s1‖ . . . ‖sl‖c)
with garbage collector c as in Fig. 5.

while tt do
reset;
with v ∈ PV do
t := v;
while t 6= nil do

if r(t) then t := nil

else mark(t);
t := ∗t

fi
od

od;
signal

od

Fig. 5. A naive garbage
collector

Thus the garbage collector is running concur-
rently with the mutator. It executes an infinite
loop, starting by resetting the reachability bit of
every node in the heap. Using the auxiliary vari-
able t, it then marks every reachable node, begin-
ning with the roots of the heap which are acces-
sible by the program variables. Here the state-
ment with v ∈ PV do s od is a meta construct
which is expanded to s[v/v1]; s[v/v2]; ...; s[v/vk]
for PV = {v1, . . . , vk}. Whenever it encounters
a node which has already been marked (if state-
ment), it continues with the next program vari-
able to avoid redundant assignments. Finally it
employs the signaling mechanism of our program-
ming language to indicate that now the actual
collection phase would start, i.e., that all nodes
whose reachability bit is 0 would be removed.

Note, however, that we are still using our au-
tomatic garbage collection procedure such that we can guarantee that in every
configuration of the system, all nodes are reachable. In other words, whenever the
signal occurs there should not exist any unmarked node in the heap. This obser-
vation is the key idea for specifying the soundness of the garbage collector c as
a safety property in TPL. Here we assume that the underlying Pointer Logic (cf.
Def. 4.1) is extended by atomic propositions of the form r(α) which allow us test
the reachability information of the node to which the navigation expression α refers:

G(signal→ ∀x : r(x))

107

Katoen, Noll, Rieger

x x

0 0 0

x

1 1 0

x

1 1 0

t x

1 1 0

x

1 1 0

x

1 1 0

x

1 0

x

1 0

x

1 0

t y t y

t yt

C: reset C+ M: y := ∗x M: ∗x := ∗y

M: ∗y := nil

M: y := nilC: t := ∗t
“leak”“signal”

C+C: signal

Fig. 6. Possible erroneous run of garbage collector and mutator

Another important issue is the completeness of the garbage collector, which
means that every node which has become unreachable in the course of the compu-
tation, will eventually be removed. This, however, cannot be directly expressed for
two reasons. First, verifying this property would require to keep track of the iden-
tity of objects between different configurations, which in turn involves the nesting
of quantifiers and temporal operators. This is not supported by our logic. Second,
our automatic garbage collection procedure immediately removes nodes that have
become unreachable.

What we can formulate instead, however, is a safety property which comes very
close to the actual completeness. It expresses that a node which has become un-
reachable will never be marked by the garbage collector. Employing the modified
handling of the leak flag, this property can simply be formulated as

G ¬leak

Note that this formalization is only justified since the garbage collector is
monotonic in the following sense: once a node has been marked, its reachability
information will not be reset before the collection signal occurs. Moreover complete-
ness can only be expected (just as the above soundness property) if it is guaranteed
that the mutator does not modify the reachability bits.

The example computation in Fig. 6 shows that the above garbage collector
violates both of these requirements. Here the mutator program is assumed to be of
the form y := ∗x; ∗x := ∗y; ∗y := nil ; y := nil ; it simply discards the second node
of the list whose head is referenced by x (assuming that this node exists). Here C
and M stand for operations of the collector and the mutator, respectively, which are
either concretely given or summarized by a “+” sign. The bits labeling the nodes
indicate the reachability information as set by the collector.

The computation shows that the collector is neither correct nor complete. In
the final step involving the signal flag, the reachability value 0 of the list’s tail node
means that it would be removed by the collector although it is reachable. Two steps
earlier, the leak flag indicates that garbage has automatically been deleted which
has been marked as reachable by the collector. Both of these problems are caused
by the uncontrolled interaction between the mutator and the collector; they can be
avoided by placing the body of the collector loop in an atomic region.

6 Related Work

Related work on the topic of analyzing pointer–manipulating programs can be clas-
sified into the following (often overlapping) categories.

108

Katoen, Noll, Rieger

Predicate abstraction abstracts the state space of the program by evaluating it
under a number of given predicates. This yields a Boolean program which conser-
vatively simulates all potential executions [25]. Successful software model checkers
such as BLAST [28] and SLAM [3] are based on this approach. There are several
papers that use classical predicate abstraction for pointer analysis [2,14]. In partic-
ular, [15,16] study concurrent garbage collection using predicate abstraction.

Shape analysis is a static analysis framework that represents recursive data struc-
tures of unbounded size by finite structures, called “shape graphs”. The idea is to
apply to the heap the same abstraction that is applied to the program’s states in
predicate abstraction: it is defined in terms of equivalence classes of heap objects
that are induced by a finite set of predicates on those objects. The usual approach
is to formalize shape graphs by three–valued logical structures [46]. This approach
has been implemented TVLA [34] and in BLAST [5] which makes use of TVLA.

Recent developments comprise the development of adaptive methods which au-
tomatically adjust to the data structures that occur in the given program [31,35,48],
demand–driven techniques [5,27], efficiency improvements [33], and interprocedural
shape analysis [26,30,43,44].

It is often argued that the application of predicate abstraction to pointer struc-
tures does not work well because it is difficult to find predicates which abstract
heap structures in an appropriate and compact way [5]. This claim is substantiated
by the results in [36] which investigates the application of both predicate abstrac-
tion and shape analysis to programs operating on singly–linked lists, employing a
similar abstraction as ours: elements on unshared list segments are summarized.
It is shown that standard predicate abstraction requires an exponential number of
predicates in comparison to the number of predicates in shape analysis. Also [41]
considers both techniques, but in a very restricted programming–language setting
which only supports single assignments.

Regular model checking is a framework for unified verification of infinite–state
systems based on automata theory. It represents states using words (trees) over
a finite alphabet and sets of states using finite (tree) automata [10]. Like in our
approach, singly–linked lists are also considered in [8,9], but only safety and termi-
nation properties are verified.

Dataflow analysis is a technique for gathering information about certain aspects
of a program using its control flow graph. This approach is generally efficient but
restricted to rather shallow properties of programs such as aliasing relations [17,39],
points–to information [47,51], or pointer range analysis [50].

Hoare–style approaches: first–order reasoning typically breaks down when it
comes to prove properties of pointer–manipulating programs. The main reason is
that it is impossible to express an invariant of all members of a data structure in
first–order logic. The latter has to be extended therefore to support the definition of
a reachability predicate [1,12,22,32,37,38]. However such deductive techniques usu-
ally involve user interaction, or otherwise only restricted properties such as deref-
erencing of nil pointers or aliasing effects can be analyzed.

Separation logic has been proposed as an extension to Hoare logic that permits
local reasoning about linked structures, supporting features to support modular cor-
rectness proofs for pointer–manipulating programs [40,42]. It has been employed for
termination proofs of heap–manipulating programs [4], for interprocedural shape

109

Katoen, Noll, Rieger

analysis [24], for handling abstract data types [7], and for verifying garbage col-
lection algorithms [6]. However most of the work on separation logic focuses on
verifying programs manually.

In summary, many of the characterizing features of our approach are already
present in earlier papers: the restriction to singly–linked lists without data fields,
the introduction of abstract entities which represent a potentially unbounded num-
ber of heap cells (called “summary nodes” in [13]); see e.g. [2,9,36], and the ob-
servation that, in this setting, the number of sharing points in heap structures is
bounded by the number of program variables [9,36].

However none of these combines the strengths of our approach which supports
concurrent programs with dynamic memory allocation and destructive updates such
that arbitrary (cyclic) linked lists can be constructed, integrates both abstraction
and model checking in a fully automated way, supports a linear–time logic in which
both safety and liveness properties can be expressed, and which allows to use stan-
dard LTL model checkers.

In comparison, many of the existing approaches suffer from the poor program-
ming environment, the exclusion of cyclic data structures, the requirement of user
interaction, or the restriction to safety properties. Notable exceptions are [2], which
also offers liveness properties but requires user–defined ranking functions, [20], which
employs extended tableau–based techniques for model checking, and [49], which has
a non–standard interpretation.

7 Conclusions and Future Work

We have presented a framework for the verification of concurrent pointer–manipu-
lating programs with unbounded heap size and destructive updates. The correctness
properties are specified using temporal pointer logic which is essentially pointer
logic for expressing heap properties enriched with temporal operators. Instead of
requiring dedicated algorithms, the TPL model checking problem is reduced to an
LTL model checking problem that can be verified effectively with a broad variety of
existing model checkers. The tradeoff is the restriction to list–like data structures
as well as the limitation in expressiveness of the logic because object identities are
not tracked between configurations.

Currently we are implementing our method to verify more realistic examples in
the future. In particular we will extend the analysis of concurrent garbage collectors
by defining a “hardest mutator”, i.e., a general mutator program which is capable
of simulating the behavior of any other mutator. This will enable us to establish
the correctness of garbage collectors independent of the concrete mutator.

Furthermore due to the extensive use of concurrency, state space reduction and
optimization techniques such as partial order reduction [21,23] will have to be em-
ployed and integrated in the implementation. We also plan to extend our framework
with dynamic (unbounded) creation of threads. Another interesting aspect could be
the combination of existing finite–state modeling languages like Promela [29] and
pointer manipulation. Finally in the long run we have plans to increase the expres-
sivity of the logic as well as to generalize our approach to richer data structures,
for which new abstractions will be necessary. Moreover an automata–theoretic ap-
proach to defining a storeless semantics, as it is studied in [11] for a (concrete)
semantics for pointer programs seems promising.

110

Katoen, Noll, Rieger

References

[1] Amtoft, T., S. Bandhakavi and A. Banerjee, A logic for information flow in object–oriented programs,
in: POPL ’06 (2006), pp. 91–102.

[2] Balaban, I., A. Pnueli and L. D. Zuck, Shape analysis by predicate abstraction, in: VMCAI ’05, LNCS
3385 (2005), pp. 164–180.
URL
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3385&spage=164

[3] Ball, T. and S. K. Rajamani, The SLAM project: debugging system software via static analysis, in:
POPL ’02 (2002), pp. 1–3.

[4] Berdine, J., B. Cook, D. Distefano and P. W. O’Hearn, Automatic termination proofs for programs
with shape–shifting heaps, in: CAV ’06, LNCS 4144 (2006), pp. 386–400.

[5] Beyer, D., T. A. Henzinger and G. Théoduloz, Lazy shape analysis, in: CAV ’06, LNCS 4144 (2006),
pp. 532–546.

[6] Birkedal, L., N. Torp-Smith and J. C. Reynolds, Local reasoning about a copying garbage collector, in:
POPL ’04 (2004), pp. 220–231.

[7] Bornat, R., C. Calcagno, P. O’Hearn and M. Parkinson, Permission accounting in separation logic, in:
POPL ’05 (2005), pp. 259–270.

[8] Bouajjani, A., M. Bozga, P. Habermehl, R. Iosif, P. Moro and T. Vojnar, Programs with lists are counter
automata, in: CAV ’06, LNCS 4144 (2006), pp. 517–531.

[9] Bouajjani, A., P. Habermehl, P. Moro and T. Vojnar, Verifying programs with dynamic 1–selector-linked
list structures in regular model checking, in: TACAS ’05, LNCS 3440 3440 (2005), pp. 13–29.

[10] Bouajjani, A., P. Habermehl, A. Rogalewicz and T. Vojnar, Abstract regular tree model checking of
complex dynamic data structures, in: SAS ’06, LNCS 4134 (2006), pp. 52–70.

[11] Bozga, M., R. Iosif and Y. Lakhnech, Storeless semantics and alias logic, ACM SIGPLAN Not. 38

(2003), pp. 55–65.

[12] Bozga, M., R. Iosif and Y. Lakhnech, On logics of aliasing, in: SAS ’04, LNCS 3148 (2004), pp. 344–360.

[13] Chase, D. R., M. Wegman and F. K. Zadeck, Analysis of pointers and structures, in: PLDI ’90 (1990),
pp. 296–310.

[14] Dams, D. and K. S. Namjoshi, Shape analysis through predicate abstraction and model checking, in:
VMCAI ’03, LNCS 2575 (2003), pp. 310–323.

[15] Das, S. and D. L. Dill, Successive approximation of abstract transition relations, in: LICS ’01 (2001),
pp. 51–58.

[16] Das, S., D. L. Dill and S. Park, Experience with predicate abstraction, in: N. Halbwachs and D. Peled,
editors, CAV ’99, LNCS 1633 (1999), pp. 160–171.
URL http://link.springer.de/link/service/series/0558/bibs/1633/16330160.htm

[17] Deutsch, A., Interprocedural may–alias analysis for pointers: beyond k–limiting, in: PLDI ’94 (1994),
pp. 230–241.

[18] Distefano, D., “On Model Checking the Dynamics of Object–Based Software: a Foundational
Approach,” Ph.D. thesis, Univ. of Twente (2003).

[19] Distefano, D., J.-P. Katoen and A. Rensink, Who is pointing when to whom? – on the automated
verification of linked list structures, in: FSTTCS ’04, LNCS 3328 (2004), pp. 250–262.

[20] Distefano, D., J.-P. Katoen and A. Rensink, Safety and liveness in concurrent pointer programs, in:
FMCO ’06, LNCS 4111 (2006), pp. 280–312.

[21] Flanagan, C. and P. Godefroid, Dynamic partial–order reduction for model checking software, in:
POPL ’05 (2005), pp. 110–121.

[22] Fradet, P., R. Gaugne and D. L. Métayer, Static detection of pointer errors: an axiomatisation and a
checking algorithm, in: ESOP ’96, LNCS 1058 (1996), pp. 125–140.

[23] Godefroid, P., “Partial–Order Methods for the Verification of Concurrent Systems: An Approach to the
State–Explosion Problem,” LNCS 1032, Springer–Verlag, 1996.

111

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3385&spage=164
http://link.springer.de/link/service/series/0558/bibs/1633/16330160.htm

Katoen, Noll, Rieger

[24] Gotsman, A., J. Berdine and B. Cook, Interprocedural shape analysis with separated heap abstractions,
in: SAS ’06, LNCS 4134 (2006), pp. 240–260.

[25] Graf, S. and H. Säıdi, Construction of abstract state graphs with PVS, in: CAV ’97, LNCS 1254 (1997),
pp. 72–83.

[26] Hackett, B. and R. Rugina, Region–based shape analysis with tracked locations, in: POPL ’05 (2005),
pp. 310–323.

[27] Heintze, N. and O. Tardieu, Demand–driven pointer analysis, ACM SIGPLAN Not. 36 (2001), pp. 24–
34.

[28] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre, Software verification with BLAST, in: SPIN ’03,
LNCS 2648 (2003), pp. 235–239.
URL http://link.springer.de/link/service/series/0558/bibs/2648/26480235.htm

[29] Holzmann, G., “The Spin Model Checker: Primer and Reference Manual,” Addison–Wesley, 2003.

[30] Jeannet, B., A. Loginov, T. W. Reps and S. Sagiv, A relational approach to interprocedural shape
analysis, in: SAS ’04, LNCS 3148 (2004), pp. 246–264.

[31] Lee, O., H. Yang and K. Yi, Automatic verification of pointer programs using grammar-based shape
analysis, in: ESOP ’05, LNCS 3444 (2005), pp. 124–140.

[32] Lev-Ami, T., N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava and G. Yorsh, Simulating reachability
using first–order logic with applications to verification of linked data structures, in: CADE ’05, LNCS
3632 (2005), pp. 99–115.
URL http://dx.doi.org/10.1007/11532231 8

[33] Lev-Ami, T., N. Immerman and S. Sagiv, Abstraction for shape analysis with fast and precise
transformers, in: CAV ’06, LNCS 4144 (2006), pp. 547–561.

[34] Lev-Ami, T. and S. Sagiv, TVLA: A system for implementing static analyses, in: SAS ’00, LNCS 1824

(2000), pp. 280–302.

[35] Loginov, A., T. W. Reps and S. Sagiv, Abstraction refinement via inductive learning, in: CAV ’05,
LNCS 3576 (2005), pp. 519–533.

[36] Manevich, R., E. Yahav, G. Ramalingam and M. Sagiv, Predicate abstraction and canonical abstraction
for singly–linked lists, in: VMCAI ’05, LNCS 3385 (2005), pp. 181–198.

[37] Møller, A. and M. I. Schwartzbach, The pointer assertion logic engine, in: PLDI ’01 (2001), pp. 221–
231.

[38] Nelson, G., Verifying reachability invariants of linked structures, in: POPL ’83 (1983), pp. 38–47.

[39] Nystrom, E. M., H.-S. Kim and W. mei W. Hwu, Bottom–up and top–down context–sensitive summary–
based pointer analysis, in: SAS ’04, LNCS 3148 (2004), pp. 165–180.

[40] O’Hearn, P. W., H. Yang and J. C. Reynolds, Separation and information hiding, in: POPL ’04 (2004),
pp. 268–280.

[41] Podelski, A. and T. Wies, Boolean heaps, in: SAS ’05, LNCS 3672 (2005), pp. 268–283.

[42] Reynolds, J. C., Separation logic: A logic for shared mutable data structures, in: LICS ’02 (2002), pp.
55–74.

[43] Rinetzky, N., J. Bauer, T. Reps, M. Sagiv and R. Wilhelm, A semantics for procedure local heaps and
its abstractions, in: POPL ’05 (2005), pp. 296–309.

[44] Rinetzky, N., M. Sagiv and E. Yahav, Interprocedural shape analysis for cutpoint–free programs, in:
SAS ’05, LNCS 3672 (2005), pp. 284–302.

[45] Sagiv, M., T. Reps and R. Wilhelm, Solving shape–analysis problems in languages with destructive
updating, ACM Trans. Program. Lang. Syst. 20 (1998), pp. 1–50.

[46] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3–valued logic, ACM Trans. Program.
Lang. Syst. 24 (2002), pp. 217–298.

[47] Whaley, J. and M. S. Lam, An efficient inclusion–based points–to analysis for strictly–typed languages,
in: SAS ’02, LNCS 2477 (2002), pp. 180–195.

[48] Yahav, E. and G. Ramalingam, Verifying safety properties using separation and heterogeneous
abstractions, in: PLDI ’04 (2004), pp. 25–34.

112

http://link.springer.de/link/service/series/0558/bibs/2648/26480235.htm
http://dx.doi.org/10.1007/11532231_8

Katoen, Noll, Rieger

[49] Yahav, E., T. Reps, M. Sagiv and R. Wilhelm, Verifying temporal heap properties specified via evolution
logic, in: ESOP ’03, LNCS 2618 (2003), pp. 204–222.

[50] Yong, S. H. and S. Horwitz, Pointer–range analysis, in: SAS ’04, LNCS 3148 (2004), pp. 133–148.
URL
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3148&spage=133

[51] Zhu, J. and S. Calman, Symbolic pointer analysis revisited, in: PLDI ’04 (2004), pp. 145–157.

113

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3148&spage=133

	Introduction
	First-order predicate BI with inductive definitions
	A proof system for induction in BIID
	A cyclic proof system for BIID
	Conclusions and Future work
	References
	Introduction
	Related Work
	Contributions

	Motivating Example
	Context-Sensitive Abstraction
	Reachability Analysis
	Symbolic Shape Analysis

	Context Instantiation
	Semantic Caching
	Propagation of Precondition Conjuncts
	Experiments
	Conclusions
	References
	Introduction
	Framework
	Aliasing and String Analyses
	Local aliasing
	Local non-aliasing
	Pointers and strings

	Inferring Annotations by Abstract Interpretation
	Implication Lattice
	Inferring Loop Invariants and Function Preconditions
	Flashback: the case of strings
	Proving Memory Safety

	Implementation
	Experiments
	Related Work
	Conclusion and Future Work
	References
	Introduction
	Memory model and specification language
	A separation logic with pointer arithmetic
	Temporal extension
	Programs with pointer variables

	Complexity results
	Discussion
	Recursion with local parameters
	Programs as formulae

	Conclusion
	References
	Introduction
	Language, Concepts and Notations
	Computing Liveness Environments
	Computing XE
	Computing XP and XF

	Solving the Equations for XF
	Representing Liveness by Context Free Grammars
	Approximating CFGs using NFAs
	Eliminating "70160 and "70161 from NFA

	An Application of Liveness Analysis
	Related Work
	Conclusions
	References
	Introduction
	Preliminaries
	Core language
	Normalization of C source
	Component-as-array modeling

	Separation Analysis
	Modeling with regions
	Regions as types
	Inference of regions

	Applications
	Caduceus benchmarks
	Regions and logical annotations
	An industrial case study

	Related work
	Conclusion
	References
	Introduction
	A List--Manipulating Programming Language
	State--Space Abstraction
	A Logic for Concurrent List--Manipulating Programs
	Application: Concurrent Garbage Collection
	Related Work
	Conclusions and Future Work
	References

